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Abstract

Capitalizing on a vast amount of image-text
data, large-scale vision-language pre-training
has demonstrated remarkable zero-shot capa-
bilities and has been utilized in several appli-
cations. However, models trained on general
everyday web-crawled data often exhibit sub-
optimal performance for specialized domains,
likely due to domain shift. Recent works have
tackled this problem for some domains (e.g.,
healthcare) by constructing domain-specialized
image-text data. However, constructing a dedi-
cated large-scale image-text dataset for sustain-
able areas of agriculture and livestock is still
open to research. Further, this domain desires
fine-grained feature learning due to the subtle
nature of the downstream tasks (e.g., nutrient
deficiency detection and livestock breed classi-
fication). To address this, we present AgriCLIP,
a vision-language foundational model dedi-
cated to the domain of agriculture and livestock.
First, we propose a large-scale dataset named
ALive that leverages a customized prompt gen-
eration strategy to overcome the scarcity of
expert annotations. Our ALive dataset cov-
ers crops, livestock, and fishery, with around
600,000 image-text pairs. Second, we propose
a training pipeline that integrates both con-
trastive and self-supervised learning to learn
both global semantic and local fine-grained
domain-specialized features. Experiments on
a diverse set of 20 downstream tasks demon-
strate the effectiveness of the AgriCLIP frame-
work, achieving an absolute gain of 9.07% in
terms of average zero-shot classification ac-
curacy over the standard CLIP adaptation via
domain-specialized ALive dataset. Our ALive
dataset and code can be accessible at Github.

1 Introduction

Recent years have seen the success of large-scale
image-text pre-training, e.g., CLIP in general zero-
shot capabilities, and their widespread utility (Rad-
ford et al., 2021). However, the performance

of these models often falters in specialized do-
mains (such as healthcare, geo-sensing, and climate
(Wang et al., 2022; Vivanco Cepeda et al., 2024;
Mishra-Sharma et al., 2024)) due to the presence
of inherent domain gaps and the different nature of
downstream tasks in specialized domains. This gap
in performance has led to the curation of image-text
datasets from existing domain-specific data sources
for the training of expert CLIP variants (Wang et al.,
2022; Zhang et al., 2023; Xu et al., 2024).

However, adapting vision-text pre-training for
agriculture is challenging due to two reasons. First,
unlike many other fields, agriculture lacks any com-
prehensive image-text data sources. Existing agri-
cultural datasets are predominantly designed for
narrow tasks (e.g., disease classification) and con-
sist only of images and task-specific information
(e.g., class names), restricting their utility in vision-
language pre-training. Second, most downstream
agricultural tasks require fine-grained feature learn-
ing – such as distinguishing subtle differences in
rusty patches on visually similar leaves for disease
classification – where contrastive learning alone
may be insufficient. Some previous works have
utilized deep learning for agricultural tasks (Bhar-
man et al., 2022; Farjon et al., 2023), and initial
efforts have been made to fine-tune large language
models for the field (Arshad et al., 2024). However,
to the best of our knowledge, no such effort exists
for vision-language pre-training for agriculture.

To address the above-mentioned challenges,
we introduce AgriCLIP, which comprises a large
image-text dataset called ALive (Agriculture and
Livestock) and a vision-language pre-training
pipeline that combines the strengths of contrastive
and self-supervised learning to learn both global
semantic features and fine-grained visual details.
This combination of a large-scale dataset and train-
ing pipeline enables the vision-language model to
achieve strong downstream performance in agricul-
tural tasks. An overview of our method is shown
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Figure 1: Overview of our proposed framework, consisting of the ALive dataset and the AgriCLIP training pipeline,
designed to integrate both global semantic and local fine-grained domain-specialized features. The ALive is an
image-text dataset for the agriculture and livestock domain that is constructed by leveraging images and their
metadata to prompt GPT-4, generating customized text for each image. The AgriCLIP training pipeline consists of
Semantic Feature Learning, where contrastive learning is utilized to train image and text encoders; Fine-Grained
Feature Learning, using a self-supervised approach to train the vision encoder; and Cross-Model Alignment,
aligning vision encoders from the previous stages to enable zero-shot generalization.

in Figure 1. Our contributions are as follows.
Our primary contribution is the creation of a

large, diverse image-text dataset derived solely
from vision-based agricultural datasets. To con-
struct the ALive dataset, we carefully selected 25
classification-based datasets covering crops, live-
stock, and fish, totaling around 600,000 images.
The images span various modalities (drone, robotic,
RGB), tasks (e.g., nutrient deficiency detection,
plant disease identification, livestock breed classi-
fication), and environments (indoor, outdoor, and
underwater). To generate corresponding text pairs
for each image, we use a customized prompt gen-
eration strategy that employs metadata and class-
specific information to prompt GPT4 (Achiam
et al., 2023), producing a diverse set of descriptive
text. To evaluate the model’s out-of-distribution
performance for diverse downstream tasks, we
curate a dedicated evaluation set consisting of
300,000 images from datasets entirely disjoint from
the ALive training set.

