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Abstract

The Mixture-of-Experts (MoE) architecture has
demonstrated significant potential in both large-
scale pre-training and instruction tuning by of-
fering increased parameter capacity without
additional inference costs. However, devel-
oping MoE models faces challenges includ-
ing training instability and the need for sub-
stantial high-quality training data. While effi-
cient methodologies like sparse upcycling ex-
ist, they often lead to performance degrada-
tion in instruction tuning scenarios. We intro-
duce representation-based sparse upcycling, a
straightforward yet effective technique for con-
verting dense language models into sparsely
activated ones while maintaining similar com-
putational costs. Unlike conventional sparse
upcycling, our approach leverages intermedi-
ate representations from language models to
initialize router weights. This strategy ad-
dresses the mismatch between randomly ini-
tialized and well-trained parameters while pro-
viding prior knowledge to guide expert special-
ization during training. Extensive experiments
across diverse benchmarks demonstrate signifi-
cant improvements in both model capabilities
and routing consistency compared to existing
approaches.

1 Introduction

Instruction tuning (Wei et al., 2022) has emerged
as a pivotal technique for enhancing language mod-
els’ capabilities by fine-tuning them on instruction-
annotated datasets. Large Language Models
(LLMs) that undergo instruction tuning demon-
strate superior downstream performance on held-
out tasks in both zero-shot and few-shot set-
tings (Ouyang et al., 2022). Recent research indi-
cates that increasing the diversity and quality of in-
struction tuning data yields substantially more sig-
nificant improvements compared to merely expand-
ing data quantity (Zhou et al., 2023a). Contempo-
rary studies have focused on curating high-quality

datasets through prompting advanced LLMs such
as ChatGPT and GPT-4, subsequently training
smaller models to emulate their reasoning and
problem-solving processes (Wang et al., 2023b; Xu
et al., 2024; Mukherjee et al., 2023). However, a
substantial performance disparity persists between
models of varying sizes. Smaller language mod-
els consistently encounter difficulties in complex
reasoning scenarios, such as solving mathematical
competition problems, primarily due to their lim-
ited parameter capacity constraining their achiev-
able capabilities.

The Mixture-of-Experts (MoE) architec-
ture (Shazeer et al., 2017) offers a promising
solution by partitioning parameters into expert
subsets and selectively activating only a fraction of
these experts for each input during both training
and inference. This architectural innovation
enables MoE models to incorporate vast parameter
counts while maintaining moderate computational
requirements, frequently demonstrating superior
capabilities compared to dense models with
comparable inference costs (Fedus et al., 2022b;
Du et al., 2022; Jiang et al., 2024). Nevertheless,
MoE models commonly exhibit training instabili-
ties (Fedus et al., 2022b; Du et al., 2022; Zoph
et al., 2022), necessitating various mitigation
techniques. However, validating these techniques
on large-scale language models demands sub-
stantial computational resources. Consequently,
constructing MoE models from pre-trained
dense models presents a more resource-efficient
alternative to training from scratch.

Komatsuzaki et al. (2023) introduced sparse
upcycling, a methodology for converting existing
dense models into larger, sparsely activated models
by replicating MLP layers and randomly initial-
izing router weights. While upcycled T5 (Raffel
et al., 2020) models demonstrated performance im-
provements through continued pre-training, these
gains diminished as base model size increased.
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Moreover, when applying limited additional train-
ing, the original and upcycled models exhibited
comparable performance. The homogeneity of
replicated MLPs and randomly initialized routers
impedes optimal training outcomes.

To address these limitations, we propose a
representation-based sparse upcycling method.
Based on our observation that internal represen-
tations of tokens from specific tasks tend to form
distinct clusters within high-dimensional represen-
tation spaces in well-trained language models, we
conceptualize expert routing behavior as a match-
ing process between expert representations within
the router and task- or context-aware token rep-
resentations. This insight emphasizes the critical
role of router weight initialization. By initializing
routers with abstracted internal representations, we
guide experts to focus on specific, semantically
related, or task-related tokens, significantly mitigat-
ing random routing and training instability issues
while facilitating expert specialization.

We validate our approach through comprehen-
sive instruction tuning experiments, demonstrating
superior downstream task performance and consis-
tent routing behaviors.

