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Abstract

Recently, large language models (LLMs) have
significantly improved the performance of text-
to-SQL systems. Nevertheless, many state-of-
the-art (SOTA) approaches have overlooked the
critical aspect of system robustness. Our exper-
iments reveal that while LLM-driven methods
excel on standard datasets, their accuracy is no-
tably compromised when faced with adversar-
ial perturbations. To address this challenge, we
propose a robust text-to-SQL solution, called
Solid-SQL, designed to integrate with vari-
ous LLMs. We focus on the pre-processing
stage, training a robust schema-linking model
enhanced by LLM-based data augmentation.
Additionally, we design a two-round, struc-
tural similarity-based example retrieval strategy
for in-context learning. Our method achieves
SOTA SQL execution accuracy levels of 82.1%
and 58.9% on the general Spider and Bird
benchmarks, respectively. Furthermore, exper-
imental results show that Solid-SQL delivers
an average improvement of 11.6% compared to
baselines on the perturbed Spider-Syn, Spider-
Realistic, and Dr. Spider benchmarks.

1 Introduction

Text-to-SQL serves as an automated tool that facil-
itates the transformation of natural language into
structured query language (SQL) commands, en-
abling individuals without specialized knowledge
and skills to write SQL and query databases (Baig
et al., 2022). Traditional text-to-SQL techniques
have relied on rigid syntax tree templates (Xu et al.,
2017; Guo et al., 2019; Wang et al., 2020) or su-
pervised fine-tuning of sequence-to-sequence mod-
els (Xie et al., 2022; Scholak et al., 2021) for
executing the transition from text to SQL. How-
ever, the recent past has witnessed a surge in the
application of LLMs in text-to-SQL operations,
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question and database schema ...

‘

SQL-generation
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SELECT DISTINCT Country FROM Singer WHERE Age = 20;
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Refined SQL Query
SELECT DISTINCT Country FROM Singer WHERE Age > 20;

Figure 1: The general three-stage pipeline of LLM-
based text-to-SQL systems.

proving their efficacy (Gao et al., 2024; Pourreza
and Rafiei, 2023). State-of-the-art approaches that
top text-to-SQL leaderboards, such as Spider (Yu
et al., 2018) and BIRD (Li et al., 2023), leverage
advanced Large Language Models (LLMs) like
GPT-4 (Achiam et al., 2023) for SQL generation.
Considering the role of text-to-SQL in sensitive
domains such as finance and healthcare, where sys-
tem reliability and security are of critical impor-
tance, the robustness of text-to-SQL systems is es-
sential, which, however, has not received adequate
consideration in LLM-based text-to-SQL systems.
A robust text-to-SQL system should have the ability
to maintain the correct SQL output when faced with
adversarial perturbations in the text or database (Pi
et al., 2022), such as changes in sentence structure,
synonym descriptions, etc. Experimental results
reveal that leading LLM-based methods (Dong
et al., 2023; Wang et al., 2024; Li et al., 2024a) per-
form poorly on benchmarks that aim at testing the
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text-to-SQL robustnes, like Spider-Syn (Gan et al.,
2021), Spider-Realistic (Deng et al., 2021) and
Dr.Spider (Chang et al., 2023). However, efforts to
enhance text-to-SQL robustness (Fiirst et al., 2024;
Shen et al., 2023; Zhuo et al., 2023) continue to be
centered around traditional sequence-to-sequence
architectures, with limited exploration of LLM-
based alternatives (Zhuo et al., 2023).

As illustrated in Figure 1, an LLM-based text-to-
SQL system comprises three distinct stages: pre-
processing, SQL-generation, and post-processing.
These stages are tasked with parsing the input
question to synthesize effective prompts, querying
the LLM to produce SQL statements, and refin-
ing the generated SQL, respectively. In the SQL-
generation stage, to achieve good results, the em-
ployed LLMs typically have a very large size or are
closed-source, making them difficult to fine-tune
for rubustness. The post-processing phase entails
refining the already generated SQL, with these re-
finements being independent of disturbances on
the input side. The pre-processing stage, in con-
trast, deals with disruptions originating from the
textual and tabular inputs. Therefore, handling in
the pre-processing stage is crucial for enhancing
the robustness of the LLM-based text-to-SQL sys-
tems. Specifically, how to process the text and
schema to obtain a prompt that can stabilize perfor-
mance in the SQL-generation stage is the problem
we need to solve.