Our second contribution is a training pipeline
that combines image-text contrastive and image-
only self-supervised learning to boost global se-
mantic features with fine-grained visual details.
Our training pipeline consists of three stages. In
the first stage, we further pre-trained CLIP (Rad-
ford et al., 2021) vision and language encoders
on image-text pairs from the ALive dataset using
contrastive learning to capture global semantic fea-
tures. In the second stage, we further pre-trained a

separate vision encoder with the DINO-based train-
ing (Caron et al., 2021) method, focusing on learn-
ing local fine-grained features crucial for down-
stream tasks. Consequently, we align vision en-
coders from the first two stages to enable zero-
shot classification learning. Our experiments on 20
diverse sets of downstream datasets with around
300,000 images demonstrate the efficacy of our
AgriCLIP in terms of zero-shot performance.

2 Related Work

The application of AI in agriculture has been stud-
ied, with a focus on tasks such as crop monitor-
ing (Wu et al., 2023), disease detection (Arun and
Umamaheswari, 2023; Yousuf and Khan, 2021;
Khan and Oberoi, 2019; Khan et al., 2023a), and
yield prediction (Meena et al., 2023). Traditional
machine-learning approaches have relied heavily
on supervised learning, requiring large amounts of
labeled data (Kotwal et al., 2023). However, the
variability and complexity of agricultural environ-
ments often make it challenging to obtain sufficient
labeled data, leading to the exploration of zero-shot
learning methods.

Zero-shot learning has gained traction in re-
cent years, with models like CLIP (Radford et al.,
2021) demonstrating the ability to generalize to un-
seen categories by leveraging textual descriptions.
CLIP’s success in various domains has prompted re-
search into its application in specialized fields such
as medicine, remote sensing, and astronomy (Zhao
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et al., 2023; Li et al., 2023b; Mishra-Sharma et al.,
2024). For agriculture, efforts have been made for
the specific tasks of plant disease identification in a
few-shot manner, but they are mainly restricted to
either a single task or limited data variability (Zhou
et al., 2024; Zhong et al., 2020; Sun et al., 2024).
Self-supervised learning models like DINO (Caron
et al., 2021) have also been explored for various
applications, including visual recognition tasks (Li
et al., 2023a; Liu et al., 2023; Yuen et al., 2024).
DINO’s ability to learn meaningful representations
without labeled data makes it an engaging option
for improving zero-shot learning models. Simi-
larly, the weakly supervised approach (Khan et al.,
2024a) has also been used for many different ap-
plications in medical and agriculture (Bellocchio
et al., 2022; Khan et al., 2024b). Despite these ad-
vancements, there has been little research focused
on applying these techniques to agricultural tasks.
This paper aims to bridge this gap by presenting
a novel approach that combines CLIP and DINO
models for zero-shot classification in the agricul-
ture domain.

3 Method

As discussed earlier, popular vision-language foun-
dational models such as CLIP and its variant have
demonstrated impressive zero-shot. However, their
applicability diminishes when applied to more
specialized domains due to the inherent domain
gap (Udandarao et al., 2024). This is likely due
to being pre-trained on general-purpose images de-
picting everyday scenes and objects that lack the
fine-grained, domain-specific examples needed for
agricultural and livestock tasks, such as identifying
subtle distinctions in plant diseases or detecting
small variations among different crop species. We
introduce AgriCLIP (see Fig. 1), a framework de-
signed to bridge the domain gap in agriculture and
livestock tasks. To train AgriCLIP, we construct
a large-scale image-text dataset named ALive for
agriculture and livestock. AgriCLIP adapts text and
vision encoders to learn discriminative, domain-
specialized features followed by cross-modal align-
ment to obtain improved feature representation.