We summarize our contributions as follows:

• We propose a novel representation-based
sparse upcycling approach that improves upon
existing sparse upcycling methods by initializ-
ing router weights with task or context-aware
representations, thereby reducing training in-
stability and enhancing expert specialization.

• We empirically demonstrate that intermediate
representations in well-trained dense models
exhibit inherent clustering tendencies, which
we leverage to facilitate efficient expert rout-
ing in sparse models.

• We validate the effectiveness of our approach
through extensive instruction tuning experi-
ments across diverse benchmarks, showing
significant improvements in downstream task
performance and routing consistency.

Code will be available at https://github.
com/icip-cas/sparse-upcycling.

2 Related Work

2.1 Mixture-of-Experts
Mixture-of-Experts (MoE) are a variant of sparse
expert models, in which a part of the parameters

are partitioned into individual experts (Fedus et al.,
2022a). During both training and inference, only a
subset of these experts is selectively activated based
on the input features. This selective activation al-
lows each expert to specialize in specific tasks, sig-
nificantly boosting performance metrics across a va-
riety of applications. By assigning particular tasks
to the most suitable experts, the model effectively
harnesses their specialized knowledge, leading to
substantial improvements in performance.

Shazeer et al. (2017) applies MoE layers be-
tween stacked LSTM layers (Hochreiter and
Schmidhuber, 1997), resulting in the creation of the
largest model at that time, which achieves state-of-
the-art performance on language modeling and ma-
chine translation. Subsequent research has focused
on unleashing the potential of the Transformer ar-
chitecture (Vaswani et al., 2017) and achieve sub-
stantial advancements on both language and vision
tasks (Lepikhin et al., 2021; Fedus et al., 2022b;
Jiang et al., 2024; Ruiz et al., 2021; Wu et al., 2022;
Puigcerver et al., 2023).

Nonetheless, much of the existing work has con-
centrated on training sparse models from scratch,
with training stability emerging as a major research
focus. Zoph et al. (2022) conducts a large-scale
stability study of sparse models, investigating how
factors such as multiplicative interactions, noise
injection during training, auxiliary router loss, and
training precision contribute to improving model
stability. Dai et al. (2022) identified the routing
fluctuation problem in previous MoE methods and
proposed a balanced and cohesive routing strategy
to address this issue.

Sparse Upcycling (Komatsuzaki et al., 2023),
outlines a methodology for transitioning from a
well-trained dense model to a sparse model, rather
than to a larger dense model. This technique
leverages the additional capacity provided by in-
creased parameters while maintaining inference
costs through computational sparsity. We adopt
this approach to create sparsely activated models
in our research.

2.2 Instruction Tuning
Instruction tuning (Wei et al., 2022) involves fine-
tuning pre-trained language models on datasets
comprising instruction-output pairs. This process
enhances the models’ ability to understand and ex-
ecute human instructions effectively.

The success of instruction tuning largely de-
pends on the creation of high-quality datasets. Both

https://github.com/icip-cas/sparse-upcycling
https://github.com/icip-cas/sparse-upcycling
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manually annotated data (Ouyang et al., 2022)
and synthetically generated data through distilla-
tion (Wang et al., 2023b; Taori et al., 2023) are
employed to boost language models’ performance
in areas such as general reasoning (Xu et al., 2024),
code generation (Luo et al., 2023b; Wei et al., 2024;
Yu et al., 2024b), and mathematical problem solv-
ing (Luo et al., 2023a; Yu et al., 2024a; Yue et al.,
2024a,b).

Research into efficient and effective instruction
tuning techniques is an important complementary
direction. NEFTune (Jain et al., 2024) enhances
the conversational capabilities of instruction-tuned
models by fine-tuning with noisy embeddings.
LoRA (Hu et al., 2022), along with its sparse varia-
tions (Wu et al., 2024b; Gou et al., 2024; Wu et al.,
2024a), focuses on adapting language models to
downstream tasks by optimizing only a subset of
parameters, thus minimizing performance loss.

