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Abstract

Despite the significant improvements achieved
by large language models (LLMs) in English
reasoning tasks, these models continue to strug-
gle with multilingual reasoning. Recent stud-
ies leverage a full-parameter and two-stage
training paradigm to teach models to first un-
derstand non-English questions and then rea-
son. However, this method suffers from both
substantial computational resource computing
and catastrophic forgetting. The fundamental
cause is that, with the primary goal of enhanc-
ing multilingual comprehension, an excessive
number of irrelevant layers and parameters are
tuned during the first stage. Given our findings
that the representation learning of languages is
merely conducted in lower-level layers, we pro-
pose an efficient multilingual reasoning align-
ment approach that precisely identifies and fine-
tunes the layers responsible for handling mul-
tilingualism. Experimental results show that
our method, SLAM, only tunes 6 layers’ feed-
forward sub-layers including 6.5−8% of all pa-
rameters within 7B and 13B LLMs, achieving
superior average performance than all strong
baselines across 10 languages. Meanwhile,
SLAM only involves one training stage, reduc-
ing training time by 4.1− 11.9× compared to
the two-stage method1.

1 Introduction

Large language models (LLMs) (Touvron et al.,
2023; OpenAI, 2023) have demonstrated signifi-
cant advancements in reasoning abilities (Huang
and Chang, 2023). However, these improvements
are primarily focused on English, leading to in-
ferior performance in non-English scenarios, es-
pecially in low-resource languages (Chen et al.,
2023b). As the demand for deploying LLMs in mul-
tilingual environments increases (Qin et al., 2024),

* Corresponding author.
1The project will be available at: https://github.com/

fmm170/SLAM
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Figure 1: The comparison of QAlign with SLAM (Ours).
and denote the translation data and reasoning

data, respectively. Unlike the traditional two-stage train-
ing approach that fully trains all parameters, SLAM
selectively trains only the lower-level layers responsible
for multilingual comprehension in one stage.

recent years have witnessed a growing interest in
multilingual reasoning alignment, which aims to
bridge the gap between the non-English reasoning
abilities of LLMs and those in English (Chen et al.,
2023b; Zhu et al., 2024; She et al., 2024).

Early work (Chen et al., 2023b) along this line of
research directly fine-tunes models on multilingual
mathematical question-answer pairs synthesized
via machine translation. However, the reasoning
answers are too complex for accurate translation,
potentially compromising the performance of fine-
tuned models. Building upon this, Zhu et al. (2024)
introduce a two-stage learning strategy. It first
teaches models to comprehend multilingual inputs
by translating non-English questions into English
counterparts and then trains them with English-only
reasoning datasets to awaken their multilingual rea-
soning abilities.

Despite its effectiveness, notable limitations per-
sist with the two-stage framework. On the one
hand, during its training process, all parameters of
LLMs are tuned to facilitate multilingual reasoning
alignment, which consumes substantial computa-

https://github.com/fmm170/SLAM
https://github.com/fmm170/SLAM
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tional resources and hinders applying this method
in resource-constrained scenarios. Moreover, con-
ducting full-parameter training in the first training
stage can lead to catastrophic forgetting, destroying
the inherent reasoning abilities within LLMs. Thus
this method depends on the second training stage
to awaken the model’s reasoning abilities, seeming
necessary but inefficient.

When considering multilingual models, one
might think of capturing language-specific knowl-
edge in certain parts of these models. Tang et al.
(2024) has verified that only a small number of
parameters in LLMs are language-dependent. In
this work, we further confirm this viewpoint by ex-
amining neuron activations across different layers
of LLMs. We find that lower-level layers are more
involved in learning language-specific representa-
tions, which are then transformed into universal
representations in higher-level layers. This sug-
gests that it might be worth separating the learning
of language-specific and universal representations
in developing multilingual reasoning LLMs.

This work is motivated by a perspective of
parameter-efficient fine-tuning. In response to our
findings, we precisely identify and fine-tune the
multilingualism-handling layers with translation-
only data to achieve multilingual reasoning align-
ment in one stage. Our method, SLAM, first
calculates the mean squared deviation (MSD) of
the numbers of neurons activated by different lan-
guages and selects the layers with higher MSD
scores. Next, recognizing that feed-forward net-
works (FFN) store most of the multilingual knowl-
edge (Geva et al., 2021), SLAM achieves further
efficiency by only training FFN sub-layers within
the selected layers. Compared to the two-stage
method, SLAM significantly improves the effi-
ciency in terms of training data and computational
resources. Moreover, SLAM merely trains models
one time since freezing irrelevant parameters effec-
tively prevents the inherent reasoning abilities from
being destroyed, as illustrated by Figure 1.

Experimental results on two multilingual mathe-
matical reasoning benchmarks, MGSM (Shi et al.,
2023) and MSVAMP (Chen et al., 2023b), show
that SLAM outperforms strong baselines in both in-
domain and out-of-domain settings, with only 8%
and 6.5% of the parameters tuned in 7B and 13B
models, respectively. Furthermore, SLAM reduces
the training time by 4.1× and 11.9× compared to
the two-stage method. Moreover, SLAM can also
be generalized to multilingual common sense rea-

soning (Lin et al., 2021) and can leverage models
with advanced reasoning abilities to consistently
enhance multilingual reasoning performance.

