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Abstract

Textual Entailment Recognition (TER) aims to
predict whether a pair of premise-hypothesis
sentences represents an entailment, a contradic-
tion, or none of the above. Addressing TER
in the presence of figurative language is par-
ticularly challenging because words are used
in a way that deviates from the conventional
order and meaning. In this work, we investi-
gate the capabilities of Large Language Mod-
els (LLMs) to address TER and generate tex-
tual explanations of TER predictions. First, we
evaluate LLLM performance in Zero- and Few-
Shot Learning settings, with and without using
Chain-of-Thought prompting. After identify-
ing the best prompts, we highlight the settings
in which in-context learning is beneficial. The
closed-source models GPT-3.5 Turbo and GPT-
40 show unexpected limitations compared to
significantly smaller open-source LLMs. Next,
we thoroughly analyze the effect of LLM Fine-
Tuning, showing substantial improvements in
the quality of TER explanations compared to
Zero- and Few-Shot Learning. Notably, 9 bil-
lion parameter open-source LLMs demonstrate
again competitive performance against larger
closed-source models. Finally, we compare our
LLM-based approach with the state-of-the-art
DREAM-FLUTE and Cross-Task architectures.
The results show significant performance im-
provements, particularly in the quality of the
generated explanations.

1 Introduction

Figurative language is quite common in both writ-
ten and spoken conversations. In natural language
texts, examples of figurative language such as
metaphors, similes, and sarcastic expressions are
commonly used to convey opinions, ideas, or emo-
tions (Holme, 2004). Due to the high variety and in-
herent complexity of these non-literal expressions,
state-of-the-art Natural Language Understanding
(NLU) and Inference models, such as Transform-
ers (Vaswani et al., 2017), often struggle with texts

and dialogues including figurative language (Jham-
tani et al., 2021).

Textual Entailment Recognition (TER) is an es-
tablished NLU task. Given a pair of premise and
hypothesis sentences, the goal is to classify the
pair as entailment, if the hypothesis can be inferred
from the premise, contradiction, if the premise con-
tradicts the hypothesis, or neutral otherwise.

TER on sentences including figurative lan-
guage is known to be particularly challeng-
ing (Chakrabarty et al., 2021) because it not only
requires advanced predictive capabilities but also
an advanced comprehension of the underlying mes-
sage. Language Models (LMs) often struggle in
understanding unconventional expressions that are
crucial for TER prediction.

TER and Explanation (TER+E) is an extension
of the classical TER task where the LM is asked to
provide end users with a textual explanation of the
TER prediction (Chakrabarty et al., 2022). TER+E
combines the challenges of the NLU task with a
generative step. State-of-the-art approaches, i.e.,
Cross-Task (Bigoulaeva et al., 2022) and DREAM-
FLUTE (Gu et al., 2022b), leverage LMs fine-tuned
on benchmark data, e.g., the FLUTE dataset re-
leased in 2022. More recently, the diffusion of
Large Language Models (LLMs) has opened the
way for a new paradigm of joint language under-
standing and generation. Although several large-
scale pre-trained models have been released, to the
best of our knowledge the capabilities of LLMs on
TER+E are still unexplored.

This paper presents LLM-based approaches to
address TER and Explanation. Firstly, it explores
the zero-shot performance of several LLMs, both
open-source and proprietary. The aim is to com-
pare the models’ robustness to figurative language
understanding. The results are contrasting: LL.Ms
generally perform well on TER, but struggle in
generating high-quality TER explanations. No-
tably, open-source 9B parameter LLMs surpass the
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closed-source models GPT-3.5 Turbo and GPT-4o0,
demonstrating a superior ability to explain figura-
tive language compared to significantly larger mod-
els. Similar results hold in a Few-Shot Learning
setting, where we also explore the use of Chain-
of-Thought (CoT) prompting. In-context learning
has shown to be beneficial to improve zero-shot
performance but, unlike state-of-the-art models
(e.g., DREAM-FLUTE (Gu et al., 2022b)), in gen-
eral LLMs do not benefit from CoT because of
their robust pre-training. Finally, we present LLM
Fine-Tuning for TER+E and test its performance
on an open-source benchmark. The results are
consistently superior to state-of-the-art TER+E ap-
proaches. Again, open-source fine-tuned LLMs
turn out to be competitive against proprietary GPT
models. The challenges of GPT models are con-
firmed by their poor performance when used as
an expert reviewer, i.e., when we ask GPT-40 to
revise and potentially correct the outputs generat-
ing by smaller, open-source LLMs. GPT tends to
unnecessarily correct the TER explanations, likely
due to inherent limitations in figurative language
understanding.

In summary, this work is the first attempt to use
LLMs to address TER+E. Our main findings can
be summarized as follows.

* TER+E has shown to be way more challeng-
ing than TER only in the presence of figura-
tive language, especially for non-fine-tuned
LLMs.

* Prior results reported in Gu et al. (2022b),
which show the benefits of providing the
model with external knowledge, turn out to
be no longer valid for LLMs, whose perfor-
mance does not improve while adopting CoT
prompting.

* Fine-tuned LLMs perform significantly better
than all state-of-the-art models on the FLUTE
benchmark.

¢ Closed-source LLMs (GPT-40 and GPT-3.5
Turbo) struggle in generating reliable TER ex-
planations. Even in the Few-Shot Learning
setting, the performance of GPT-40 is consid-
erably lower than significantly smaller LLMs.

To foster the reproducibility of our results,
the models and code used for the implementa-
tion of the presented approaches are publicly

available, for research purposes only, under the
CC BY-NC-SA license, at https://github.com/
gallipoligiuseppe/FigurativeTER-E_LLM.

The remainder of the paper is organized as fol-
lows. Section 2 formalizes the figurative language
understanding and explanation tasks. Sections 3
and 4 review the related literature and present the
LLM-based approaches, respectively. Section 5
describes the main experimental results whereas
Section 6 draws conclusions and discusses the fu-
ture research agenda.

2 Problem formulation

Let us consider a human-curated collection of
premise-hypothesis sentence pairs, hereinafter de-
noted by (pr;, hp;). Each pair corresponds to a
distinct natural language instance and is classified
as either an Entailment or a Contradiction.! We will
denote by [; the binary label (taking value E or C) of
an arbitrary pair I; = (pr;, hp,). Natural language
instances contain figurative language. Examples of
figurative language included in the sentence pairs
are simile, metaphor, idiom, and sarcasm.

Each instance I; is also annotated with a natural
language explanation £; of the contained figura-
tive language. Importantly, both the label and the
explanation are defined in terms of the figurative
language expression rather than with respect to any
other part of the sentence. Hence, identifying and
understanding these unconventional expressions in
the sentence pairs is crucial for our purposes.

As an example, a metaphor instance and its cor-
responding label and explanation is reported below.
Premise: The promise between us was a poisonous
snake.

Hypothesis: The promise between us was a flower.
Label: Contradiction

Explanation: A flower is something that is beauti-
ful and represents growth, while a poisonous snake
is something that is dangerous and can harm.

We formulate the following tasks:

Textual Entailment Recognition (TER): Given an
arbitrary instance /; containing figurative language,
predict the value of the corresponding label /;.

Textual Entailment Explanation (Explanation):
Given an arbitrary instance /; and a predicted label
l;, generate the corresponding natural language
explanation E;.

"Hereinafter we will disregard the case of neutral sentence
pairs, which is not relevant to our purposes.
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We aim to address a combination of the above-
mentioned tasks:

Textual Entailment Recognition and Explana-
tion (TER+E): Given an arbitrary instance /; con-
taining figurative language, predict the value of the
corresponding label /; and generate the correspond-
ing natural language explanation £;.

Note that, instead of addressing TER and Expla-
nation separately, we aim to exploit the synergies
and cross-dependencies between them. Further-
more, unlike standard TER which involves only lit-
eral language, the presence of figurative language
requires a deeper understanding of the underlying
meaning conveyed by non-literal expressions.