In this paper, to address the aforementioned is-
sues, we design a robust pre-processing pipeline,
called Solid-SQL, to generate prompts for SQL-
generation. We craft the necessary pre-processing
steps based on the components required for the
prompt. A SQL statement consists of two com-
ponents: first, the syntactic framework that deter-
mines the structure and logic of the statement; and
second, the database schema, which includes the
specific names of the tables and columns being
accessed. To guide from both aspects, we aim to
include pre-selected schemas and SQL statement
examples with similar structures within our prompt.
For robust schema selection, we specifically utilize
LLMs to generate varied data for adversarial train-
ing and format training data specially for schema
linking tasks to fine-tune a language model, ad-
dressing the lack of relevant datasets. To assist
with in-context learning, we design effective meth-
ods for extracting text and SQL skeletons based
on the chosen schemas and retrieve relevant SQL
statement examples based on the similarity of these

skeletons. When constructing the prompt, we in-

corporate explicit attention mechanisms to stabilize

the output for inputs that have been perturbed.
Our contributions are summarized as follows:

* We address the existing gap in discussions
on the robustness of LLM-based text-to-SQL
systems. To address this, we propose Solid-
SQL, a pre-processing pipeline designed to
enhance the robustness of LLM-based text-to-
SQL systems in generating SQL.

* We design several effective modules, includ-
ing a robust schema-linking model, example
retrieval methods, and an explicit attention
mechanism. Moreover, we validate Solid-
SQL’s universality and applicability through
its integration with various SQL-generation
LLMs.

* We conduct extensive experiments, demon-
strating that Solid-SQL achieves SOTA per-
formance on general benchmarks and signif-
icantly outperforms existing solutions on ro-
bustness benchmarks. Additionally, the effec-
tiveness of the modules is validated through
ablation studies.

2 Related Work
2.1 LLM-based Text-to-SQL Techniques

In tandem with the rapid advancement and
widespread adoption of large language models
(LLMs) across various natural language processing
(NLP) domains, the text-to-SQL field has also seen
significant benefits from recent methodological
breakthroughs involving LL.Ms, achieving notable
performance milestones. LLMs demonstrate im-
pressive zero-shot reasoning and domain general-
ization capabilities, contributing to unprecedented
achievements on the cross-domain Spider leader-
board (Yu et al., 2018). For instance, C3 (Dong
et al., 2023) is a zero-shot text-to-SQL methodol-
ogy that enhances ChatGPT through three designs:
Clear Prompting for effective input; Calibration
with Hints to correct model biases; and Consistent
Output to ensure query reliability. The Chain-of-
Thought approach (Wei et al., 2022) has also been
applied to text-to-SQL tasks. DIN-SQL (Pourreza
and Rafiei, 2023) tackles the text-to-SQL task by
decomposing it into four modules: schema linking,
query classification and decomposition, SQL gen-
eration, and self-correction, each implemented us-
ing prompting techniques to leverage the granular
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capabilities of LLMs. Some methods further ex-
plore LLM’s ability of in-context learning. DAIL-
SQL (Gao et al., 2024) has revitalized the SOTA
on Spider through a comprehensive examination of
in-context learning, investigating the optimal selec-
tion of examples and their proper organization in
prompts within a few-shot scenario. Other research
has explored the selection of few-shot demonstra-
tions by synthesizing in-domain examples (Chang
and Fosler-Lussier, 2023) and retrieving question
skeletons (Guo et al., 2023). Furthermore, MAC-
SQL (Wang et al., 2024) and CHESS (Talaei et al.,
2024) employ multi-agent collaboration for Text-
to-SQL tasks. In addition to maximizing the ability
to explore the LLMs without modifying it, other op-
tions involve fine-tuning the model. Approaches in
DAIL-SQL (Gao et al., 2024), DTS-SQL(Pourreza
and Rafiei, 2024), and CodeS (Li et al., 2024b) aim
to enhance the capabilities of open-source LLMs
through supervised fine-tuning, striving to compete
with or surpass their larger, proprietary counter-
parts.