2 Background

Point-wise feed-forward network. Multilingual
reasoning requires LLMs to integrate both multilin-
gual comprehension and reasoning abilities. Our
approach builds on the findings that factual knowl-
edge is stored in the model’s FFN sub-layers (Dai
et al., 2022; Meng et al., 2022). By directly inject-
ing language-specific knowledge into these FFN
sub-layers, we can enhance the multilingual com-
prehension abilities of LLMs. Typically, each layer
of Transformer-based LLMs is predominantly com-
posed of a multi-head self-attention (MHA) sub-
layer followed by an FFN sub-layer. Concretely,
let l denote the length of the input sentence. Given
the output xi ∈ Rl×dmodel from the MHA sub-layer
at the i-th layer, the computation within the FFN
sub-layer can be formulated as follows:

FFN(xi) = f(xi ·W i
up) ·W i

down, (1)

where W i
up ∈ Rdmodel×dinter , and W i

down ∈
Rdinter×dmodel are the mapping matrices. The dmodel
denotes the input dimension, dinter refers to the in-
termediate hidden dimension, and f(·) represents
a non-linear activation function.

Neuron activation. Recent work (Dai et al.,
2022; Mu et al., 2024) reveals that language-
specific neurons in the FFN sub-layers signifi-
cantly influence how LLMs process multilingual
languages. As a new variant of the activation func-
tion, SwiGLU (Shazeer, 2020) is widely used in
current LLMs (Touvron et al., 2023). Thus, Equa-
tion (1) can further be decomposed as follows:

FFN(xi) =
[
f(W i

gate(x
i))⊗W i

up(x
i)
]
·W i

down,
(2)

where W i
gate ∈ Rdmodel×dinter is the mapping met-

ric introduced by SwiGLU. A neuron is defined
as a single column in W i

up, thereby an FFN sub-
layer within one layer consists of dinter neurons. In
our work, a neuron in the i-th FFN sub-layer is
considered activated if the value of the element in
f(W i

gate(x
i)) exceeds zero (Tang et al., 2024).

3 Methodology

In this section, we start with a preliminary study
of examining neuron activations across different
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Figure 2: The number of activated neurons across all
languages. The count of activated neurons is normalized
by the total neurons within the FFN sub-layer.

layers during the multilingual reasoning process,
which motivates our approach to achieving efficient
multilingual reasoning alignment.

3.1 Preliminary Study
We examine neuron activations across different lay-
ers from two perspectives: (1) the number of neu-
rons activated by different languages, and (2) the
overlap ratio of activated neurons between non-
English languages and English. We first sample n
questions, each expressed in 10 different languages.
Let lang denote the language of the input sentence.
Subsequently, we calculate the count of activated
neurons for all samples of a language lang in the
i-th layer, as specified by the following equation:

Ai
lang = I[f(W i

gate(x
i)) > 0], (3)

where I is the indicator function. To provide a more
intuitive understanding of neuronal activation, we
normalize the count of activated neurons, as defined
by the following equation:

Ri
lang =

Ai
lang

dinter
. (4)

Then we compute the overlap ratio of activated neu-
rons between non-English languages and English.

The results presented in Figures 2, 3 show that
while the number of activated neurons across all
languages initially decreases and then stabilizes,
the neurons activated by non-English languages
and English progressively overlap and finally reach
a stable level. This indicates the existence of
language-specific layers, which are more involved
in learning language-specific representations. The
findings also align with the phenomenon found in
Zhao et al. (2024). Specifically, we define all layers
preceding the point at which the average overlap ra-
tio among all non-languages reaches its maximum
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Figure 3: The overlap between non-English and English
activated neurons. “AVG” denotes the average overlap
ratio among all non-English languages.

as language-specific layers, as shown in Figure 3.
Full visualization results of all layers are presented
in Figure 11 and Figure 12, respectively.

3.2 SLAM

In response to our findings, we formally introduce
a training method to efficiently achieve multilin-
gual reasoning alignment of LLMs in one stage.
The method consists of two steps: (1) Selecting
multilingualism-handling layers, and (2) Selec-
tively supervised fine-tuning.

Selecting multilingualism-handling layers. Di-
rectly fine-tuning the language-specific layers will
inevitably impair the model’s inherent reasoning
abilities, since reasoning abilities also persist in
these layers (Chen et al., 2023a). Therefore, we
design a layer selection algorithm to identify layers
that are more involved in multilingual comprehen-
sion, thereby effectively balancing understanding
and reasoning abilities. Consequently, we intro-
duce the mean squared deviation (MSD) to pre-
cisely measure the stabilization of neuron activa-
tion across different languages. For each layer i
within the language-specific layers denoted by K,
MSDi is defined by the following equations:

µi =
1

|L|
∑

lang∈L
Ri

lang, (5)

MSDi =
1

|L|
∑

lang∈L
(Ri

lang − µi)2, (6)

where L denotes all languages and Ri
lang is calcu-

lated using Equation (4). A higher MSDi indicates
the destabilization of neurons activated in different
languages, suggesting that the layer is more ac-
tively engaged in multilingual comprehension. The
average engagement in multilingual comprehen-
sion across language-specific layers is quantified
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Task Dataset Usage Lang Number