3 Related Works

Various English benchmarks for TER in the pres-
ence of figurative language have been proposed
in literature (Agerri, 2008; Agerri et al., 2008;
Chakrabarty et al., 2021; Phelps et al., 2024). They
consist of human-curated collections of sentence
pairs including figurative language examples. The
most common issues with existing benchmarks are
(1) The relatively limited number of examples; (2)
The focus on a specific type of figurative language,
e.g., idioms (Phelps et al., 2024); (3) The lack of
natural language label explanations. The FLUTE
benchmark (Chakrabarty et al., 2022) overcomes
the aforesaid issues by proposing a larger bench-
mark for TER and Explanation (TER+E). It covers
four types of figurative language and includes the
textual explanations of the TER predictions.
According to the Figl.ang 2022 Shared Task re-
port (Saakyan et al., 2022), DREAM-FLUTE (Gu
et al., 2022b) and Cross-Task (Bigoulaeva et al.,
2022) are the best-performing TER+E approaches.
Both of them leverage external models or data
sources to make LM outcomes more robust. Specif-
ically, DREAM-FLUTE leverages DREAM (Gu
et al., 2022a), i.e., a scene elaboration module.
The purpose is to build a mental model of the
situation presented in the premise-hypothesis pair
that is instrumental for both TER and Explanation.
The authors propose five different system versions,
all of them based on the fine-tuning of a TS5 3B
model (Raffel et al., 2020). Specifically, Systems
1 and 2 use original data only, System 3 leverages
external knowledge extracted from DREAM, Sys-
tem 4 implements a two-step classify-then-explain
approach, and System 5 is an ensemble of the
above. Cross-Task (Bigoulaeva et al., 2022) aims

to transfer information from related tasks to im-
prove TER+E performance. In detail, they use
TS5 by transferring knowledge from two external
datasets, i.e., IMPLI (Idiomatic and Metaphoric
Paired Language Inference) (Stowe et al., 2022)
and SNLI (Natural Language Inference with Natu-
ral Language Explanation) (Camburu et al., 2018).

To the best of our knowledge, all existing ap-
proaches to TER+E rely on traditional LMs. Im-
portantly, figurative language explanation is not yet
part of any downstream tasks on which LLMs have
been recently tested (Chang et al., 2024). There-
fore, the TER prediction and Explanation genera-
tion capabilities of LLMs in the presence of figura-
tive language are still unexplored.

4 LLM-based Approaches

We envisage various LLM-based strategies to
tackle TER+E in the presence of figurative lan-
guage. First, we consider a classical Zero-Shot
Learning (ZSL) setting, where we test the inher-
ent understanding and generative capabilities of
various pre-trained LL.Ms, open-source and pro-
prietary. Secondly, we prompt LLMs with few
training examples which are representative of the
different TER labels and figurative language types,
i.e., the Few-Shot Learning (FSL) setting. Thirdly,
we explore the use of LLMs with Chain-of-Thought
(CoT) prompting leveraging an external model,
similar to Gu et al. (2022b) for TER+E. Finally,
we envisage the use of LightWeight Fine-Tuning
(LWFT) to specialize the LLMs’ knowledge on the
addressed prediction and explanation tasks.

We tune the LLM prompts separately for the
ZSL/FSL and CoT settings. To identify the optimal
prompt per model and setting, we first define a vari-
ety of templates, both generic and more specialized,
and then run a tuning stage on the validation set. Fi-
nally, the most effective prompts are selected based
on the acc@60 metric, which is representative of
both TER and Explanation performance (see Sec-
tion 5.4). Due to the lack of space, a detailed report
of the prompt tuning settings and corresponding
results are given in Appendix B.

4.1 Zero-Shot and Few-Shot Learning

ZSL entails prompting the LLM with a natural lan-
guage question without providing any additional
examples. In this scenario, LLM generation exclu-
sively relies on the capabilities of the pre-trained
model. Conversely, in a FSL setting the LLM
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prompt also includes few examples to guide the
LLM’s reasoning and text generation.

To tackle TER+E we provide human-curated
examples of premise-hypothesis sentence pairs in-
cluding figurative language. For each example,
the prompt also contains the actual label (E or
C) as well as the figurative language explanation.
Prompting ad hoc examples has the twofold aim
to support the LLM in effectively generating TER
labels and explanations and to force the model to
comply with a predefined output format. In these
experiments we pick k in-context examples from
the training instances by adopting the following
three strategies.

Random: The examples are randomly picked from
the training set by disregarding labels’ distribution.
Balanced: The examples are uniformly sampled
from the per-type instance sets, disregarding the
actual label distribution in the training data.
Stratified: The examples are stratified over the
training instances to preserve the original figurative
language type distribution (see Table 5).

For all strategies when k£ > 1 we provide at least
one example per label to avoid introducing bias in
the in-context learning procedure.

4.2 Chain-of-Thought Prompting

We explore CoT as an alternative strategy of LLM
prompting. CoT prompting leverages external mod-
els to prompt LLMs with additional contextual in-
formation (Wei et al., 2022). CoT has shown to im-
prove LLMs ability to perform complex reasoning
by making the intermediate reasoning steps explicit
in the LLM prompt. The idea is to foster LLMs to
mimic the reasoning steps in the generative process.
Our CoT method employs the DREAM scene elab-
oration model (Gu et al., 2022a) to enrich the input
premise-hypothesis sentence pairs. It produces an
elaboration of the input situation according to four
different dimensions: emotion, motivation, con-
sequence, and social norm. The objective is to
provide LLMs with scene elaborations of the in-
put pairs that can serve as intermediate reasoning
steps, potentially supporting the model in under-
standing the relation between the input sentences
that include figurative language. Note that, simi-
lar to DREAM-FLUTE (Gu et al., 2022b), CoT in
LLMs requires external knowledge. Thus, unlike
other LLM-based methods such as ZSL, FSL, and
LWFT, CoT is neither general-purpose nor easily
portable to different scenarios.

For each premise-hypothesis pair, we separately

generate the four possible scene elaborations us-
ing DREAM. As an example, given the premise “/
will sleep deeply and soundly tonight.”, the scene
elaboration for the motivation dimension is “I (my-
self)’s motivation is to get to bed.”. Similar to the
ZSL and FSL settings, we prompt the LLM with
the input sample and & additional examples. Both
the premises and the hypotheses that constitute the
input instance and each of the k examples, if any,
are enriched with the scene elaboration information
produced by DREAM. Specifically, we consider
both one dimension at a time (i.e., augmenting each
premise and hypothesis with only the correspond-
ing emotion/motivation/consequence/social norm
elaboration) and the combination of all four dimen-
sions. Consider, as an example, the motivation
dimension. For both the k examples and the cur-
rent test instance, we enrich the premise-hypothesis
pairs in the prompt as follows:

Premise: [P]

Premise (motivation):
Hypothesis: [H]
Hypothesis (motivation): [H_motivation]

[P_motivation]

where we replace [P]/[H] with the premise and hy-
pothesis, and [P_motivation]/[H_motivation]
with the corresponding scene elaborations pro-
duced by DREAM.

4.3 LightWeight Fine-Tuning

To ensure a higher level of model specialization
than the simple in-context learning, we adopt
LightWeight LLM Fine-Tuning to address TER+E.
The idea behind it is that providing few training
examples can be not sufficient to capture figura-
tive language properties. Hence, we specialize the
LLMs’ knowledge on the specific TER+E task. Pre-
vious research (Bigoulaeva et al., 2022; Gu et al.,
2022b) has demonstrated the effectiveness of fine-
tuning in achieving a good balance between com-
putational effort and model specialization. Hence,
we adopt this established strategy as an alternative
method to tailor LLMs to the figurative language
understanding and explanation tasks. We fine-tune
LLMs using the standard causal language model-
ing objective. To balance computational complex-
ity and model performance, we do not perform a
full fine-tuning of all model parameters but update
only a fraction of them. More details on model
fine-tuning are reported in Section 5.3.
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S Experiments

We run an extensive set of experiments on a ma-
chine equipped with Intel® Core™ i9-10980XE
CPU, 1 x NVIDIA® RTX A6000 48GB GPU, 128
GB of RAM running Ubuntu 22.04 LTS.