3.1 ALive Dataset for Agriculture and
Livestock

Most existing agriculture and livestock datasets
are image-only with class-level information. Here,
we employ a two-step approach: first, we collect

Figure 2: Example images from the ALive dataset, in-
cluding various crops (such as dates, crop diseases, and
plant genera), diverse fish species, and samples from the
livestock domain. More examples are in the appendix.

diverse agricultural and livestock data, then syn-
thesize relevant text using dataset and class-level
information via customized prompt generation for
vision-language contrastive learning.

We gather 25 training datasets across crops, fish,
and livestock, creating the Agriculture and Live-
stock (ALive) dataset with 600k images covering
a wide range of conditions. This includes various
crop growth stages, classifications, and different
farming environments for animals and fish. Next,
we design a customized prompt generation strategy
where the text based on the dataset and class-level
information is leveraged to provide context and
fine-grained details for each image. Initially, we
crafted simple prompts as are used in the CLIP
prompting with the prefix "a photo of [cls]." Then,
we passed the image and its metadata to the GPT-4
(Achiam et al., 2023) model and generated more
contextually aware prompts. For instance, instead
of using a generic CLIP prompt like “a photo of
a boron-deficient leaf,” we craft prompts like “a
photo of a leaf with boron deficiency characterized
by yellow patches and curled edges.” We then use
GPT-4 (Achiam et al., 2023) to generate a diverse
variation of these prompts. Table 5 in the Appendix
and Figure 2 present examples and details of our
ALive dataset. Next, we describe our AgriCLIP
pipeline that leverages the ALive dataset.

3.2 Learning Semantic ALive Features

We learn global semantic domain-specialized fea-
tures via the ALive dataset by utilizing image-text
contrastive training. To this end, we adapt CLIP
(Radford et al., 2021) by further pre-training it on
the ALive dataset using contrastive loss (He et al.,
2020). The model consists of a vision encoder Eimg
and a text encoder Etxt, and we align their embed-
ding spaces by minimizing the distance between
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Dataset Downstream Tasks CLIP CLIP Pre-Training AgriCLIP

Fish

Supermarket Fish (Ulucan et al., 2020) Local Fish Classification 1.66 22.57 41.38
Aquarium Fish (Moorthy) Acquarium Fish Classification 22.85 27.13 43.06
FishDataset (Kaur) Fine-grained Fish Classification 16.04 32.47 49.23
DeepFish (Saleh et al., 2020) Under-Sea Fish Classification 45.41 55.96 57.78
FishNet (Khan et al., 2023b) Functional Trait Prediction 0.15 19.52 21.58
Fish Freshness (Rayan) Fish Freshness classification 29.37 50.05 57.75
Fish Species (Daniel) Fish Species Classification 13.68 25.89 30.21

Crops

Banana Deficiency (Sunitha, 2022) Nutrients Deficiency Classification 14.08 20.64 23.55
Citrus Fruits (Sharif et al., 2018) Citrus Fruit Disease Classification 38.09 39.55 40.21
Citrus Leaves (Sharif et al., 2018) Citrus Leaves Disease Classification 2.18 23.97 34.27
Fruits Diseases (Kour and Arora, 2019) Native Fruits Classification 68.9 73.26 73.98
PlantDoc (Singh et al., 2020) Plant Disease Classification 6.02 29.18 35.42
Wheat Rust (Hayit et al., 2021) Wheat Rust Classification 34.11 53.45 67.38
Bean Lesion (Marquis) Bean Lesion Classification 18.73 35.47 40.85

LiveStock

Chicken Fecus (allandclive) Chicken Disease Classification 19.28 27.31 34.29
CID (Shagor et al., 2022) Local Cow Specie Classification 5.62 27.52 49.95
Cow Breed (Hossain) Cow Breed Classification 31.13 40.23 44.62
Animals-2 (Animals-10) Livestock Animal Classification 95.48 97.12 98.27
Horses Breed (Belitskaya) Horses Breed Classification 28.05 48.63 54.50

Average 25.83 39.20 48.27

Table 1: Zero-shot classification performance comparison of standard CLIP, further pre-training standard CLIP
on ALive dataset and the proposed AgriCLIP in a variety of downstream tasks corresponding to three domains:
agriculture, livestock and fishery.

correct image-text pairs (positive pairs) and max-
imizing the distance for incorrect pairs (negative
pairs). The contrastive loss is defined as:

L = − log
exp(sim(u, v)/τ)∑N

k=1 exp(sim(u, vk)/τ)
,

where u = Eimg(x) and v = Etxt(y) are the image
and text embeddings, sim represents cosine simi-
larity, τ is the temperature parameter, and N is the
number of samples. This adaptation ensures better
alignment of vision and text representations for the
agriculture and livestock domain.