3 Preliminary

3.1 Sparsely Activated Mixture-of-Experts

In Transformer based MoE models, a prevalent ap-
proach involves substituting the Feed-Forward Net-
works (FFNs) within certain Transformer blocks
with specialized experts, which are collections of
inherently independent FFNs. Additionally, a rout-
ing network is incorporated to allocate the appro-
priate experts for each input feature.

In this work, we primarily focus on Top-k rout-
ing (Shazeer et al., 2017; Fedus et al., 2022b; Du
et al., 2022). The router takes a token represen-
tation as input and routes it to the best k experts,
selected from a set of N experts {E}Ni=1. Specifi-
cally, the router weights, Wr ∈ RN×d, where each
row ri ∈ Rd represents an expert embedding, pro-
duce logits r(x) = Wr · x. The logits are then
normalized via the softmax function, yielding a
distribution over the experts,

pi(x) =
er(x)i∑N
j er(x)j

. (1)

The input then selects the k experts with high-
est probabilities, where the indices of the selected
experts constitute a set K. The output of the MoE
layer is computed as a linear combination of the
output of the selected experts,

y =
∑
i∈K

pi(x)Ei(x). (2)

3.2 Specialization

Sparse Models Expert specialization within
MoE models is critical for fostering diversity
among the experts. This diversity is essential be-
cause if all experts converge towards homogeneity,
the MoE model effectively becomes a conventional
dense model, thereby diminishing its intended ben-
efits. The phenomenon known as representation
collapse, where experts fail to maintain distinct
knowledge or skills, poses a significant challenge
to the effectiveness of sparse MoE models. Chi
et al. (2022) provides a theoretical examination of
this issue, suggesting that addressing representa-
tion collapse can lead to substantial performance
improvements across various tasks.

The significance of expert specialization is fur-
ther underscored by empirical observations across
numerous studies. For instance, research by Lewis
et al. (2021) demonstrates that the assignment of
inputs to experts is influenced by local syntactic in-
formation, indicating a form of specialization based
on the nature of the input data. Moreover, in the
context of sparse encoder-decoder Transformers,
Zoph et al. (2022) observed distinct specializations
among encoder experts, with certain experts focus-
ing predominantly on specific linguistic elements
such as punctuation, verbs, proper nouns, and nu-
merical data. This specialization is not limited to
linguistic tasks. In multimodal MoE models, both
modality-specific and multimodal experts exhibit
specialization, effectively enhancing the model’s
performance across diverse datasets and tasks, as
illustrated by Mustafa et al. (2022).

Dense Models We perform an empirical analy-
sis on the inherent domain specialization of dense
language models. In particular, we are interested
whether there exists a fascinating pattern regarding
the layer-wise representation of data points from
specific domains (e.g. code, mathematics, etc.).
We sample 1, 000 textual examples each from gen-
eral reasoning datasets, code generation datasets,
and mathematical reasoning datasets. Layer-wise
representations before and after FFNs generated by
language models are taken into consideration, and
subsequently projected using Uniform Manifold
Approximation and Projection (UMAP) (McInnes
et al., 2020) for spatial structure visualization in
hyperbolic space. Figure 1 shows that, for both
Llama 2 7B (Touvron et al., 2023) and Llama 3
8B (Dubey et al., 2024), the internal representation
of the models originating from homogeneous do-
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(a) Llama 2 7B, layer 0. (b) Llama 2 7B, layer 15. (c) Llama 2 7B, layer 31.

(d) Llama 3 8B, layer 0. (e) Llama 3 8B, layer 15. (f) Llama 3 8B, layer 31.

Figure 1: Representations generated by the self-attention modules of Llama 2 7B and Llama 3 8B model. Red, blue,
and green points are samples from datasets specialized in text, code, and math, respectively.

mains tend to aggregate into distinct clusters within
high-dimensional space.

4 Methodology

This section presents our novel approaches for
transforming dense language models into sparse
architectures. We introduce two distinct methodolo-
gies: task-representation based sparse upcycling
(TRSU), and context-representation based sparse
upcycling (CRSU). Following the transformation,
all models undergo instruction tuning to ensure
alignment with target tasks.