Although these methods have achieved impres-
sive results on the leaderboards, only a few of them
have been evaluated for robustness (Li et al., 2024b;
Gao et al., 2024). Moreover, according to our exper-
iments, the performance of many in-context learn-
ing based methods on robustness benchmarks ap-
pears to be somewhat inferior compared to their
performance on the Spider and BIRD (Li et al.,
2023) leaderboards.

2.2 Adversarial Robustness

Despite the remarkable performance of neural net-
works across various domains, they continue to
exhibit significant vulnerabilities when subjected
to perturbations (Szegedy et al., 2014). This sus-
ceptibility is not only evident in traditional neural
networks but has also been observed in systems
such as text-to-SQL models (Shen et al., 2023),
where adversarial inputs can lead to degraded per-
formance. LLMs show potential as zero-shot text-
to-SQL parsers, but their performance declines
when faced with adversarial attacks and domain
generalization disturbances, exhibiting varying lev-
els of robustness in response to different types of
perturbations (Zhang et al., 2023). It has been sub-
stantiated that removing explicitly stated column
names (Deng et al., 2021) or replacing database
schema-related content with synonyms (Gan et al.,
2021) in the question will compromise the acces-
sibility and accuracy of the generated SQL. Be-

sides, confusion on the table side (e.g., substitut-
ing column descriptions or incorporating distract-
ing columns within the table) will further under-
mine the precision of text-to-SQL systems (Pi et al.,
2022). And for a holistic robustness assessment,
Dr. Spider (Chang et al., 2023), a diagnostic bench-
mark encompassing 15,000 perturbed examples
that cover a multitude of perturbation types from
three perspectives: the database, natural language
questions, and SQL, has been unveiled.

To enhance the robustness of text-to-SQL sys-
tems, several strategies have been employed, in-
cluding manually adding synonym annotations to
the schema to provide a more precise descrip-
tion (Gan et al., 2021), generating adversarial ex-
amples for adversarial training of the sequence-to-
sequence model (Pi et al., 2022; Gan et al., 2021),
designing specialized training frameworks (Deng
et al., 2021) and crafting innovative encoding strate-
gies to transition from text to SQL (Shen et al.,
2023).

However, these methods either require signif-
icant manual effort, are not suitable for new do-
mains and large databases, or can just be applied
to traditional encoder-decoder frameworks but not
on the currently popular LLMs with large-scale
parameters. In contrast, our robustness strategy
is compatible with LLMs and ensures that text-
to-SQL systems utilizing this strategy perform no
worse than SOTA methods on conventional bench-
marks, while markedly enhancing performance on
robustness evaluation benchmarks.

3 Methodology

3.1 Problem Definition

Text-to-SQL is a task that generates a SQL state-
ment for querying a database based on a natural
language text which is a demand for some infor-
mation about the database. It can be represented
as S = M(Q, SC), where S is the generated SQL
statement, M is the text-to-SQL system, () is the
natural language text, i.e., the question, and SC'is
the database schema.

Our robustness goal is to stabilize the output of
the text-to-SQL system when faced with pertur-
bations. Specifically, without affecting the funda-
mental goal of (), adding perturbations to () yields
Q*. A robust LLM-based text-to-SQL strategy
satisfies DB(M(Q, SC)) = DB(M(Q*,SC)),
where DB is the access database.
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Figure 2: The pipeline of Solid-SQL.

3.2 Overview

Solid-SQL is a novel plug-in solution for robust
text-to-SQL, which uses a carefully designed pre-
processing pipeline to extract the elements re-
quired for prompt composition. It includes a robust
scheme linking model, an effective example re-
trieve method and an explicit attention mechanism.

Figure 2 shows the pipeline of Solid-SQL.
Firstly, we employ an LLM to introduce minor
perturbations to the text of text-to-SQL training
data, while preserving its semantic integrity. In
this way, we create an augmented dataset of clean
and perturbed data. This augmented dataset is then
used to fine-tune a language model for schema
linking(Figure 2(A)). Subsequently, leveraging the
outcomes of schema linking(Figure 2(B)), we ask
an LLM to extract and remove domain-specific in-
formation and value information from the input text
query, to derive the query’s skeleton(Figure 2(C)).
This skeleton is matched against a pool of candi-
date skeletons to retrieve an appropriate number of
relevant samples as examples based on similarity.
The question, complete schema, and examples are
combined into a prompt, with explicit emphasis
on the filtered schema, to query the LLM for SQL
generation in the first round(Figure 2(D)-Round 1).
Following this, the SQL generated from the first
round is parsed to extract its backbone, and addi-
tional examples are retrieved for the second round

of SQL generation, culminating in the final SQL
output (Figure 2(D)-Round 2).