3.3 Learning Fine-grained ALive Features
In addition to the aforementioned domain-
specialized semantic features, different agricul-
ture and livestock problems desire capturing fine-
grained visual details, crucial for tasks like identi-
fying subtle variations in disease symptoms (e.g.,
small color differences in spots), for classification.

To further learn domain-specialized fine-grained
features, we complement CLIP’s generalization ca-
pabilities by employing a DINO-based pre-training
strategy to enhance the vision encoder ES

img using
the ALive dataset. The self-supervised learning-
based technique (Caron et al., 2021) excels at learn-
ing detailed visual features. Here, a student-teacher
framework is employed, where two randomly aug-
mented views of each image are processed by both

models (vision transformers). The student model
is trained to match the teacher’s representations,
enabling it to capture both global and fine-grained
details. This combined self-supervised approach
enhances the model’s ability to handle domain-
specialized fine-grained visual features.

3.4 Cross-Model Alignment

The visual encoder ES
img, although a powerful fea-

ture extractor, is not inherently aligned with the
language encoder and therefore lacks the zero-shot
capabilities of vision-language models. To align
domain-specialized semantic, fine-grained, and text
features, we adopt a vision-language feature align-
ment approach inspired by (Moayeri et al., 2023),
aligning visual features ES

img with CLIP’s textual
encoder Etxt implicitly. Specifically, we apply a
learnable affine transformation to map the output of
the fine-grained visual encoder ES

img to the space of
the semantic visual encoder Eimg, effectively pro-
jecting ES

img to the same space as concept vector for
text thereby enabling zero-shot capabilities (Moay-
eri et al., 2023). This mapping is learned by mini-
mizing the mean squared error (MSE) between the
feature space of the two models.

4 Experimental Results

Experimental Setup. For semantic visual en-
coder and language encoder (stage 1), we use
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CLIP’s (Radford et al., 2021) open-source imple-
mentation called OpenCLIP (Ilharco et al., 2021).
For fine-grained feature vision encoder (stage 2),
we utilize DINO (Caron et al., 2021). It is trained
with global and local crop scales of (0.4, 1) and
(0.05, 0.4), respectively. The AdamW optimizer
is used with a learning rate of 0.0005 and weight
decay of 0.04 for a total of 100 epochs. The rest
of the model settings are used as default from the
DINO model. For zero-shot evaluation, we follow
the original framework utilized by CLIP (Radford
et al., 2021). We run all our experiments on a single
NVIDIA A100 GPU.
Downstream Tasks and Datasets. To evaluate
the performance of AgriCLIP, we assemble a set
of 20 datasets to test the model’s ability to gen-
eralize to unseen concepts. The evaluation set is
entirely disjoint from the ALive pre-training set.
It contains diverse agricultural and livestock cat-
egories, including new types of crops, different
disease and nutrient deficiencies, and varied envi-
ronmental conditions. The downstream datasets
include tasks such as crop disease identification,
nutrient deficiency classification, animal species
or breeds classification, and fish species recogni-
tion, providing a comprehensive assessment of the
model’s zero-shot classification capabilities in prac-
tical applications.
Results. We compare the performance of our Agri-
CLIP with both the original CLIP and its adaptation
through further pre-training on the ALive dataset
in Table 1 on 20 downstream datasets. To demon-
strate the effectiveness of our ALive dataset and
training pipeline, we compare three model configu-
rations: the original CLIP model, CLIP further pre-
trained on our ALive dataset, and AgriCLIP trained
with our proposed training pipeline. The original
CLIP model exhibits poor performance across the
20 agriculture-related tasks, with accuracy ranging
from 1.66% to 45.41% for fisheries datasets and
an overall average zero-shot accuracy of 25.83%.
Further pre-training CLIP on the ALive dataset en-
hances performance, yielding accuracy between
22.57% and 55.96%, with an overall average accu-
racy of 39.20%. This gain demonstrates the impact
of our ALive dataset in bridging the domain gap.
Our AgriCLIP, incorporating a fine-grained feature
vision encoder, further improves performance on
downstream tasks. AgriCLIP achieves an overall
classification score of 48.27% over 20 datasets with
an absolute gain of 9.07% over its adapted CLIP
baseline counterpart. We present more details on

the experimental results and ablation studies on the
impact of custom prompts, dataset size, and dif-
ferent pre-training for fine-grained encoders in the
appendix section.