In the following, we present the dataset, the mod-
els, the experimental settings, and the evaluation
metrics used throughout the experiments. Next, we
discuss the main empirical results. Due to the lack
of space, qualitative examples of model outputs are
given in Appendix E.

5.1 Dataset

We run experiments on the FLUTE benchmark
dataset (Chakrabarty et al., 2022). It consists
of almost 9,000 natural language instances, par-
titioned into training (around 7,500) and test (ap-
proximately 1,500) sets. Each instance is a premise-
hypothesis sentence pair labeled with the TER label
(entailment or contradiction) and enriched with a
natural language explanation.

The dataset includes four types of figurative lan-
guage, i.e., sarcasm, metaphors, similes, and id-
ioms. All the figurative expressions appear in the
hypothesis sentences except for sarcasm, where the
hypothesis might be literal as well. Similar to Gu
et al. (2022b), we employ an 80-20 dataset split,
stratified over the figurative language types, to par-
tition the initial training set into training and valida-
tion sets. Sarcasm instances are the most frequent
ones whereas all the other types of figurative lan-
guage have similar frequency counts. Entailment
and contradiction instances are roughly balanced
(more detailed statistics in Appendix A).

5.2 Models

LLMs. We consider the following open-source
LLMs: Llama2 (base and chat versions) (Tou-
vron et al., 2023), Llama3.1 (base and instruction-
tuned versions) (Llama Team, 2024), MistralQ.1
and Mistral0.3 (base and instruction-tuned ver-
sions) (Jiang et al., 2023), Gemma and Gemma2
(base and instruction-tuned versions) (Gemma
Team, 2024a,b), and Zephyr (base version) (Tun-
stall et al., 2023).

Competitors. We consider the best-performing
methods according to the Figl.ang 2022 Shared
Task report (Saakyan et al., 2022), i.e., DREAM-
FLUTE (Gu et al., 2022b) (all the 5 systems) and
Cross-Task (Bigoulaeva et al., 2022) (we test both
the Sequential Fine-Tuning model (SFT) and the

hierarchical feature pipeline architecture leveraging
multi-task learning, namely HiFeatMTL).

Baselines. As TER+E baseline we consider
the T5 model presented in Chakrabarty et al.
(2022). As TER-only baseline, we also test
the RoBERTa Transformer model (Liu et al.,
2019). For all open-source baselines we rely
on the Hugging Face Transformers library. Fi-
nally, as proprietary LLMs we test GPT-3.5 Turbo
(gpt-3.5-turbo-0125) (OpenAl, 2024a) and
GPT-4o0 (gpt-40-2024-05-13) (OpenAl, 2024b)
models using the OpenAl API. We conduct exper-
iments with GPT-3.5 Turbo and GPT-40 in both
ZSL/FSL and CoT settings.

To ensure a fair comparison, we recomputed
the results of the baseline methods and competi-
tors using our own evaluation scripts. Specifically,
for both FLUTE and Cross-Task, we used the out-
puts provided by the authors, while for DREAM-
FLUTE, we reproduced the model outputs of the
different systems using the official checkpoints.

5.3 Experimental settings

In all experiments we set the model’s temperature
hyperparameter to 0.0 and the LLMs’ prompts to
their tuned version. While employing CoT prompt-
ing, the premise and hypothesis scene elaborations
are generated using the official DREAM check-
point for the selected dimension(s). In the FSL
setting, we consider the following number of ex-
amples: k = {1, 3,5, 10,20} for the Random strat-
egy, k = {8,16, 24} for the Balanced strategy, and
k = {12,18, 24} for the Stratified strategy. When
adopting CoT prompting, we use k = 5 examples.
For LLM LWFT, we utilized Low-Rank Adapta-
tion (Hu et al., 2022) with PEFT (Mangrulkar et al.,
2022) to limit computational complexity and train
less than 1% of the total number of parameters.
We use AdamW optimizer and set the maximum
learning rate to Ir = {5-1075,7-107°}, which
is updated using a linear scheduler after a warmup
phase of the 10% of the total number of training
steps. We set the maximum input length to 256 to-
kens and use a batch size of 2. We fine-tune models
for 5 epochs and select the model checkpoint based
on the best validation loss.

5.4 Evaluation Metrics

We use both established evaluation metrics for
text generation and the official FLUTE bench-
mark evaluation suite. To evaluate Explana-
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Figure 1: acc@0 (left) and acc@60 (right) results in the ZSL/FSL settings by varying number k of examples.

tion performance, we consider: (1) The standard
syntax-oriented ROUGE metrics (Lin, 2004), i.e.,
ROUGE-1/2/L. (R1/2/L) F1-scores, which measure
the n-gram overlap between generated and refer-
ence explanations; (2) The semantic-based metrics
BERTScore (BS) F1-score (Zhang et al., 2020) and
BLEURT (BL) (Sellam et al., 2020), which has
been shown to correlate better with human judge-
ments (Chakrabarty et al., 2022).2

To evaluate TER-only performance, we adopt
the standard classification accuracy, namely
acc@0, which measures the percentage of cor-
rectly labeled instances. To evaluate the perfor-
mance of the combined task (TER+E), we use the
ad hoc metrics acc@50 and acc@60, as defined
in Chakrabarty et al. (2022). They measure the
percentage of correctly labeled instances having an
explanation score equal to or greater than 50 and
60, respectively, where the score is defined as the
mean of BERTScore and BLEURT.

5.5 Results Overview

Zero and Few-Shot Learning. The plots in Fig-
ure 1 respectively compare the acc@( and acc@60
scores achieved by different LLMs while varying
the number of input examples from k& = 0 (ZSL) to
k € [1,20] (FSL). For visualization purposes, we
include only the results of the most recent LLMs,
as previous versions show similar trends but gener-
ally achieve lower performance. In the ZSL setting,
only Llama3.1-Instruct and GPT-40 achieve a TER
acc@() score above 70%. TER performance signifi-
cantly improves while prompting LLMs with a few
examples. Notably, Gemma?2-Instruct, Mistral0.3-
Instruct, and Zephyr turn out to be more accurate
than the proprietary GPT-3.5 Turbo, with accuracy

2BERTScore and BLEURT metrics are computed using
the microsoft/deberta-large-mnli model and the recom-
mended BLEURT-20 checkpoint.

values close to 80%. However, GPT-40 achieves
the best acc@0 performance in both ZSL and FSL
settings. For most LLMs, the accuracy improve-
ment yielded by FSL becomes roughly stable when
feeding the LLM with more than 5 examples.

The acc@60 scores show similar trends (see the
right-hand side plot in Figure 1), but the perfor-
mance scores are halved compared to acc@(. The
reason is that tackling TER+Explanation with a
sufficiently high explanation score is significantly
more challenging than addressing TER only. In
the ZSL setting, almost all LLMs (including GPT-
40) obtain an acc@60 score close to zero because
they are unable to generate reliable figurative lan-
guage explanations. This confirms the inherent
complexity of explaining figurative language. In
the FSL setting (with £ > 5) Gemma2, Mistral0.3-
Instruct, and Zephyr show fairly good performance
(acc@60 > 30). Specifically, Gemma?2 yields the
best acc@60 score (40.2) followed by Mistral0.3-
Instruct and Zephyr. In terms of acc@0, open-
source LLMs in the FSL setting yield performance
comparable to or superior to that of GPT-3.5 Turbo
and GPT-40. However, in acc@60, open-source
models consistently outperform proprietary ones.
Notably, GPT-40’s acc@60 performance is signif-
icantly lower than that of other LLMs, including
GPT-3.5 Turbo. By manually inspecting GPT-40’s
outputs, we observe that, even while providing in-
context examples, the generated explanations often
tend to be a reformulation of the premise and hy-
pothesis content separately rather than focusing on
explaining the actual relation between the two sen-
tences. Conversely, in the ZSL setting, GPT-40
achieves considerably better acc@O results com-
pared to open-source LLMs, likely due to its higher
complexity and superior robustness.