Multilingual
Mathematical

Reasoning

MGSM-I (Question) Training 10 57,817
MGSM-I (Answer) Training 10 65,968

MGSM In-Domain Test 10 2,500
MSVAMP Out-of-Domain Test 10 10,000

Common Sense
Reasoning

XCSQA-TEST Training 16 16,110
Flores-200-DEV Training 16 14,955
XCSQA-DEV Test 16 16,000

Table 1: Statistics of the involved datasets. “Lang” de-
notes the number of languages covered, and “Number”
denotes the total samples within each dataset. “MGSM-
I” stands for the MGSM8KINSTRUCT dataset.

by the following equation:

θ =
1

|K|
∑
i∈K

MSDi. (7)

We select the layers with MSDi exceeding thresh-
old θ for subsequent fine-tuning, as these layers
contribute most to multilingual comprehension
while minimally affecting reasoning abilities.

Selectively supervised fine-tuning. Since the
FFN sub-layers store the majority of the knowledge
(Geva et al., 2021; Dai et al., 2022), we achieve fur-
ther efficiency by only training the FFN sub-layers
within the multilingualism-handling layers utiliz-
ing X-English translation data. Given non-English
inputs Ilang and their English counterparts Ieng,
the optimization objective can be formulated as:

argmin
φ

∑
lang∈L\{English}

− log pφ(Ieng|Ilang),

(8)
where φ denotes the FFN of the selected layers.

4 Experiment Settings

4.1 Baseline Models
For a fair comparison, we compare SLAM with
the following strong baselines, all trained based on
Llama 2 (Touvron et al., 2023). Detailed statistics
of the training data for all baselines can be found
in the Appendix A.

MAmmoTH: Yue et al. (2024) collected diverse
instruction datasets on MATH and directly fine-
tuned the model on these datasets.

WizardMath: Luo et al. (2023) leveraged rein-
forcement learning to train the model on two math-
ematical reasoning datasets GSM8K and MATH.

MetaMath: Yu et al. (2023) first employed ques-
tion bootstrapping to create high-quality English
reasoning dataset METAMATHQA and then fine-
tuned the model on the dataset.

MathOctopus: Chen et al. (2023b) employed su-
pervised fine-tuning using MSGM8KINSTRUCT,
a multilingual reasoning dataset constructed by di-
rectly translating the data from GSM8K.

LangBridge: Yoon et al. (2024) introduced an
extra multilingual encoder and trained a linear layer
connecting this encoder to the LLM using English
data to enhance multilingual comprehension.

QAlign: Zhu et al. (2024) employed a two-stage
training strategy, where the model first learns to
translate non-English questions into English and
then unlocks multilingual reasoning abilities using
the English reasoning data METAMATHQA.

4.2 Experimental Details

We constructed X-English translation data from
MGSM8KINSTRUCT (Chen et al., 2023b) as train-
ing data. For MGSM (Shi et al., 2023) and
MSVAMP (Chen et al., 2023b), we trained only the
FFN within the first six layers of the model. Con-
sidering that QAlign and LangBridge are either
trained on METAMATHQA or built upon Meta-
Math, we implemented SLAM on the MetaMath
model to ensure a fair comparison. During infer-
ence, we adopted the settings from Yu et al. (2023).
For more details, please refer to Appendix A.

4.3 Evaluation Datasets

We utilized MGSM and MSVAMP as in-domain
and out-of-domain test sets to evaluate the multi-
lingual mathematical reasoning abilities of LLMs.
Data statistics are reported in Table 1.

4.4 Evaluation Metrics

Following Zhu et al. (2024), our evaluation primar-
ily focuses on two key dimensions: Accuracy and
Prediction Consistency Ratio.

Accuracy. Following Yu et al. (2023), accuracy
is calculated by comparing the last numerical value
in the response to the gold answer. Higher accuracy
indicates stronger reasoning ability.

Prediction Consistency Ratio (PCR). Assum-
ing M and N are sets of questions correctly an-
swered in English and non-English languages re-
spectively. PCR is calculated as: |M∩N |

|M | . Higher
PCR denotes the model’s non-English reasoning
ability is closer to its English reasoning ability.
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Model Training
Cost

Trained
Param. Bn Th Sw Ja Zh De Fr Ru Es En Avg.

7B Models

MAmmoTH† 2.7× 100.0% 3.6 4.8 2.4 10.8 17.2 33.2 32.8 26.0 32.4 49.6 21.3
WizardMath† 0.9× 100.0% 2.0 4.0 3.4 24.0 22.4 30.4 30.4 30.8 34.8 47.6 23.0
MetaMath† 3.5× 100.0% 7.6 5.6 5.2 34.0 45.2 54.0 56.8 51.6 58.8 65.5 38.4
MathOctopus† 0.8× 100.0% 28.8 34.4 39.2 36.0 38.4 44.8 43.6 39.6 42.4 52.4 40.0
QAlign† 4.1× 100.0% 32.4 39.6 40.4 44.0 48.4 54.8 56.8 52.4 59.6 68.0 49.6