5 Conclusion

We present a vision-language foundational model,
AgriCLIP, for agriculture and livestock domain. To
facilitate model pre-training, we introduce a large-
scale dataset with 600,000 image-text pairs for agri-
culture and livestock domain. AgriCLIP learns
both semantic and fine-grained domain-specialized
features for improved zero-shot classification. Ex-
periments on 20 downstream datasets show the
efficacy of AgriCLIP.
Limitations. The current study focuses on a di-
verse set of classification tasks. Its applicability to
other critical downstream dense prediction tasks,
such as pest detection, crop yield prediction, and
plant disease segmentation, has not been tested. A
potential future direction is to expand the model’s
evaluation to include these tasks, as it would pro-
vide a more comprehensive understanding of its
practical utility.
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A Extended Results

A particularly noteworthy aspect of AgriCLIP is
its ability to significantly enhance performance on
datasets where CLIP exhibits notably low accuracy.
For instance, on the Supermarket Fish dataset (Ulu-
can et al., 2020), AgriCLIP achieves an accuracy
of 41.38%, a substantial improvement over CLIP’s
1.66%. Similarly, for the PlantDoc dataset (Singh
et al., 2020), a large and fine-grained plant leaf dis-
ease dataset, AgriCLIP demonstrates an accuracy
of 35.42%, markedly outperforming CLIP’s 6.02%.
These results highlight AgriCLIP’s ability to han-
dle diverse and challenging agricultural datasets,
particularly those requiring fine-grained learning
and domain-specific knowledge.

A.1 Ablations Studies

Effect of Different Pre-training for Fine-grained
Feature Vision Encoders. For the fine-grained
feature vision encoder, we experimented with
two different self-supervised training frameworks:
DINO (Caron et al., 2021) and Masked Auto En-
coder (MAE)(He et al., 2022). We pre-trained
both models on the ALive dataset and subsequently
aligned it with CLIP, following our method. The
average accuracy of 22.11% and 42.04% was ob-
tained for 10 downstream tasks as shown in Table 2
of Appendix. Unlike DINO, the MAE model does
not perform well on downstream tasks, demon-
strating the suitability of DINO for handling the
complexities of the ALive dataset compared with
MAE.
Effect of Custom Prompts. To show the ef-
fectiveness of our prompt design method, which
incorporates metadata and class-specific informa-
tion to synthesize text for the dataset, we perform
an ablation study where we compare CLIP’s fine-
tuning with our prompts and generic, CLIP-style
prompts. The results are shown in Table 4.
Impact of Increasing Size of the Dataset. We
perform an ablation by increasing the dataset size
to understand the effect of adding more data. To
this end, the ALive dataset is expanded (ALive++)
to nearly 900,000 images, encompassing a broader
range of agricultural and livestock scenarios by
incorporating segmentation, tracking, and detec-
tion datasets. This enhanced dataset is used solely

Dataset MAE DINO

Supermarket Fish (Ulucan et al., 2020) 6.20 41.38
Aquarium Fish (Moorthy) 33.33 43.06
FishDataset (Kaur) 16.21 49.23
DeepFish (Saleh et al., 2020) 45.41 57.78
FishNet (Khan et al., 2023b) 0.11 21.58
Banana Deficiency (Sunitha, 2022) 12.04 23.55
Citrus Fruits (Sharif et al., 2018) 26.67 40.21
Citrus Leaves (Sharif et al., 2018) 8.22 34.27
Fruits Diseases (Kour and Arora, 2019) 64.55 73.98
PlantDoc (Singh et al., 2020) 8.45 35.42
Average 22.11 42.04

Table 2: Comparison between Masked Autoencoder
(MAE) and DINO-based pre-training for fine-grained
feature learning. DINO-based training strategy outper-
forms MAE significantly.

Dataset ALive ALive++

Supermarket Fish (Ulucan et al., 2020) 41.38 41.87
Aquarium Fish (Moorthy) 43.06 45.28
FishDataset (Kaur) 59.23 62.77
DeepFish (Saleh et al., 2020) 57.78 53.43
FishNet (Khan et al., 2023b) 21.58 23.57
Banana Deficiency (Sunitha, 2022) 23.55 25.34
Citrus Fruits (Sharif et al., 2018) 40.21 45.88
Citrus Leaves (Sharif et al., 2018) 34.27 33.74
Fruits Diseases (Kour and Arora, 2019) 73.98 78.58
PlantDoc (Singh et al., 2020) 35.42 39.62
Average 43.64 45.00

Table 3: Impact of increasing size of ALive dataset.

to pre-train the fine-grained feature vision en-
coder (stage 2) in a self-supervised manner using
DINO (Caron et al., 2021). After pre-training, its
features are aligned with CLIP, following stage 3
of our method. The results are shown in Table 3,
demonstrating the benefits of a larger and more
varied dataset.