We also empirically compare the strategies used
to select the input examples in the FSL setting,
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setting \ acc@0 acc@50 acc@60 | R1 R2 RL | BS BL
Few-Shot Learning 82.6 71.2 40.2 393 183 313 | 634 549
CoT (emotion) 79.9 59.5 32.8 362 16.6 294 | 61.3 51.7
CoT (motivation) 79.2 63.0 34.0 372 169 298| 62.0 52.8
CoT (consequence) 80.3 59.6 27.4 356 15.8 28.5]60.7 51.1
CoT (social norm) 79.9 63.2 30.7 358 156 28.6 | 614 520
CoT (all dimensions) | 82.2 61.6 29.7 356 153 27.8 |60.5 51.8

Table 1: CoT results using Gemma?2. Bold and italic respectively denote the best and second-best score per metric.

i.e., Random, Balanced, and Stratified. Stratified
yields slightly better acc@0 and acc@60 results
compared to Random and Balanced, likely due to
its capability to better take into account the distri-
bution of figurative language types. Specifically,
Zephyr achieves the best acc@60 results, followed
by Gemma2. Notably, both models demonstrate
higher performance with fewer examples compared
to the Random strategy (e.g., Zephyr: 32.4 for
k = 20 Random vs. 40.4 for k = 18 Strati-
fied). The results improve further for k£ = 24, with
Zephyr reaching an acc@60 score of 42.9.

Chain-of-Thought prompting. Table 1 summa-
rizes the results of the best-performing LLM (i.e.,
Gemma?2) with CoT prompting. CoT does not ap-
pear to be beneficial for TER (acc@0 of the best
CoT method 82.2 vs. FSL 82.6). Similarly, for
TER+E the external knowledge prompted via CoT
proves to be unhelpful for LLMs (e.g., acc@60
CoT 34.0 vs. FSL 40.2). This is likely because
DREAM elaborations are either not complemen-
tary to or not sufficiently relevant compared to the
pre-trained knowledge of the LLM. Similar results,
not reported here for the sake of brevity, hold for
the other LLMs.

LightWeight Fine-Tuning. Table 2 reports the
results achieved by LLMs with LWFT and a com-
parison with the baselines and state-of-the-art mod-
els. For the sake of brevity, we report only the best
configuration results for GPT-3.5 Turbo and GPT-
40, i.e., FSL with k£ = 20 and k£ = 24 examples,
respectively. Focusing on the TER-only task, most
LLMs (except for Llama2) perform better than or
as well as the state-of-the-art in terms of acc@O.
Specifically, Gemma2-Instruct achieves the high-
est acc@0 score (97.0), followed by Mistral0.2-
Instruct (96.4). Among the tested competitors, Sys-
tem 4 of DREAM-FLUTE (classify-then-explain
using T5 (Raffel et al., 2020)) achieves the best
score (95.2), though lower than Gemma2-Instruct.
The ensemble approach (DREAM-FLUTE System
5) achieves results comparable to LLMs. However,

as it relies on a mix of seven different models, its
strategy and usability are not directly comparable
with LLM-based methods.

Considering the TER+E task, LLMs with LWFT
achieve significantly better performance than all
existing approaches in terms of both acc@50
and acc@60. Considering acc@60, the best-
performing models are Gemma2 and Gemma2-
Instruct, with scores of 72.8 and 72.5, respectively.
Among competitors, the best results are achieved
by the SFT approach of Cross-Task and System 4 of
DREAM-FLUTE, with acc@60 scores of 63.1 and
61.3, respectively. Consequently, our best model
(i.e., Gemma2) shows an improvement of +9.7 and
+11.5 points. Notably, the performance gap be-
tween LLMs and competitors further increases as
we move from the acc@0 score (TER-only) to the
acc@50 and acc@60 metrics (TER+Explanation).

The Explanation-only performance scores
(ROUGE, BERTScore, BLEURT) confirm the ex-
pectation. Apart from Llama3.1-Instruct, all the
tested LLMs demonstrate superior performance
in generating natural language explanations com-
pared to previous approaches. Given the surpris-
ingly low acc@60 score of Llama3.1-Instruct, we
checked its explanation scores and found that in
many cases they are slightly lower than 60, which
explains the sharp decline in the acc@60 metric.
Our models perform best even when considering
the ROUGE-1/2/L, BERTScore and BLEURT met-
rics (+1.4/0.4/0.7, +1.6 and +2.6 points, respec-
tively). The proprietary GPT-3.5 Turbo and GPT-
40 models with ZSL and FSL perform significantly
worse than fine-tuned LLMs, confirming the need
of a dedicated model fine-tuning.

We also conducted an additional analysis of the
generated explanations. The results are available
in Appendix C.

Performance per figurative language type and
label. We analyze the variations in performance
between different types of figurative language. Ta-
ble 3 reports the acc@0 and acc@60 scores for
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‘ model acc@0 acc@50 acc@60 | R1 R2 RL | BS BL
FLUTE (Chakrabarty et al., 2022) | TS 81.7 74.9 48.5 422 199 344 | 66.0 563
Systeml 94.6 86.7 56.6 46.1 248 393|673 57.1
System?2 94.8 86.9 56.9 463 248 395|673 569
System3 (emotion) 93.9 87.6 57.2 462 249 394|675 572
System3 (motivation) 94.8 87.2 55.8 459 247 39.1 | 67.3 56.8
DREAM-FLUTE (Gu et al., 2022b) | System3 (consequence) 94.6 87.3 58.6 46.5 25.1 39.6 | 674 57.1
System3 (social norm) 92.4 84.9 56.1 454 240 387 |67.1 569
System3 (all dimensions) | 94.9 87.7 56.9 46.0 248 392|675 569
System4 95.2 89.9 61.3 469 255 399 | 68.5 58.7
System5 (ensemble) 96.2 88.5 59.1 46.5 25.1 39.6 | 674 57.1
. SFT 92.2 87.5 63.1 47.1 26.7 40.6 | 68.8 594
Cross-Task (Bigoulaeva etal., 2022) |y virr 948 867 553 | 459 258 393|676 582
GPT-3.5 Turbo (OpenAl, 2024a) Few-Shot Learning 78.1 65.4 30.6 346 137 254 |61.1 527
GPT-40 (OpenAl, 2024b) Few-Shot Learning 94.7 74.9 28.2 33.1 133 245 59.1 526
GPT-as-an-Expert Gemma2 + GPT-40 95.4 91.3 72.6 483 269 41.0|70.2 61.7
Llama2 7B 93.8 90.7 68.3 46.8 253 395 | 68.8 60.9
Llama2-Chat 7B 94.8 91.1 69.9 47.1 256 398|694 6l.1
Llama3.1 8B 95.7 91.8 70.6 48.0 263 40.6 | 70.0 61.3
Llama3.1-Instruct 8B 95.9 89.1 43.5 340 18.1 283|580 61.2
Mistral0.1 7B 96.0 92.3 70.3 47.1 258 39.6 | 689 61.6
Ours M%stralO.Z—Instruct 7B 96.4 93.7 71.1 473 255 39.6 | 69.0 61.6
(Fine-Tuning) M%stra10.3 7B 96.0 92.5 72.2 48.0 264 405|700 61.6
Mistral0.3-Instruct 7B 96.2 92.5 72.1 47.8 265 40.7|70.2 61.7
Gemma 7B 95.1 90.3 63.6 45.0 224 36.7|67.5 589
Gemma-Instruct 7B 95.1 85.0 56.0 419 192 34.0| 65.7 56.6
Gemma2 9B 95.9 91.6 72.8 48.5 271 413|704 61.7
Gemma?2-Instruct 9B 97.0 94.9 72.5 48.0 26.8 404 |70.0 62.0
Zephyr 7B 96.2 92.6 72.1 478 262 403 | 69.7 61.8
Table 2: Results on the FLUTE benchmark dataset. Bold denotes the best score for each metric.
acc@0 acc@60
model sarcasm | metaphor | simile | idiom | overall | sarcasm | metaphor | simile | idiom | overall
RoBERTa-MNLI 89.8 88.7 70.4 90.8 86.5 - - - - -
FLUTE (Chakrabarty et al., 2022) — T5 91.6 73.3 62.8 79.2 81.7 56.2 242 31.2 66.8 48.5
DREAM-FLUTE (Gu et al., 2022b) — System4 97.2 94.3 90.0 95.2 95.2 64.9 459 50.4 76.4 61.3
Cross-Task (Bigoulaeva et al., 2022) — SFT 95.4 89.1 84.8 93.2 92.2 67.6 479 49.2 78.8 63.1
GPT-3.5 Turbo — 20-shot (Random) 75.7 83.0 70.4 88.4 78.1 329 25.4 19.6 39.6 30.6
GPT-40 — 24-shot (Stratified) 96.2 93.1 92.0 94.4 94.7 29.8 20.1 27.2 324 28.2
Ours — Gemma2 9B 97.3 91.9 94.4 97.2 95.9 78.4 51.6 62.8 87.2 72.8