+LoRA (r=256) 2.6× 8.7% 6.0 6.8 6.0 22.0 22.0 28.0 32.8 30.4 29.6 38.8 22.2

SLAM 1.0× 8.0% 32.0 44.0 40.0 46.0 48.4 54.0 55.2 54.8 56.8 64.8 49.6

13B Models

MAmmoTH† 7.3× 100.0% 3.6 5.2 1.6 19.2 31.2 45.6 39.6 36.8 50.0 56.4 28.9
WizardMath† 2.5× 100.0% 6.4 5.6 5.6 22.0 28.0 40.4 42.0 34.4 45.6 52.8 28.3
MetaMath† 10.0× 100.0% 12.4 11.2 6.4 42.0 46.0 64.0 62.4 61.6 64.8 68.4 43.9
MathOctopus† 2.0× 100.0% 35.2 46.8 42.8 43.2 48.8 44.4 48.4 47.6 48.0 53.2 45.8
QAlign† 11.9× 100.0% 38.4 49.6 46.0 52.4 59.2 62.0 62.4 64.4 67.2 69.2 57.1

+LoRA (r=256) 3.1× 7.1% 12.8 15.2 10.8 35.6 34.4 46.0 44.4 40.8 47.2 54.8 34.2

SLAM 1.0× 6.5% 45.6 47.6 46.4 54.0 58.8 62.8 65.2 64.4 67.6 71.2 58.3

Table 2: The accuracy (%) on the in-domain MGSM test sets. “Avg.” denotes the average multilingual performance
and the highest score among systems of the same size are highlighted in bold. “Training Cost” denotes the time
required for training models. “Trained Param.” indicates the proportion of trainable parameters to the model’s total
parameters. Results marked with † come from Zhu et al. (2024).

5 Experimental Results

5.1 Main Results

SLAM effectively achieves multilingual reason-
ing alignment. We present the results on MGSM
in Table 2, which demonstrates that SLAM outper-
forms all strong baselines in in-domain settings.
Specifically, SLAM achieves comparable perfor-
mance with QAlign in 7B models and surpasses
all baselines in 13B models, with an average ac-
curacy improvement of 2.1%. Notably, compared
to MetaMath, SLAM exhibits substantial improve-
ments, achieving increases of 29.2% and 32.8% in
the 7B and 13B models, by selectively fine-tuning
multilingualism-handling layers in MetaMath us-
ing translation data. Furthermore, as shown in Fig-
ure 7 (a), SLAM demonstrates higher answer con-
sistency. This highlights that directly enhancing
multilingual comprehension at specific lower-level
layers can effectively improve the multilingual rea-
soning abilities of LLMs.

SLAM shows significant out-of-domain gener-
alization. To further validate the generalization
ability of SLAM, we evaluate it on the out-of-
domain test sets, MSVAMP. As shown in Table 4,
SLAM demonstrates robust generalization com-
pared with all baselines, exhibiting an average ac-
curacy improvement of 5.8% and 0.2% in the 7B

Models Extra
Param.

Training
Cost MGSM MSVAMP

MetaMath-7B - 10.0× 38.4 46.2
+LB†-9B 2B 0.3× 48.8 52.0
+SLAM 0B 1.0× 49.6 60.5

MetaMath-13B - 10.0× 43.9 51.8
+LB†-20B 7B 0.3× 55.8 57.9
+SLAM 0B 1.0× 58.3 62.7

Table 3: The average accuracy of LangBridge 9B/20B
models on the MGSM and MSVAMP test sets. Results
marked with † come from Yoon et al. (2024).

and 13B models, respectively. Notably, SLAM-7B
shows substantial performance gains across all 10
languages. Moreover, as shown in Figure 7 (b),
SLAM also enhances answer consistency across
all non-English languages. This superior general-
ization is attributed to the modest number of train-
able parameters in SLAM. Unlike the baselines,
which undergo fine-tuning all parameters on the
in-domain dataset and potentially suffer from over-
fitting, SLAM only fine-tunes partial parameters,
significantly reducing the impact of domain shifts.

SLAM demonstrates superior efficiency.
Rather than fine-tuning all layers, SLAM selec-
tively trains layers responsible for multilingual
comprehension. As shown in Table 2 and Table 4,
SLAM fine-tunes only 8% and 6.5% of the
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Model Training
Cost

Trained
Param. Bn Th Sw Ja Zh De Fr Ru Es En Avg.

7B Models

MAmmoTH† 2.7× 100.0% 4.3 6.3 4.2 26.7 26.8 39.6 39.9 33.7 42.9 45.1 26.3
WizardMath† 0.9× 100.0% 16.1 17.0 10.3 37.9 36.3 39.2 37.7 37.4 44.8 48.5 32.5
MetaMath† 3.5× 100.0% 15.0 17.1 15.4 51.9 54.4 60.9 62.2 59.3 63.3 65.5 46.2
MathOctopus† 0.8× 100.0% 31.8 39.3 43.4 41.1 42.6 48.4 50.6 46.9 49.4 50.7 44.1
QAlign† 4.1× 100.0% 41.7 47.7 54.8 58.0 55.7 62.8 63.2 61.1 63.3 65.3 57.2