B Extended Dataset Details

Extended details for the pre-training and down-
stream datasets are shown in Table 5, including
tasks, different sensors used for the collection of
data, data variability, number of datasets, and the
total number of images. In Table 6, we demon-
strate more examples of the customized prompts
we constructed for ALive. Also, Figure 3 shows
more examples of the ALive dataset.
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Figure 3: Some more examples of the ALive dataset

Dataset Normal Custom

Supermarket Fish (Ulucan et al., 2020) 22.57 23.45
Fish Freshness (Rayan) 50.05 51.25
PlantDoc (Singh et al., 2020) 29.18 31.72
Wheat Rust (Hayit et al., 2021) 53.45 54.82
Bean Lesion (Marquis) 35.47 39.58
Chicken Fecus (allandclive) 27.31 29.54
CID (Shagor et al., 2022) 27.52 30.28
Average 35.07 37.23

Table 4: Comparison of generic prompt used by
CLIP (Radford et al., 2021) vs. customized prompts
utilized in ALive dataset.
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Dataset Tasks Sensor Data Variability # Images # Datasets

Pre-Training

Nutrients Deficiency, Weed Classification, Plant Dis-
ease Classification, Fruits Classification, Plant Specie
Classification, Fish Specie Classification, Fish Abun-
dance Classification, Cattle Classification, Cattle
Breed Recognition, Horse Classification

Ground Handheld Im-
agery, Ground vehicle
with camera attached,
Ground Imagery with
Fixed Camera, Ground
Imagery (Using Robot),
Sea Imagery

Indoor, Outdoor, Under-
water, Plain Background

603,626 25

Downstream

Nutrients Deficiency, Weeds Classification, Plant
Specie Classification, Plant Disease Classification,
Cows Breed Classification, Fish Specie Classifica-
tion, Functional Trait Prediction, Chicken Classifica-
tion

Ground Handheld Im-
agery, Sea Imagery

Indoor, Outdoor, Under-
water

301,076 20

Table 5: Overview of different attributes for datasets used in ALive pre-training and downstream evaluation.

Prompt Customized Prompts using GPT4

a photo with prickly
acacia weed specie

Prickly Acacia invasion in agricultural regions, an urgent weed control case
Impact assessment of Prickly Acacia on crop health and soil quality
Mapping Prickly Acacia spread in critical farming areas
Prickly Acacia detection in crop fields, potential for significant yield loss

a photo of rice plant leaf
with nitrogen deficiency

A leaf displaying the yellowing characteristics of nitrogen deficiency
Early signs of nitrogen deficiency captured in a leaf
A close-up of a leaf suffering from lack of nitrogen
A photo of rice leaf having yellowish patterns due to nitrogen deficiency

a photo of early stage
black nightsade leaves in

the field

Black Nightshade presence in crop fields, known for its competitive nature
Monitoring aggressive Black Nightshade weed among vegetable crops
Impact of Black Nightshade on crop fields, with a focus on containment strategies
Field analysis of Black Nightshade weed’s effect on adjacent crops

a photo of fish from
Freshwater Eel specie

Freshwater Eel, a species known for its elongated, snake-like body
Capturing the elusive Freshwater Eel during its nocturnal activity
The mysterious life of Freshwater Eels, seen here in a creek
Freshwater Eel in a clear stream, showcasing its sleek body

a photo of fish from Big
Head Carp specie

Big Head Carp, a large species with a distinctive large head
Observing the feeding habits of Big Head Carp in a river setting
Big Head Carp, often found in river basins, impacting local ecosystems
A snapshot of Big Head Carp, focused on its unique head structure

a photo of a cow from
Jersey breed

A Jersey cattle, renowned for its rich, creamy milk
The small yet robust Jersey cow, ideal for boutique dairy products
Jersey cattle in a dairy setting, noted for high butterfat content in its milk
A serene Jersey cow, a favorite among small-scale dairy farmers

a photo of a sheep

A sheep grazing peacefully, a staple of pastoral agriculture
Detailed capture of a sheep’s wool, essential for textile production
A flock of sheep on a sunny day, a vital resource for farmers
Sheep in a meadow, representing sustainable agricultural practices

Table 6: Customized prompts for image descriptions used in ALive dataset.
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