Table 3: acc@0 and acc @60 detailed results of best models by figurative expression type. Bold denotes the best

score for each figurative expression type.

a selection of best-performing models, including
the baseline ROBERTa Transformer fine-tuned on
the MNLI dataset and then adapted to TER binary
classification (we keep only the entailment or con-
tradiction labels while ignoring the neutral label).

Results show that Gemma2 performs best in
acc@( on three out of four figurative expression
types and excels across all of them in acc@60. The
most significant improvement in acc@0 is observed
in the simile class (i.e., +4.4 points). However, the
improvements are more pronounced in acc@60.
Specifically, Gemma?2 exhibits enhancements of
+10.8, +3.7, +12.4, and +8.4 points in sarcasm,
metaphor, simile, and idiom classes, respectively.
Surprisingly, the RoBERTa baseline achieves an
overall acc@Q score even higher than FLUTE T5

and GPT-3.5 Turbo models. However, previous
works have shown that correctly predicting the TER
label alone is not sufficient but it is also necessary
to provide natural language explanations for the
label predictions (Camburu et al., 2018).

We also include detailed results per class in Ta-
ble 4, where we provide the acc@0 and acc@60
scores of the best-performing models separately
for the entailment and contradiction labels. Results
indicate that Gemma2 achieves the highest perfor-
mance in acc@Q on entailment instances, while it is
slightly outperformed by DREAM-FLUTE on the
contradiction class. More significant improvements
are observed in acc @60, where Gemma?2 surpasses
the second-best-performing approach (i.e., Cross-
Task) by +11.1 and +8.7 points for the entailment
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acc@( acc@60
model - — = —
entailment ‘ contradiction ‘ overall | entailment ‘ contradiction ‘ overall

RoBERTa-MNLI 88.1 85.4 86.5 - - -

FLUTE (Chakrabarty et al., 2022) — TS 73.0 88.6 81.7 44.8 51.4 48.5
DREAM-FLUTE (Gu et al., 2022b) — System4 92.4 97.3 95.2 58.5 63.4 61.3
Cross-Task (Bigoulaeva et al., 2022) — SFT 93.2 91.5 92.2 60.7 65.0 63.1
GPT-3.5 Turbo — 20-shot (Random) 58.6 93.6 78.1 22.3 37.1 30.6
GPT-40 — 24-shot (Stratified) 93.8 95.4 94.7 24.1 31.5 28.2
Ours — Gemma2 9B 96.8 95.2 95.9 71.8 73.7 72.8

Table 4: acc@0 and acc@60 detailed results of best models by TER label. Bold denotes the best score for each

TER label.
70 R—
60 - Tie
s B

50 4

40

%

30+

20 A

104

DREAM-FLUTE (A) Cross-Task (A)

Vs. vs.
Ours (B) Ours (B)

Figure 2: A/B test results. A is DREAM-FLUTE Sys-
tem 4 (left) and Cross-Task SFT (right), whereas B is
our best-performing LLM (i.e., Gemma?2).

and contradiction labels, respectively. These results
highlight the superior performance of our model
both across the different types of figurative expres-
sions and TER labels.

A/B test. We complement the quantitative evalu-
ation based on the standard FLUTE and text gen-
eration metrics (see Section 5.4) by conducting an
A/B test supervised by the GPT-40 model (Ope-
nAl, 2024b). Specifically, inspired by Zheng
et al. (2023), for each test instance we ask GPT-
40 to compare the TER+Explanation outputs of
our best-performing model (Gemma2) with those
of DREAM-FLUTE (System 4) and Cross-Task
(SFT), and return whether the competitor’s out-
come is better than ours (option A), our model’s
output is better (option B), or the comparison ends
in a draw. Figure 2 displays the A/B test results,
showing that against both competitors, the outputs
generated by our model are considered of better
quality in nearly 65% of cases.

5.6 GPT-as-an-Expert

We also analyze GPT-4o0 performance as an expert
reviewer, i.e., given a premise-hypothesis pair and
the TER+E outputs of our best-performing model
(i.e., Gemma?2) we ask GPT-4o to check the outputs
and, if need be, correct them. Based on our experi-

ments, GPT-4o tends to rewrite explanations using
its own style even when it is not necessary. Even
if we provide GPT-40 with examples of ground
truth explanations using in-context learning, it per-
severes in unnecessarily modifying the already cor-
rect explanations. The results in Table 2 show that
GPT-as-an-Expert performs worse than Gemma?2
across all metrics. GPT-40 never modifies the label
alone, corrects only the explanation in 121 cases,
both in 48 cases, and neither in the remaining 1329
cases. To be more conservative, we also try to up-
date our model’s predicted label and explanation
only when GPT-4o predicts a different label. How-
ever, the number of incorrect GPT-40 edits (27)
is still comparable to those of correct ones (21).
Further details are given in Appendix D.

6 Conclusions and Future Work

We studied LLM-based solutions to TER prediction
and Explanation in the presence of figurative lan-
guage. Fine-tuned LLMs outperform all state-of-
the-art models suited to TER+E. In-context learn-
ing turns out to beneficial, compared to ZSL, while
feeding LLMs with few examples (from 5 to 10),
whereas CoT prompting using external knowledge
turns out to be unhelpful. LWFT consistently and
significantly improves LLMs performance on Ex-
planation. Although closed-source models exhibit
strong TER prediction performance, they unexpect-
edly perform worse than smaller, open-source mod-
els (e.g., Gemma2 9B) on Explanation.

As future work, we aim to address inconsisten-
cies in TER+E outcomes, e.g., when the explana-
tion is valid but the prediction is wrong or vice
versa. We also plan to develop fine-tuned LLMs
tailored to each type of figurative language and
provide a compendium of error patterns that could
be useful for LLM instruction tuning. Finally, we
would like to analyze multimodal extensions of the
TER+Explanation task (Saakyan et al., 2024).
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Limitations

We identify the following limitations of our work:

* The FLUTE benchmark dataset contains only
English sentence pairs, therefore we did not
assess the figurative language understanding
capabilities of LLMs in other languages. Ex-
panding this analysis could improve the gen-
eralizability and portability of our results.