+LoRA (r=256) 2.6× 8.7% 19.3 20.1 15.1 33.0 32.7 46.2 47.3 41.9 47.2 51.4 35.4

SLAM 1.0× 8.0% 49.1 50.6 55.4 60.6 63.1 64.6 65.4 64.1 66.6 65.3 60.5

13B Models

MAmmoTH† 7.3× 100.0% 5.0 13.7 12.9 42.2 47.7 52.3 53.8 50.7 53.9 53.4 38.6
WizardMath† 2.5× 100.0% 13.7 16.3 12.5 29.5 37.0 48.7 49.4 43.8 49.4 56.3 35.7
MetaMath† 10.0× 100.0% 20.6 20.5 19.1 57.0 58.8 68.4 68.1 67.5 68.9 68.9 51.8
MathOctopus† 2.0× 100.0% 35.2 41.2 46.8 39.2 52.0 47.2 48.0 45.6 53.2 56.4 46.5
QAlign† 11.9× 100.0% 49.2 55.5 55.2 64.3 63.8 69.5 68.1 66.4 66.4 67.6 62.6

+LoRA (r=256) 3.1× 7.1% 30.2 34.8 24.2 49.3 54.6 59.7 60.4 57.0 59.5 63.0 49.3

SLAM 1.0× 6.5% 52.5 53.5 58.2 62.5 61.7 68.8 69.9 64.5 66.1 69.5 62.7

Table 4: The accuracy (%) on the out-of-domain MSVAMP test sets.

parameters in the 7B and 13B models, respectively.
Notably, compared with QAlign, SLAM reduces
training time by 4.1 × and 11.9 × in the 7B
and 13B models. These results suggest that
SLAM not only achieves effective performance in
multilingual reasoning but also exhibits superior
efficiency. Additionally, we also compare SLAM

with LangBridge (Yoon et al., 2024), which only
fine-tunes the linear layer that aligns the multilin-
gual encoder to the LLMs. As indicated in Table 3,
despite LangBridge having slightly less training
time, it underperforms in both in-domain and
out-of-domain multilingual reasoning performance
compared with SLAM. Furthermore, the additional
multilingual encoder in LangBridge increases its
parameters, thereby reducing its efficiency during
inference and increasing deployment costs.

5.2 Ablation Study

Training different layers. To evaluate the ne-
cessity of the layer selection training strategy, we
conduct ablation studies by training different layers.
As shown in Figure 4, the layers selected by SLAM

achieve the best performance both in-domain and
out-of-domain performance. Selecting an insuf-
ficient number of layers may lead to inadequate
multilingual comprehension, while excessive layer
selection will impair the model’s reasoning abili-
ties. This suggests that while the ability to handle
multilingualism is concentrated in lower-level lay-
ers, precisely selecting layers that are more actively
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Figure 4: The average accuracy of training different
layers. The x-axis, “End Training Layer” signifies that
model training encompasses all FFN sub-layers from
the first through to the specified layer. “R” denotes
randomly selected layers, and “A” denotes all layers.

engaged in multilingual comprehension is crucial
for effective multilingual reasoning alignment.

Training different sub-layers. To explore
the role of different sub-layers within the
multilingualism-handling layers, we conduct ab-
lation studies by training only the Attention sub-
layers, and both the Attention and FFN sub-layers,
utilizing X-English translation data. As shown
in Figure 5, training only the FFN sub-layers re-
sults in the highest average accuracy for both in-
domain and out-of-domain tests (For the results
of MSVAMP, refer to Appendix B). Specifically,
training only the FFN sub-layers leads to notable



9505

Bengali Thai Swahili Japanese Chinese German French Russian Spanish English Avg.
15.0

25.0

35.0

45.0

55.0

65.0

75.0

27.6

34.4

19.2

37.2

46.8

53.2
50.4 50.4

54.0

63.6

43.7

32.0

44.0
40.0

46.0
48.4

54.0 55.2 54.8
56.8

64.8

49.6

27.2

35.2 34.4
38.4

46.4

51.2 49.6 49.6 50.0

63.2

44.5

MGSM8K

Attention

MLP+Attention
MLP

A
cc

ur
ac

y
(%

)

Figure 5: The accuracy of training different sub-layers on MGSM8K test sets.

Model Sw Hi Ar Zh De En Avg.

Llama2-mono 22.1 31.9 31.7 52.3 58.4 77.6 45.6
+SLAM 27.1 36.1 36.3 54.6 59.9 77.7 48.6

Improvements +5.0 +4.2 +4.6 +2.3 +1.5 +0.1 +3.0

Table 5: The accuracy (%) on the XCSQA test sets.

Model
Training

Cost
Trained
Param.

MGSM8K MSVAMP
Non-En En Non-En En

RFT-7B 0.8× 100.0% 33.6 67.6 38.0 59.6
+SLAM 1.0× 6.7% 44.8 65.6 50.7 59.5

RFT-13B 2.6× 100.0% 38.0 75.2 45.5 66.3
+SLAM 1.0× 5.4% 54.5 72.0 56.0 65.5

Table 6: The accuracy (%) of RFT-MuggleMath 7B and
13B models on the MGSM and MSVAMP test sets. For
accuracy of all languages, refer to Appendix D.

improvements in low-resource languages, such as
Bengali, Thai, and Swahili. This indicates that
models can utilize the multilingual knowledge
within the FFN sub-layers to enhance the compre-
hension of multilingual questions.