3.3 Schema Linking

The schema linking task is a preliminary step of
text-to-SQL, simplifying the generation of SQL
queries. Its goal is to select the actual tables and
columns to be accessed from the entire database
schema based on a given question. For schema
linking, since the input contains numerous SQL
statements that define the database structure, it is
challenging for a base LLM with general capabil-
ities to understand such input and produce output
in the expected format. Therefore, we fine-tune a
model to complete the task.

3.3.1 Robust Data Enhancement

In order to improve the robustness of our schema
linking model, we first expanded the original text-
to-SQL training dataset. The data in the training
set is in the form of a triplet ), SC, S, where @ is
the input text query, SC' is the complete database
schema, and S is the correct SQL query output.
We use an LLM to rewrite (), including changing
the sentence structure and replacing synonyms (i.e.,
substituting ’singer’ with *musician’), resulting in
new questions ()1 and (J2. Then, we add the new
triplets @1, SC, .S and Q2, SC, S to the training
dataset. This expanded training set introduces per-
turbations and adversarial examples, and the model
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trained with this augmented dataset can effectively
improve its robustness.

3.3.2 Model Training

We set the target operation to choose schema
in Solid-SQL, as shown in Figure 2(B), formu-
lated as {T,C} = G(Q,SC), where T =
{Tl,TQ, PN 7T|T\} and C' = {01, CQ, ey C|C|}
are the selected tables and columns, respec-
tively, and G is a fine-tuned generation model for
schema linking. The absence of a training set for
schema linking is problematic, and existing text-
to-SQL training datasets offer data in the form of
(Q,SC) — S pairs without providing the chosen
schema. Therefore, we parse the SQL statement
S related to question () to obtain the ground truth
T7,C.

3.4 Relative Example Retrieval

In crafting prompts for LLMs, the selection of task-
relevant examples is paramount, as it enhances
the model’s comprehension and task performance
by leveraging contextual adaptability, knowledge
transfer, and ambiguity mitigation.

Verified by DAIL-SQL (Gao et al., 2024), ex-
amples formatted as pairs consisting of a text
query and the corresponding correct SQL state-
ment benefit the in-context learning for the text-
to-SQL task, rather than containing only the text
or the SQL query. We define the example set
as E = {F1, Es,...,En}, where each E; corre-
sponds to a question-SQL pair, denoted as (Q;, S;).

3.4.1 Question Skeleton Similarity-Based

The correlation between two SQL statements, .S;
and S}, suggests a corresponding relationship be-
tween their associated questions, @; and @;. To
guide the LLM towards generating the desired SQL,
it is reasonable to select analogous questions from
the candidate set as examples, based on the target
question Q).

However, the emphasis on similarity should fo-
cus on the structural alignment of the SQL state-
ments rather than their thematic proximity. To
achieve this, it is crucial to abstract the target ques-
tion () by removing domain-specific details and
value-related content, revealing its core structure,
or ’skeleton’, denoted as Q*. (Q* serves as the foun-
dation for identifying analogous questions within
the candidate set, with a focus on those exhibit-
ing a similar structural pattern. By aligning the
examples with *, the model can more accurately

identify the underlying patterns and relationships
essential for converting natural language queries
into executable SQL commands. This method en-
sures that the LLM’s in-context learning is attuned
to the structural intricacies critical for the task.

To derive Q* from (), we leverage the language
understanding capabilities of an LLM and employ a
prompting-based technique. We input the question
@ along with the schema inferred by our schema
linking model into a universal LLM and parse the
output to extract @Q*. As shown in Figure 2(C),
this process obscures the domain-specific informa-
tion and values, leaving only the question’s skele-
tal structure. This extraction process should be
applied to both the questions (; within the can-
didate library (Q1, S1), (Q2,S2), - - -, (Q|£|» S|E|)
and the given target question () itself. Based
on the cosine similarity between Q* and the set

T, Q*2,...,Q*|E|, we can identify the top N
most similar candidate skeletons, corresponding to
example pairs (Q1, 51), (Q2,52), .-, (@n, SN).