* Our analysis was limited to the types of figu-
rative language included in the FLUTE bench-
mark dataset (i.e., sarcasm, metaphor, simile,
and idiom). However, additional types of figu-
rative expressions exist (e.g., personification,
hyperbole, irony), which the trained LLMs
might not be able to handle correctly.

* While LLMs have shown promising results for
understanding and explaining figurative lan-
guage in sentence pairs, real-world use cases
may involve more complex scenarios, requir-
ing the model to handle longer and more nu-
anced contextual information.

e LLM prompt tuning is known to be costly and
prone to errors. Finding the best compromise
between performance optimization and com-
putational efficiency is out of the scope of the
present work.

* LM Fine-Tuning is computationally inten-
sive and requires ad hoc hardware, even while
implementing LightWeight Fine-Tuning. This
could limit the reproducibility of the results.

* Due to computational constraints, we limited
our analysis to small-sized open-source mod-
els (i.e., up to 9 billion parameters). We ac-
knowledge that larger models could further
enhance performance, although we believe
that our results provide a reasonable balance
between performance and computational de-
mands.

Ethical Considerations

Generative Al is potentially harmful as could pro-
duce offensive, biased, or fake content. There-
fore, their use in complex scenarios involving nu-
anced and non-literal expressions such as figurative
language should be made with caution to avoid
harm and spreading misinformation. LMs are also
known to suffer from hallucination and language

bias, potentially ignoring or misunderstanding the
meaning of figurative language expressions used in
dialects and less spoken languages. Additionally,
figurative language can vary significantly across
cultures, so models should recognize and respect
cultural differences without reinforcing stereotypes
or misrepresenting cultural nuances. Furthermore,
some figurative language expressions may involve
sensitive or potentially triggering content, and mod-
els should handle such content with care.

The data and models used in the experiments
are public and not under our control. The use of
LLMs must be sustainable and avoid unnecessary,
energy-intensive training. In our experiments, we
prioritized reusing pre-trained models, checkpoints,
and outputs whenever possible to avoid wasting
resources.
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Appendices

In this supplementary material, we provide addi-
tional details as follows:

* Appendix A: FLUTE dataset statistics
* Appendix B: Prompt tuning

* Appendix C: Explanation analysis

e Appendix D: GPT-as-an-Expert

* Appendix E: Qualitative examples

A FLUTE dataset statistics

Table 5 reports the FLUTE benchmark dataset
(Chakrabarty et al., 2022) statistics. We include
the frequency distributions over both figurative lan-
guage types and label values (entailment or contra-
diction) across the three dataset splits.

| # training | # validation | # test

sarcasm 2514 750 750
metaphor 998 250 248
simile 1000 250 250
idiom 1518 250 250
entailment 2551 632 663
contradiction 3479 868 835
total 6030 1500 1498

Table 5: FLUTE benchmark dataset (Chakrabarty et al.,
2022) statistics.

B Prompt tuning

In the following, we include the different prompts
we tested for both Zero/Few-Shot Learning and
Chain-of-Thought settings. For the sake of read-
ability, we report prompts 2-6 in the case where no
examples are provided. If examples are provided,
we repeat the prompt for each of the k examples, in-
cluding the corresponding ground truth labels and
explanations, as shown in prompt 1.

Zero- and Few-Shot Learning
Prompt 1

Is there a contradiction or entailment between
the premise and hypothesis?

Premise: [EX_Pj]

Hypothesis: [EX_Hj]

Label: [EX_Lj]

Explanation: [EX_Ej]

Is there a contradiction or entailment between
the premise and hypothesis?

Premise: [P]

Hypothesis: [H]

Label:

where we replace [EX_Pj], [EX_Hj], [EX_Lj] and
[EX_Ej] with the premise, hypothesis, label and
explanation for each of the k examples provided
as input to the model, if any, and [P]/[H] with the
premise and hypothesis of the current instance.

Prompt 2

I will provide you with a pair of sentences
consisting of a premise and a hypothesis containing
figurative language.

Is there a contradiction or entailment between
the premise and hypothesis?

Provide an explanation for your answer.

Premise: [P]

Hypothesis: [H]

Label:

Prompt 3

You are an expert in linguistics. I will provide
you with a pair of sentences (a premise and a
hypothesis) containing figurative language.

Your task is to determine whether the premise
entails or contradicts the hypothesis.

Provide an explanation for your answer.

Premise: [P]

Hypothesis: [H]

Label:

Prompts 1 and 2 proved to be the best-performing
prompts across most models. We also use prompt
1 for model fine-tuning.

Chain-of-Thought

As an example, we consider to enrich each premise-
hypothesis pair with the DREAM motivation di-
mension.

Prompt 4

Is there a contradiction or entailment between
the premise and hypothesis?

Premise: [P]

Premise (motivation): [P_motivation]
Hypothesis: [H]

Hypothesis (motivation): [H_motivation]

Label:

Prompt 5

I will provide you with a pair of sentences consisting
of a premise and a hypothesis containing figurative
language. For both the premise and the hypothesis,

I will provide you with additional motivation context.
Is there a contradiction or entailment between

the premise and hypothesis?

Provide an explanation for your answer.

Premise: [P]

Premise (motivation): [P_motivation]

Hypothesis: [H]

Hypothesis (motivation): [H_motivation]

Label:

9668



model ZSL and FSL CoT
prompt 1 prompt2 prompt3 | prompt4 prompt5 prompt6
GPT-3.5 Turbo 19.7 16.5 14.2 19.9 16.3 16.2
GPT-40 7.9 9.1 6.1 2.6 1.7 1.8
Llama2 7B 1.5 0.3 04 0.7 0.5 0.5
Llama2-Chat 7B 9.5 5.6 3.7 12.8 7.3 2.9
Llama3.1 8B 4.9 5.9 5.8 2.7 5.5 8.1
Llama3.1-Instruct 8B 8.2 7.4 5.0 4.5 3.7 53
Mistral0.1 7B 10.6 8.8 1.9 17.9 9.5 15.6
Mistral(.2-Instruct 7B 171 13.4 16.0 15.7 11.8 11.9
Mistral0.3 7B 10.5 13.8 12.5 6.8 8.0 7.6
Mistral(.3-Instruct 7B 27.4 29.9 27.9 24.3 23.7 24.2
Gemma 7B 28.3 7.1 10.1 3.6 2.9 3.3
Gemma-Instruct 7B 12.5 10.6 3.0 15.6 2.2 14.2
Gemma?2 9B 27.5 27.3 28.8 30.4 30.9 31.1
Gemma?2-Instruct 9B 8.3 5.6 4.9 6.8 6.0 7.1
Zephyr 7B 17.2 12.5 11.7 20.3 19.9 19.0
Table 6: acc@60 prompt tuning results on the validation set. Bold denotes the best prompt for each model, separately
for ZSL/FSL and CoT.
model | avg # tokens models and GPT-40 with the ground truth, focus-
ground truth 29.4 £24.7 ing on both average length and keyword overlap.
DREAM'FLU_TE (Guetal., 2022b) | 27.5+22.9 Table 7 reports the average lengths of the gener-
Cross-Task (Bigoulacva et al,, 2022) | 26.6 £21.3 ated explanations. We can observe that our fine-
GPngn(l?niZn(AOIﬁs())Mb) ;;421 i 3?3 tuned best model Gemma?2 shows the closest aver-

Table 7: Average number of tokens of generated expla-
nations by the best models and GPT-4o.

Prompt 6

You are an expert in linguistics. I will provide you
with a pair of sentences (a premise and a hypothesis)
containing figurative language.