6 Analysis

6.1 Scalability of SLAM in Multilingual
Common Sense Reasoning

To evaluate the scalability of SLAM, we extend our
method to Multilingual Common Sense Reasoning
(XCSQA) (Lin et al., 2021). More experimental
details and results can be found in Appendix C. We
observe that SLAM improves accuracy across all
languages. Notably, as shown in Table 5, SLAM

achieves significant improvements for low-resource
languages such as Swahili, Hindi, and Arabic, with
increases of 22.6%, 13.2%, and 14.5%, respec-
tively. The results demonstrate that our method
can be effectively adapted to other multilingual
reasoning tasks. This also suggests that the multi-
lingual reasoning process can be decomposed into
comprehend-then-reason patterns across layers.
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Figure 6: The comparison of the overlap ratio between
non-English languages and English activated neurons in
the MetaMath-7B model, before and after training.

6.2 Extending SLAM to Other Strong
Reasoning Models.

We extend our method to the RFT-MuggleMath
models (Li et al., 2024), which possess stronger
reasoning abilities. As shown in Table 6, SLAM

achieves significant in-domain and out-of-domain
improvements, with increases of 33.3% in the aver-
age accuracy for non-English languages in both the
7B and 13B models, while tuning only 6.7% and
5.4% of parameters, respectively. This suggests
that when the models possess stronger English rea-
soning abilities, it provides an advantageous start-
ing point for SLAM, which leads to significant
improvements in multilingual reasoning alignment.

6.3 Comparison of Neuron Activation Before
and After Training

To facilitate comparisons, we compute the average
overlap ratio across all non-English languages to
represent the overlap at that layer. As shown in Fig-
ure 6, the overlap ratio increases significantly after
training (The comparison results of MetaMath-13B,
refer to Appendix E). This demonstrates that en-
hancing the overlap of activated neurons between
non-English languages and English at lower-level
layers can improve the model’s comprehension of
multilingual questions, thereby achieving better



9506

Bengali

Thai

Chinese German

Swahili Russian

Spanish

FrenchJapanese

0

10

20

30

40

50

60

70

80

90

Bengali

Thai

Chinese German

Swahili Russian

Spanish

FrenchJapanese

0

10

20

30

40

50

60

70

80

90

SLAM QAlign MathOctopus MetaMath

(a) MGSM8K (b) MSVAMP

Figure 7: PCR results across various systems on the MGSM8K and MSVAMP test sets.

multilingual reasoning alignment. We also visual-
ize the representations of the final token of multi-
lingual questions, as it is crucial for the model’s
subsequent reasoning (Wendler et al., 2024). As
shown in Figure 10, the semantic space becomes
more unified after training, thereby facilitating the
sharing of abilities across languages.

7 Related Work

7.1 Multilingual Mathematical Reasoning

Significant performance discrepancies in LLM rea-
soning between high-resource and low-resource
languages have spurred research aimed at align-
ing their multilingual reasoning abilities. Early
efforts (Chen et al., 2023b; Lai and Nissim, 2024)
directly fine-tune models on multilingual mathe-
matical reasoning data generated via machine trans-
lation. Another line of research concentrates on
leveraging additional components during training.
These works either utilize a multilingual encoder
(Yoon et al., 2024; Huang et al., 2024b) to facili-
tate cross-lingual transfer or employ an additional
translation model to construct preference signals
for preference optimization (She et al., 2024). Re-
cent work (Zhu et al., 2024) proposes a two-stage
approach where the model is first learned to trans-
late non-English questions into English for multi-
lingual comprehension and then trained on English
reasoning data to enhance multilingual reasoning
abilities. In contrast, our study particularly focuses
on achieving efficient multilingual reasoning align-
ment, a perspective that remains under-explored.
We precisely fine-tune lower-level layers that are
responsible for learning language-specific represen-
tations and leverage the model’s inherent reasoning
ability to facilitate multilingual reasoning align-
ment. This ensures superior efficiency in one stage

without the need for two-stage full parameters train-
ing or introducing additional components.

7.2 Mechanism of Multilingual Language
Processing in LLMs

Recently, multilingual LLMs have garnered signifi-
cant attention. Numerous studies attempt to explore
the mechanism of LLMs in processing multiple lan-
guages. Recent research (Chen et al., 2023a; Zhao
et al., 2024) reveals that both lower and upper lay-
ers of multilingual LLMs are language-dependent.
The lower layers are designed to convert inputs
from various languages into a high-resource lan-
guage (e.g., English), while the upper layers per-
form the reverse function. Additionally, further
studies (Tang et al., 2024; Mu et al., 2024) highlight
that the proficiency of LLMs in comprehending a
particular language is significantly influenced by
a small subset of language-specific neurons. De-
spite their limited number, these neurons play a
crucial role in bolstering the multilingual under-
standing abilities in LLMs. Aligning with this line
of research, SLAM further reveals that specific lay-
ers are dedicated to handling multilingualism, as
evidenced by neuron activation patterns. This ad-
vancement significantly deepens the understanding
of the multilingual mechanisms in LLMs.

8 Conclusion

In this paper, we propose SLAM for efficiently
achieving multilingual reasoning alignment in
LLMs. Inspired by neuron activations in language
abilities, we develop an approach to precisely iden-
tify the layers mostly engaging in multilingual com-
prehension during multilingual reasoning. After
that, we fine-tune the FFN sub-layers within the
selected layer to enhance the multilingual under-
standing abilities of LLMs. This enables achiev-



9507

ing multilingual reasoning alignment in one stage
without compromising LLMs’ inherent reasoning
abilities. The experimental results on multilingual
mathematical reasoning demonstrate the effective-
ness and superior efficiency of SLAM. Further
analysis reveals that SLAM exhibits significant out-
of-domain generalization and can be effectively
adapted to other multilingual reasoning tasks.