3.4.2 SQL Skeleton Similarity-Based

In addition to indirectly utilizing questions to match
the samples to be retrieved, direct matching can
also be achieved through the similarity of SQL
statements. As shown in Figure 2(D), after the
SQL generation is completed by the LLM in round
1, we can select examples for the SQL generation
in round 2 based on the similarity of the SQL skele-
tons.

We extract the skeleton S* of an SQL statement
S by identifying and manipulating its various com-
ponents using an SQL parsing tool'. This process
involves parsing the SQL statement to generate a
syntax tree, then recognizing and replacing the ta-
ble names, column names, and values within it,
while preserving the SQL keywords and logical
structure. Ultimately, a skeleton that contains only
placeholders and the structure of the SQL is pro-
duced. This extraction process is applied to both
the candidate library and the generated SQL from
round 1.

We employ the edit distance derived from the
parse tree of an SQL skeleton to quantify the struc-
tural similarity, which provides an analytical ap-
proach that emphasizes the logical framework of
SQL statements rather than their superficial textual
similarities. This technique enables a more pre-
cise identification of key element correspondences

"https://github.com/tobymao/sqlglot
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than calculating cosine similarity of embedded vec-
tors (Gao et al., 2024). It can also effectively dis-
counts disparities arising from diverse expressive
forms or functional applications. Consequently, it
facilitates a more robust assessment of the concep-
tual similitude within SQL statements.

3.5 Information Utilization

We design suitable prompt templates to integrate
existing information and query LLMs accomplish
SQL-generation effectively. A key consideration is
the use of an explicit attention mechanism to embed
table and column names filtered through schema
linking into the prompt. Existing approaches (Gao
et al., 2024) often present only the filtered schema
information to the LLM, reducing token count
and excluding unnecessary information. However,
this method has a significant drawback: if crucial
schema information is omitted in the last step, the
LLM will be unable to generate the correct SQL
statement. In contrast, we use "focus on" to em-
phasize schema elements that are more likely to
form the final SQL statement to the LLM. Thus
the model still has a comprehensive view of the
entire schema information while understanding the
priority, ensuring the stability and fault tolerance
of the LLM in generating SQL statements when
faced with perturbation.

4 Experiments

4.1 Experimental Setup
4.1.1 Datasets

We evaluate the performance of Solid-SQL on a
simple clean test set called Spider, a difficult clean
test set called Bird, and three perturbed test sets.

Spider (Yu et al., 2018) is a dataset for semantic
parsing and text-to-SQL, created by Yale students.
It contains 10,181 questions and 5,693 SQL queries
across 200 databases and 138 domains.

Bird (Li et al., 2023) is a large-scale text-to-
SQL benchmark developed by Alibaba DAMO
Academy. It features 12,751 question-SQL pairs,
95 databases, and spans over 37 domains.

Spider-Syn (Gan et al., 2021) is an adapted ver-
sion of the Spider dataset with 5,672 questions
modified by replacing words with their synonyms,
using 273 synonyms and 189 phrases. On average,
there is one alteration per question.

Spider-Realistic (Deng et al., 2021) is a per-
turbed evaluation set based on Spider. It has

been manually adjusted to remove explicit column
names while keeping SQL queries unchanged.

Dr. Spider (Chang et al., 2023) is a robustness
evaluation benchmark for text-to-SQL models. It
applies perturbations to the database, natural lan-
guage query, and SQL components, and contains
15,000 pre- and post-perturbation examples.

4.1.2 Evaluation Metrics

We assess the performance of the text-to-SQL
model by evaluating the quality of the generated
SQL. Execution Accuracy (EX) is defined as the
proportion of questions in the evaluation set for
which the execution outcomes of both the predicted
SQL queries and the ground-truth queries are the
same. It is calculated relative to the total number of
queries. The EX of the generated SQLs indicates
how well the model meets the availability and pre-
cision requirements in real-world scenarios. We
also use Exact Match Accuracy (EM) as an adjunct.
EM is the portion of generated SQLs that totally
match the ground truth SQL statements.