For both the premise and the hypothesis, I will
provide you with additional motivation context.
Considering the pair of sentences and the additional
context, your task is to determine whether

the premise entails or contradicts the hypothesis.
Provide an explanation for your answer.

Premise: [P]

Premise (motivation):
Hypothesis: [H]
Hypothesis (motivation): [H_motivation]
Label:

[P_motivation]

In this case, prompts 4 and 6 proved to be the best-
performing prompts across most models.

Table 6 presents the acc@60 prompt tuning re-
sults on the validation set, which are used to deter-
mine the best prompt for each model, separately
for ZSL/FSL and CoT settings.

C Explanation analysis

To provide further insights into the explanation gen-
eration results, we conduct an additional analysis
comparing the explanations generated by the best

age length compared to the ground truth, followed
by DREAM-FLUTE (System 4) and Cross-Task
(SFT). In contrast, the length of GPT-40’s explana-
tions deviates the most from the ground truth (i.e.,
47.2 vs. 29.4) and exhibits the highest variance.

For keyword analysis, we extract keywords from
the ground truth and the generated explanations
using both TD-IDF and KeyBERT (Grootendorst,
2020). In the first case, the text is pre-processed
(i.e., punctuation and stop word removal, lemma-
tization), while in the second case we rely on em-
beddings extracted using the all-MinilM-L6-v2
model. The idea is that, although ROUGE metrics
already account for syntactic word overlap, they
do not focus exclusively on keywords but rather
on all words in the sentence (e.g., conjunctions,
articles). After extracting the top-10 and top-K
keywords from the ground truth and the generated
explanations, respectively, we compare them us-
ing precision@K, recall@K, and an MRR-based
metric.

Figure 3 displays the results for varying num-
ber of keywords K € {1,3,5,7,10}. Considering
the TF-IDF results, for higher values of K, pre-
cision and MRR decrease while recall increases.
Our model consistently yields better performance
across all metrics and values of K. Notably, GPT-
40 always achieves significantly lower results (e.g.,
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Figure 3: Precision, recall, and MRR for varying number of keywords K in the generated explanations compared to
the ground truth by the best models and GPT-40. Keywords are extracted using TF-IDF (first row) and KeyBERT

(second row).

compared to Gemma?2 for K = 5, 0.42 vs. 0.58
precision, 0.21 vs. 0.29 recall, and 0.21 vs. 0.32
MRR). KeyBERT results follow a similar trend:
overall, they are higher than those obtained with
TF-IDF, likely due to the more accurate and ro-
bust keyword extraction enabled by embedding rep-
resentations. While DREAM-FLUTE and Cross-
Task results are almost identical in this case, our
model consistently achieves better performance.
As with the TF-IDF results, GPT-40 shows the low-
est performance in this case as well.

D GPT-as-an-Expert

Based on preliminary experiments, we use the fol-
lowing prompt to ask GPT-4o to check and, if nec-
essary, correct or improve our best model’s (i.e.,
Gemma?2) predictions.

I will provide you with a pair of sentences consisting
of a premise and a hypothesis containing figurative
language. The task is to determine whether there is a
contradiction or entailment between the premise and
hypothesis, and provide an explanation for it.

I will also provide you with a model's prediction
("Entailment” or "Contradiction”) and explanation.
Your task is to verify the correctness of the
prediction and, if needed, improve the explanation.
When modifying the explanation, do not explicitly
mention "premise” or "hypothesis”, and keep the same
length and style of the model's generated one.

In the following you can find some examples of
explanations. Use the same style.
- [EX_Ej]

Premise: [P]
Hypothesis: [H]

Model's prediction
Label: [PRED_LABEL]
Explanation: [PRED_EXPL]

Answer with

Label:

Explanation:

If the label is the same as the model's prediction,
write "Correct”. If the explanation does not need
improvement, write "Correct”.

where we replace [EX_Ej] with the j-th explana-
tion for each of the k£ examples provided to the
model, if any, [P]/[H] with the premise and hy-
pothesis, and [PRED_LABEL]/[PRED_EXPL] with
our best model’s corresponding prediction and ex-
planation for the current instance.

Table 8 reports the results achieved by GPT-as-
an-Expert when varying the number of explana-
tions provided as examples to the model. Note that
we include the results for both explanation update
strategies, i.e., always, if we always update the ex-
planation generated by our best model with the one
revised by GPT-40, and label, where we replace our
model’s explanation only when GPT-40 predicts
a label different from the one originally predicted
by our model. Considering the acc @60 metric, as
expected, there is an increase in performance until
reaching the maximum value for k¥ = 10. Notably,
the largest performance gap is observed between
k = 0 and k = 5. This can be explained by the
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# examples explanation acc@() acc@50 acc@60 | R1 R2 RL | BS BL
update

0 always 94.2 88.1 64.1 454 246 382|685 60.0
label 94.2 90.1 71.7 48.0 26.6 40.7|70.0 614

5 always 94.9 90.5 69.2 470 259 398|695 610
label 94.9 91.1 72.2 482 26.8 409 | 70.1 61.6

10 always 95.4 90.7 70.6 47.6 263 403|698 613
label 95.4 91.3 72.6 48.3 269 41.0 | 70.2 61.7

20 always 95.0 90.3 69.8 475 262 40.1 | 69.7 613
label 95.0 90.7 72.0 482 26.8 409 | 70.1 61.6

Table 8: GPT as an expert results for varying number of examples of explanations. Bold denotes the best score for

each metric.

fact that, when no examples of explanations are
provided, GPT-40 tends to rewrite the explanations
produced by Gemma?2 using its own style, which
does not align well with the ground truth. Con-
versely, starting from k£ = 5, the style of the expla-
nations revised by GPT-40 more closely matches
the expected one. This is even more evident when
comparing the results of the two explanation up-
date strategies. Since GPT-40 often rewrites ex-
planations using its own style, always replacing
Gemma2’s explanation with the one revised by
GPT-40 results in lower performance compared
to updating it only when the predicted label also
changes. Specifically, for k£ = 0, the gap between
the two strategies is particularly significant (e.g.,
64.1 vs 71.7 acc@60), while it decreases when
examples are provided. For k£ > 0, GPT-40’s expla-
nations become more aligned with the ground truth,
leading to fairly good results even in the always
strategy.

Qualitative Results. We include in the following
two examples, one success and one failure case,
respectively, of outputs produced by using GPT-40
as an expert reviewer.

Example 1 (simile):

Premise: It felt hard and dry.

Hypothesis: It felt like a portobello mushroom.
Label: Contradiction

Explanation: Portobello mushrooms are big and
wet, so saying it felt like one would imply it felt
slimy, not hard and dry

Gemma2

Label: Entailment

Explanation: A portobello mushroom is a type of
mushroom that is known for being hard and dry.

Gemma?2 + GPT-40

Label: Contradiction
Explanation: A portobello mushroom is known for

being soft and moist, not hard and dry.

In the example above, GPT-40 effectively corrects
Gemma2’s predictions both in terms of label and
explanation. In particular, unlike Gemma2, GPT-40
appears to be knowledgeable about the characteris-
tics of Portobello mushrooms, likely due to its more
extensive training data, and therefore correctly rec-
ognizes the contradiction between the premise and
the hypothesis.

Example 2 (metaphor):

Premise: The sun reflecting a dazzling light to us.
Hypothesis: The sun glared down on us.

Label: Entailment

Explanation: Glaring is used to mean that the sun
is reflecting a strong light.

Gemma?2

Label: Entailment

Explanation: The sun glared down on us means
that the sun was shining brightly and was reflecting
a lot of light.

Gemma2 + GPT-40

Label: Contradiction

Explanation: The sun reflecting a dazzling light
suggests a beautiful and pleasant scene, while the
sun glaring down implies an intense, harsh, and
possibly uncomfortable light.