Limitations

Our work presents several limitations worth not-
ing. First, to ensure a fair comparison with base-
line models, our method primarily conducts ex-
periments using the Llama2 series models. Fu-
ture work will involve extending our experiments
to additional series models to more comprehen-
sively evaluate the generalizability of our method
across diverse baseline models. Second, while our
method achieves substantial advantages in aver-
age accuracy on both in-domain and out-of-domain
test sets, the degrees of alignment across different
languages result in performance trade-offs. We
hypothesize that this issue may be due to the im-
balanced data among languages in the X-English
translation dataset. In the future, we will conduct
an in-depth analysis of this phenomenon.
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A Experimental Details of Multilingual
Mathematical Reasoning Task

A.1 Training Details
We utilize LLaMA-Factory2 as our training
framework. The training is conducted on the
MGSM8KINSTRUCT training dataset. Due to the
complexity of mathematical reasoning questions
(Guo et al., 2024), hallucinations (Huang et al.,
2024a) may arise during the translation process,
leading to errors in the training data, such as re-
peated translations. To address this issue, we con-
duct data quality filtering. This process yields
57,817 question translations and 65,968 answer
translations. All models are trained using NVIDIA
A800 GPUs. All models are trained for 4 epochs
with a batch size of 512, and the learning rate is
set to 2e-5. We set the maximum token length
to be 1024. We use Deepspeed stage 2 (Rajbhan-
dari et al., 2020) to conduct multi-GPU distributed
training, with training precision Bfloat16 enabled.

A.2 Training Prompts
As shown in Table 7, we adopt the training
prompt from Xu et al. (2023). In the tem-
plate, {source_lang} can be replaced with any of
the following languages: Bengali, Thai, Swahili,
Japanese, Chinese, German, French, Russian, and
Spanish. The placeholder {source sentence} is sub-
stituted with the multilingual mathematical reason-
ing question (or answer), and {English sentence} is
replaced with the corresponding English question
(or answer) that conveys the same meaning.

A.3 Evaluation Details
During inference, we use greedy decoding to en-
sure the determinism of the outputs and set the
maximum generation length to 512. We adopt the
inference prompt from Yu et al. (2023). The evalu-
ation prompt for both the MGSM and MSVAMP
test sets is shown in Table 8.

A.4 The Training Data of All Baselines
The number of training samples used for all base-
lines is presented in Table 13.

B The results of training different
sub-layers on MSVAMP test sets

The accuracy of training only the Attention sub-
layers, and both the Attention and FFN sub-layers
on MSVAMP is shown in Figure 8.

2https://github.com/hiyouga/LLaMA-Factory

C Experimental Details of Multilingual
Common Sense Reasoning Task

C.1 Training Details

Initially, we fine-tune the Llama2-7B base model
using the English instruction dataset XCSQA-
TRAIN to equip the model with fundamental En-
glish common sense reasoning abilities. The result-
ing model is named Llama2-mono. Following Zhu
et al. (2024), we use the XCSQA-TEST datasets
to construct the X-English translation data for fine-
tuning. During the training process of SLAM, we
use the same layer selection approach to select the
first four layers of the model as multilingualism-
handling layers in XCSQA. Subsequently, SLAM

trains only the FFN sub-layers within the selected
layers of the model to achieve multilingual reason-
ing alignment. All models are trained for 3 epochs
using NVIDIA A800 GPUs. The learning rate is
set to 2e-5, with a total batch size of 512 and a
maximum input length of 512.

C.2 Training Prompts

We use the training prompt shown in Table 7. In the
template, {source_lang} can be replaced with any
of the following languages: Arabic, German, Span-
ish, French, Hindi, Italian, Japanese, Dutch, Polish,
Portuguese, Russian, Swahili, Urdu, Vietnamese,
and Chinese. The placeholder {source sentence}
is substituted with the multilingual common sense
reasoning question, and {English sentence} is re-
placed with the corresponding English question
that conveys the same meaning.

C.3 Evaluation Details

Following Zhu et al. (2024), we employ XCSQA-
DEV for evaluation. During the evaluation, we cal-
culate accuracy by comparing the last label within
brackets in the LLM-generated response with the
gold answer. Specifically, we use greedy decoding
to ensure the determinism of the outputs and set the
maximum generation length to 512. The evaluation
prompt is shown in Table 9.

C.4 Languages Included in XCSQA

The XCSQA test sets include 15 non-English lan-
guages: Arabic, German, Spanish, French, Hindi,
Italian, Japanese, Dutch, Polish, Portuguese, Rus-
sian, Swahili, Urdu, Vietnamese, and Chinese. The
abbreviations for these languages are as follows: ar,
de, es, fr, hi, it, ja, nl, pl, pt, ru, sw, ur, vi, and zh.

https://github.com/hiyouga/LLaMA-Factory
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Training Prompt Translate this from [{source_lang}] to [English]:\n[{source_lang}]:
{source sentence}\n[English]: {English sentence}

Table 7: The prompt used to train the FFN sub-layers within the multilingualism-handling layers.