4.1.3 LLMs

Solid-SQL employs a prompting methodology that
supports the use of various interchangeable LLMs.
To validate the compatibility and generalizability
of our proposed solution, we conducted experi-
ments using four distinct LLMs for SQL genera-
tion. These models included both open-source and
closed-source options.

LLama3-70b: An open-source LLM with 70 bil-
lion parameters by Meta Al, optimized for diverse
NLP tasks including text generation and transla-
tion.

Deepseek-coder-33b-instruct: A 33-billion-
parameter model from the Deepseek Coder series,
leading in open-source code generation across mul-
tiple programming languages.

GPT-40-mini: A compact version of GPT-4o,
retaining core text capabilities with faster inference
due to fewer parameters.

GPT-4: OpenAl’s advanced generative pre-
trained transformer, adept at complex tasks like
essay writing and coding with high accuracy and
creativity.

4.1.4 Baselines

We compare with other prompting-based text-to-
SQL solutions which have SOTA performances on
Spider and Bird.

DAIL-SQL (Gao et al., 2024): Ranked second
on the Spider leaderboard, DAIL-SQL employs a
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Table 1: The EX (Excute Accuracy) and EM (Exact Match) of Solid-SQL on Spider dev set, Spider-Syn test set and
Spider-Realistic test set, comparing with SOTA open source prompting based methods.

Alternative LLM Method ‘ Spider ‘ Spider-Syn ‘ Spider-Realistic ‘ Avg

| EX EM|EX EM|EX EM |EX EM
DAIL-SQL (Gao et al., 2024) 60.5 424|580 333|598 41.5 594 39.1
MAC-SQL (Wang et al., 2024) 763 279|651 21.7 | 71.7 24.4 71.0 247

Llama3-70b DIN-SQL (Pourreza and Rafiei, 2023) \ \ \ \
Solid-SQL (round1) 81.5 593|742 523 76.6 52.0 774 545
Solid-SQL (round?2) 82.1 61.0 | 746 547 |77.1 54.3 77.9 56.7
DAIL-SQL (Gao et al., 2024) 68.6 529 |50.1 374|602 48.0 59.6 46.1
MAC-SQL (Wang et al., 2024) 500 5.8 |397 3.7 |374 3.9 424 45

deepseek-13b  DIN-SQL (Pourreza and Rafiei, 2023) \ \ \ \
Solid-SQL (round1) 773 525|684 434|714 50.8 72.3 489
Solid-SQL (round?2) 77.8 51.6 | 68.5 434|723 50.4 729 485
DAIL-SQL (Gao et al., 2024) 774 514 |66.1 37.8 705 49.8 713 463
MAC-SQL (Wang et al., 2024) 78.1 37.8 | 687 29.4 | 76.0 39.0 743 354
GPT-40-mini DIN-SQL (Pourreza and Rafiei, 2023) | 70.3 36.4 | 64.3 33.4 | 62.0 38.8 65.5 36.2
Solid-SQL (round1) 80.4 60.0 | 742 523 | 76.1 54.7 769 55.7
Solid-SQL (round2) 799 603 | 746 533767 54.3 77.1  56.0

variety of example selection methods and a struc-
tured format for example organization. Leveraging
GPT-4, it achieves high performance in SQL gener-
ation quality and query efficiency.

MAC-SQL (Wang et al., 2024): This method
features a core decomposer agent for Text-to-SQL
with few-shot chain-of-thought reasoning, sup-
ported by two auxiliary agents for obtaining sub-
databases and refining SQL queries. The agents
work in tandem, with the flexibility to integrate
new tools or features for enhanced Text-to-SQL
parsing.

DIN-SQL (Pourreza and Rafiei, 2023): DIN-
SQL breaks down the text-to-SQL task into
sub-problems: schema linking, query classifica-
tion & decomposition, SQL generation, and self-
correction. Utilizing prompting techniques, it
demonstrates that LLMs can effectively solve these
sub-problems when appropriately decomposed.

CodeS (Li et al., 2024b): CodeS is an open-
source language model series designed for text-
to-SQL, offering high accuracy with smaller pa-
rameters compared to closed-source LLMs. It
employs an incremental pre-training strategy on
a SQL-specific corpus and addresses schema link-
ing and domain adaptation challenges. Evaluations
show CodeS achieves state-of-the-art performance

on multiple text-to-SQL benchmarks.