In the example above, GPT-40 modifies both the la-
bel and explanation predicted by Gemma?2 leading
to an incorrect final output. In this case, although
both the phrase “dazzling light” in the premise
and the verb “to glare” in the hypothesis refer to a
very bright light, GPT-40 perceives the former as a
pleasant scene while the latter as an uncomfortable
situation. Consequently, it interprets the relation
between the two sentences as a contradiction.
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E Qualitative examples

In the following, we provide some examples
of success and failure cases generated by our
best-performing model (i.e., Gemma2), DREAM-
FLUTE System 4 (Gu et al., 2022b), and Cross-
Task SFT (Bigoulaeva et al., 2022). For each ex-
ample, we also report the ground truth label and
explanation to facilitate the qualitative assessment
of the model outputs.

Example 3 (simile):

Premise: The basement they shut him in looked
safe and spacious.

Hypothesis: They had shut him in a basement that
looked like a freight elevator.

Label: Contradiction

Explanation: A freight elevator is typically small
and cramped, not safe and spacious.

Cross-Task (SFT)

Label: Entailment

Explanation: A freight elevator is a large, safe
space, so the basement they shut him in must have
looked safe and spacious.

DREAM-FLUTE (System 4)

Label: Entailment

Explanation: A freight elevator is a large, safe,
and spacious space, so the basement they shut him
in must have looked safe and spacious.

Ours (Gemma?2)

Label: Contradiction

Explanation: A freight elevator is a small,
cramped space, whereas a safe and spacious base-
ment would be larger and more comfortable.

In the example above, both Cross-Task and
DREAM-FLUTE methods predict the wrong TER
label. The error is then propagated in the generated
explanations which, although coherent with the pre-
dicted label, are misleading. In contrast, our model
accurately predicts the correct label (i.e., contradic-
tion) and generates a high-quality explanation that
aligns with the ground truth. Particularly notewor-
thy is the presence of the exact words “small and
cramped” in both the gold reference and our model
output.

Example 4 (idiom):

Premise: She’d always seemed fragile, though ac-
cording to Jess she was as susceptible to sickness
and injury as a newborn baby and |[...]
Hypothesis: She’d always seemed fragile, though
according to Jess she was as tough as old boots
and could face off the most dangerous badasses.

Label: Contradiction

Explanation: 7o be tough as old boots means to be
resilient and not susceptible to sickness or injury,
but this context describes the individual as being
susceptible to sickness and injury.

Cross-Task (SFT)

Label: Contradiction

Explanation: Old boots are not tough, they are
susceptible to sickness and injury

DREAM-FLUTE (System 4)

Label: Entailment

Explanation: Old boots are not very durable, so
the simile is saying that she is not very tough.

Ours (Gemma?2)

Label: Contradiction

Explanation: 7o be tough as old boots means to
be very tough and durable, but in this context she is

as susceptible to sickness and injury as a newborn
baby.

In this example, Cross-Task predicts the correct
label (i.e., contradiction). However, the model fails
to understand the meaning of the idiom “tough as
old boots”, thus producing a wrong explanation.
Similarly, DREAM-FLUTE produces an explana-
tion that conveys the opposite meaning of the in-
tended one, alongside an incorrect label prediction.
On the other hand, our model correctly recognizes
the contradiction between the input premise and
hypothesis. The label prediction is supported by
a correct explanation, demonstrating the model’s
understanding of the idiom. Furthermore, the ex-
planation closely matches the gold reference.

Example 5 (sarcasm):

Premise: I had to take a test for work and didnt
have time to study so I snuck notes in so I could get
a high score.

Hypothesis: I had to take a test for work and didnt
have time to study so I fine-tuned my performance
by sneaking notes in so I could get a high score
Label: Contradiction

Explanation: Sneaking notes into a test is consid-
ered cheating and is not fine-tuning one’s perfor-
mance but rather taking the easy way.

Cross-Task (SFT)

Label: Entailment

Explanation: Fine-tuning one’s performance
means to improve it by taking notes, which is what
the person did by sneaking notes in.

DREAM-FLUTE (System 4)
Label: Entailment
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Explanation: It is often seen as cheating if some-
one is caught sneaking notes in a test and it is often
seen as a way to get a better grade

Ours (Gemma?2)

Label: Contradiction

Explanation: Sneaking notes in during a test is
considered cheating and is not fine-tuning one’s
performance.

In the example above, both Cross-Task and
DREAM-FLUTE methods predict the wrong la-
bel. Although DREAM-FLUTE explanation men-
tions the verb “cheating”, it does not recognize the
sarcasm in the hypothesis. In contrast, our model
both correctly predicts the label (i.e., contradiction)
and explains the sarcasm of the situation, closely
matching the ground truth.

Example 6 (metaphor):

Premise: That huge guy beside him made him look
50 puny.

Hypothesis: His friend was very tall and he looked
like a chess piece beside him.

Label: Entailment

Explanation: A chess piece is much smaller than
the board it is on, so when one person is standing
next to another who is much taller, they can look
like a chess piece.

Cross-Task (SFT)

Label: Entailment

Explanation: A chess piece is very tall, so the
simile is saying that the person next to him looks
very tall.

DREAM-FLUTE (System 4)

Label: Contradiction

Explanation: A chess piece is a small, intricate
piece of furniture, so it would not make sense for
someone to look like one if they were tall and looked
puny

Ours (Gemma?2)

Label: Entailment

Explanation: A chess piece is a small object, so the
person would look small and puny next to someone
who is very tall.

In this example, Cross-Task predicts the correct
label (i.e., entailment); however, the generated ex-
planation is incorrect as it conveys the opposite
meaning of the ground truth. DREAM-FLUTE
explanation is only partially correct, furthermore
the predicted label is wrong. On the other hand,
Gemma? predicts the correct label and effectively
explains the meaning of the metaphor in the gener-

ated explanation.

Example 7 (simile):

Premise: She did not keep still

Hypothesis: She kept as still as a bouncing super-
ball

Label: Entailment

Explanation: A superball is a ball that is con-
stantly moving and bouncing, so the simile is say-
ing that she was not still at all.

Cross-Task (SFT)

Label: Entailment

Explanation: A superball is a very fast moving ob-
ject, so to say someone keeps as still as a superball
would be to say that they do not keep still.

DREAM-FLUTE (System 4)

Label: Contradiction

Explanation: A bouncing superball is not still, so
she did not keep still

Ours (Gemma2)

Label: Contradiction

Explanation: A superball is a toy that bounces
when dropped, so saying someone is as still as a
superball would mean that they are not still at all.

In the example above, Cross-Task’s predicted label
and explanation are both correct, while DREAM-
FLUTE predicts the wrong label but produces a
correct, although concise, explanation. Similarly,
although our model generates an explanation that
closely aligns with the gold reference, it predicts
the wrong label.

Example 8 (metaphor):

Premise: This office is as lively as a bustling bee-
hive.

Hypothesis: This office is buzzing with activity.
Label: Entailment

Explanation: A beehive is a place where bees live
and buzz.

Cross-Task (SFT)

Label: Entailment

Explanation: A beehive is a structure that is full
of activity, so the simile is saying that the office is
Sull of activity.

DREAM-FLUTE (System 4)

Label: Contradiction

Explanation: A beehive is a structure where many
bees live together and produce honey, so it would
not be lively

Ours (Gemma?2)

Label: Contradiction
Explanation: To be buzzing with activity means to
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be full of energy and activity, while to be as lively
as a bustling beehive means to be full of life and
activity.

In this example, similar to the previous case, Cross-
Task predicts the correct label (i.e., entailment) and
generates a valid explanation. In contrast, DREAM-
FLUTE’s predicted label and explanation are in-
correct. Although Gemma2 correctly explains the
meaning of the expressions “to be buzzing with
activity” and “to be as lively as a bustling beehive”,
they are perceived as having contrasting meaning,
resulting in a wrong label prediction.
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