Bengali Thai Swahili Japanese Chinese German French Russian Spanish English Avg.
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Figure 8: The accuracy (%) of training different sub-layers on MSVAMP test sets.

C.5 Scores for All Languages

Table 10 presents the scores for all 16 languages
on the XCSQA test sets.

D Scores Across All Languages for the
RFT-MuggleMath Model

Consistent with using MetaMath as the base model,
we apply the identical layer selection approach and
settings for the RFT-MuggleMath model. For more
details on the overlap between non-English and
English activated neurons, and the number of ac-
tivated neurons during the layer selection process,
we present the results of all layers in Figure 13 and
Figure 14, respectively. Specifically, we select the
first five layers of the RFT-MuggleMath models
as multilingualism-handling layers. Tables 11 and
Tables 12 present the accuracy for all languages on
MGSM8K and MSVAMP test sets, respectively.

E Comparison of neuron activation
before and after training of SLAM-13B

We present the comparison results in Figure 9.
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Figure 9: The comparison of the overlap ratio in the
MetaMath-13B model, before and after training.

Model Lang Number

MAmmoTH (Yue et al., 2024) 1 262,039
WizardMath (Luo et al., 2023) 1 96,000
MetaMath (Yu et al., 2023) 1 395,000
MathOctopus (Chen et al., 2023b) 10 73,559
QAlign (Zhu et al., 2024) 10 468,559

Table 13: “Lang” denotes the number of languages
covered, and “Number” denotes the total samples used
to train the models.
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Inference Prompt
Below is an instruction that describes a task.\n Write a response that ap-
propriately completes the request.\n\n### Instruction:\n{query}\n\n###
Response: Let’s think step by step.

Table 8: Prompt utilized to evaluate the model on the MGSM and MSVAMP test sets.

Inference Prompt
Below is an instruction that describes a task.\n Write a response that ap-
propriately completes the request.\n\n### Instruction:\n{query}\n\n###
Response:

Table 9: Prompt utilized to evaluate the model on the XCSQA test sets.

Model Ar De Es Fr Hi It Ja Nl Pl Pt Ru Sw Ur Vi Zh En Avg.

Llama2-mono 31.7 58.4 63.6 58.3 31.9 58.7 49.8 55.4 53.4 60.7 55.7 22.1 25.4 47.4 52.3 77.6 50.1
+SLAM 36.3 59.9 63.8 59.4 36.1 59.4 52.3 57.7 55.2 61.4 56.6 27.1 27.8 49.8 54.6 77.7 52.1

Improvements +4.6 +1.5 +0.2 +1.1 +4.2 +0.7 +2.5 +2.3 +1.8 +0.7 +0.9 +5.0 +2.4 +2.4 +2.3 +0.1 2.0

Table 10: The accuracy (%) for all languages on the XCSQA test sets.

Model
Training

Cost
Trained
Param. Bn Th Sw Ja Zh De Fr Ru Es En Avg.

7B Models

RFT 0.8× 100.0% 4.4 6.0 4.0 34.4 38.4 56.0 56.0 48.4 54.8 67.6 37.0

RFT+SLAM 1.0× 6.7% 27.6 30.0 33.6 41.6 42.0 60.4 55.2 53.2 60.0 65.6 46.9

13B Models

RFT 2.6× 100.0% 11.2 5.2 7.2 48.8 50.8 63.2 66.8 64.8 67.6 75.2 46.0

RFT+SLAM 1.0× 5.4% 42.0 41.6 42.4 54.0 51.6 61.2 68.0 61.2 68.8 72.0 56.3

Table 11: The accuracy (%) on the in-domain MGSM8K test sets of RFT-MuggleMath models.

Model
Training

Cost
Trained
Param. Bn Th Sw Ja Zh De Fr Ru Es En Avg.

7B Models

RFT 0.8× 100.0% 14.0 12.5 9.9 44.2 46.4 53.5 56.1 46.7 59.1 59.6 40.2

RFT+SLAM 1.0× 6.7% 40.6 44.2 44.7 51.4 50.2 56.8 58.3 50.3 59.6 59.5 51.6

13B Models

RFT 2.6× 100.0% 20.2 20.7 14.8 55.7 52.8 62.3 62.7 59.2 61.8 66.3 47.6

RFT+SLAM 1.0× 5.4% 45.3 46.9 50.3 58.5 56.1 61.7 61.8 60.7 62.5 65.5 56.9

Table 12: The accuracy (%) on the out-of-domain MSVAMP test sets of RFT-MuggleMath models.
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Figure 10: The visualization of the final token representations from multilingual questions is performed using T-SNE
for dimension reduction. The distributions in MetaMath-7B at the 1th, 12th, 22th, and 32th layers are compared
before and after training. Different colors represent different languages.
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Figure 11: The overlap between non-English and English activated neurons and the normalized number of activated
neurons across all languages in the MetaMath-7B model.
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Figure 12: The overlap between non-English and English activated neurons and the normalized number of activated
neurons across all languages in the MetaMath-13B model.
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Figure 13: The overlap between non-English and English activated neurons and the normalized number of activated
neurons across all languages in the RFT-MuggleMath-7B model.
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Figure 14: The overlap between non-English and English activated neurons and the normalized number of activated
neurons across all languages in the RFT-MuggleMath-13B model.
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