4.1.5 Solid-SQL Details

In the deployment of Solid-SQL, we employ the
LLama3-8B-Instruct model as the foundational ar-
chitecture for the schema linking task. The model
is subjected to a training regimen consisting of five
epochs on an augmented dataset, which comprises
approximately 22,000 question-SQL pair instances.
For the extraction of question skeletons, we use
the LLM align with SQL-generation. Furthermore,
when assessing the cosine similarity between two
question embeddings, we employ the bge-large-en-
v1.5 embedding model before the computation.

4.2 Overall Performance

We test the performance of Solid-SQL across var-
ious benchmarks and compared it with the base-
lines.

Table 1 presents the performance of Solid-SQL
on the Spider benchmark as well as its robustness
test variants, Spider-syn and Spider-realistic. Lever-
aging the prompting-based nature of Solid-SQL
and the compared baseline methods, we imple-
mented a plugin-style approach to substitute var-
ious LLMs for SQL generation. Solid-SQL sig-
nificantly outperforms the baselines in both execu-
tion accuracy (EX) and exact match (EM) across
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Table 2: The EX (Execute Accuracy) of Solid-SQL (ours) and baselines on Dr.Spider. "Pert Level" is where the
perturbation is added and "Pert Type" is the how the perturbation added.

Pert Level Pert Type | CodeS-15B | Llama3-70b | GPT-40-mini
‘ (Liet al.) ‘ MAC-SQL ‘ ours-round1 ‘ MAC-SQL ‘ ours-round1
DB DBcontent-equivalence 47.6 584 62.8 59.9 63.2
schema-abbreviation 78.7 72.9 77.9 74.1 78.0
schema-synonym 66.9 65.9 72.8 66.8 72.6
NLQ column-attribute 68.9 63.9 69.2 65.7 68.9
column-carrier 79.1 66.3 78.9 68.9 79.8
column-synonym 64.7 533 70.3 54.8 70.1
column-value 76.3 68.8 78.8 69.6 774
keyword-carrier 91.7 89.5 91.1 90.5 91.2
keyword-synonym 73.5 62.0 74.8 64.6 73.1
multitype 69.4 58.3 71.5 61.2 70.9
others 81.2 69.8 79.2 71.1 81.0
value-synonym 71.9 60.1 732 62.5 73.9
comparison 71.9 75.3 71.6 76.2 77.8
DB-number 85.9 80.5 83.7 81.8 84.6
SQL DB-text 80.7 72.8 79.6 75.2 80.2
nonDB-number 84.0 84.0 87.0 86.3 89.7
sort-order 84.9 62.0 77.3 66.1 79.5

Table 3: The EX (Execute Accuracy) on Bird dev set.

Method Bird
GPT-4 46.2
DIN-SQL + GPT-4  50.7
DAIL-SQL + GPT-4 54.8
MAC-SQL + GPT-4 50.6
Solid-SQL + GPT-4  58.9

all datasets, with an average execution accuracy
12.4% higher than the baselines and an average
exact match that also exceeds the baseline. It is
noteworthy that certain methods exhibit a strong
dependency on specific LLMs, seeing that DAIL-
SQL’s performance decreases heavily on LLama
compared with GPT series and DIN-SQL is even
unable to output reasonable SQL statements when
using Deepseek and Llama. In contrast, Solid-SQL
performs well on all the test LLMs, showing versa-
tility and compatibility.

Table 2 demonstrates the execution accuracy of
Solid-SQL when generating SQL queries under
various levels and types of perturbations within the
Dr.Spider dataset. Due to MAC-SQL’s most stable
performance in cooperation with different LLMs
among the baselines in Table 1, we choose it as the
object of comparison. The results clearly show that

our Solid-SQL approach significantly outperforms
MAC-SQL and matches the current state-of-the-art
model in robustness, CodeS-15B, which has been
fine-tuned with extensive data. Additionally, it is
evident that Solid-SQL has a distinct advantage
in terms of robustness against perturbations that
involve the use of synonyms.

Table 3 displays the experimental results on the
Bird benchmark, which similarly demonstrates the
consistent performance of Solid-SQL under com-
plex requirements.

4.3 Ablation Study & Hyper-parameter Study
4.3.1 Schema Linking Training

Table 4 presents the results of an ablation study on
schema linking training. Compared to the baseline
model without supervised fine-tuning (SFT), the
model fine-tuned with the basic training set shows
a significant improvement of approximately 25%
in the accuracy of column name choosing, under-
scoring the necessity and efficacy of SFT. More-
over, employing a robustness-enhanced augmented
training set with added perturbations further im-
proves the accuracy of schema linking, especially
on perturbed benchmarks such as Spider-Syn and
Spider-Realistic, with an enhancement of about 2%,
highlighting the contribution to the robustness of
schema linking.
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Table 4: The ablation study of SFT-based schema link-
ing in Solid-SQL. Values in the table are the searching
accuracy of cloumn names. "w/o SFT" referring to the
base model without finetuning, "w/o Enhance" referring
to being finetuned with basic training data, and "with
Enhance" referring to being finetuned with enhanced
training data.

Spider Syn Realistic
w/o SFT 65.6 59.9 62.5
w/o Enhance  88.6 82.4 83.1
with Enhance 89.7 (11.1) 84.2 (11.9) 85.1 (12.0)

4.3.2 Explicit Attention in Prompt

Table 5 presents the results of an ablation study
of the explicit attention mechanism. The study ex-
amines how the existence of it in prompts impacts
SQL-generation. The study reveals that incorpo-
rating this mechanism significantly improves SQL
exact match accuracy across three datasets, espe-
cially when dealing with synonym perturbations,
as seen in Spider-Syn. Additionally, it is notewor-
thy that the positive effect of this design is more
pronounced when the number of examples in the
prompt is reduced. This suggests that in scenarios
where conserving tokens is crucial, our design can
effectively enhance the performance of LLMs in
generating SQL queries.

4.3.3 Number of Retrieved Examples

Table 6 presents a study on the optimal number
of examples to include in prompts for in-context
learning. Although performance across various
benchmarks varies with different numbers of exam-
ples, there is a general trend where the ability of
LLMs to generate SQL queries initially strength-
ens and then weakens as the number of examples
increases. Based on the average performance, we
ultimately set the number of examples, denoted as
N, to be recalled to 7.

5 Limitations

The Solid-SQL approach offers opportunities for
enhancement, particularly in the procedural design.
We could define conditions for advancing to a sec-
ond round of queries, which would streamline the
process by eliminating unnecessary steps and in-
crease algorithmic efficiency. Furthermore, the
plugin-based architecture of Solid-SQL suggests
the possibility of integrating it with other method-
ologies to achieve performance improvements, an

Table 5: The ablation study of the design of explicit
attention in prompt construction. Values in the table are
the EX of SQL generated by one-round Solid-SQL with
Llama3-70b. N is the number of examples retrieved
for in-context learning. "with focus" and "w/o focus"
referring to have the design or not, respectively.

N Spider Syn Realistic
3 w/o focus  78.5 66.9 74.2

with focus  81.7 (13.2) 73.8 (16.9) 76.0 (11.8)
9 w/o focus  79.8 67.5 74.8

with focus  81.1 (11.3) 73.9 (16.4) 76.4 (11.6)

Table 6: The study of how many examples should be
added into the prompt. N is the number of examples
retrieved ranging from 1 to 9. Values in the table are
the executing accuracy of SQL generated in round 1 of
Solid-SQL.

N 1 3 5 7 9
Spider 80.9 81.7 812 815 8l.1
Syn 74.0 738 737 742 739
Realistic 756 76.0 764 76.6 764
Avg 76.83 7717 77.10 7743 77.13

option we have not yet fully investigate due to time
constraints.

6 Conclusion

In this paper, we present Solid-SQL, a robust text-
to-SQL solution designed to address the robust lim-
itations of current SOTA LLM-based methods. By
focusing on pre-processing techniques and integrat-
ing a robust schema-linking model, along with a
two-round example retrieval strategy, Solid-SQL
significantly improves SQL execution accuracy on
both standard and adversarially perturbed bench-
marks. Solid-SQL achieves SOTA performance
on general benchmarks and an average advance-
ment of 11.6% over baselines on perturbed bench-
marks, proving its effectiveness in enhancing the
robustness of text-to-SQL systems. This work high-
lights the importance of system robustness in the
development of text-to-SQL models and lays the
groundwork for future research in this field.
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