4.1 Problem Formulation
Our preliminary experiments revealed that sparse
upcycled MoE models frequently underperform
compared to their dense counterparts on down-
stream tasks when instruction-tuned on datasets
ranging from thousands to millions of instances.
This observation is particularly noteworthy given
that sparse upcycled models and dense models pos-
sess equivalent capabilities prior to training. While
Komatsuzaki et al. (2023) demonstrated that upcy-
cled models exhibit performance advantages after
training on large-scale datasets such as C4 (Raffel
et al., 2020), we hypothesize that limited training
data constrains the sparse models’ ability to de-
velop effective and consistent routing behavior.

The random initialization of router weights re-
sults in a highly entropic initial state during train-

ing, leading to limited and potentially noisy knowl-
edge acquisition by each expert. Therefore, provid-
ing a priori guidance for routing behavior becomes
crucial, serving as an entropy reduction mechanism
to ensure more consistent and robust performance
during subsequent training and inference phases.

4.2 Task Aware Sparse Upcycling

Contemporary large language models demonstrate
proficiency across a spectrum of tasks, from basic
to complex. We focus on scenarios where models
undergo instruction tuning on diverse task sets to
function as effective assistants.

Given a set of tasks T = {ti}Ti=1, our objective
is to upcycle a language model of limited size to
a sparse architecture with T experts. To mitigate
the inherent randomness in sparse model training
and provide task-oriented guidance for each expert
– specifically, designating each expert to primarily
handle tokens with high representation similarity –
we heuristically employ representative task repre-
sentations as the initialization parameters for router
weights.

As demonstrated in Section 3.2, the internal rep-
resentations generated by language models from
high-quality task data naturally cluster within high-
dimensional space. These representations interact
with expert representations within the routers to
determine routing behavior. We leverage this phe-
nomenon by: (1) Sampling representative task data;
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(2) Clustering the generated attention representa-
tions; (3) Utilizing resulting vectors as initialization
parameters for specific experts. This approach fa-
cilitates matching task-relevant data to correspond-
ing experts while delegating task-irrelevant data to
alternative experts.

4.3 Context Aware Sparse Upcycling
While the task-aware approach represents an ad-
vancement over conventional sparse upcycling, it
presents certain limitations: (1) The number of ex-
perts is constrained to match the number of tasks;
(2) The clustering of task data representations relies
on empirical observation rather than rigorous the-
oretical foundation; (3) As task quantity increases
or task boundaries become less distinct, clusters
may overlap, potentially compromising routing ef-
fectiveness.

To enhance practical applicability, we propose
a more generalized methodology. Given a dataset
consisting single or multiple tasks, we sample a
representative subset of the data and perform clus-
tering on their representations generated by lan-
guage models in high-dimensional space, using a
pre-defined number K (e.g., via K-means cluster-
ing (MacQueen et al., 1967)). This process yields
K representative directions within the contextual
embedding space, which are then assigned to K ex-
perts as initial router representations.This approach
removes the constraint on expert quantity imposed
by the task-aware method. The resulting vectors
may represent more general token categories be-
yond task-specific representations, such as numeri-
cal text, code, or punctuation, aligning with obser-
vations by Zoph et al. (2022).

4.4 Design Decisions
MoE models share several significant configura-
tions, including router type, number of sparse lay-
ers, number of experts per layer, number of experts
to activate, etc., which exert influence on computa-
tion budget, model size, and model performance.

Router type We mainly focus on the classic
switch routing (Top-1 routing) (Fedus et al., 2022b).
Despite the augmentation of total parameters, the
MoE layer exhibits comparable computational effi-
ciency to dense ones.

Number of sparse layers Incorporating more
sparse layers is benefit to enhance the capacity of
models, albeit with a concomitant escalation in
computational and resource expenditure. Owing

to the recent success of Mixtral (Jiang et al., 2024)
and DeepSeekMoE (Dai et al., 2024), we transform
all transformer layers into sparse ones.

Load balance Following Fedus et al. (2022b),
we adopt a differentiable load balancing loss to en-
courage uniform routing over experts. Specifically,
given N experts and a batch of B × L tokens, the
auxiliary loss is computed as the inner product of
vectors f and P ,

loss = α ·N ·
N∑
i=1

fi · Pi (3)

where fi is the fraction of the tokens dispatched
to expert i, and Pi is the fraction of the router
probability allocated for expert i,

fi =
1

L

∑
x∈B

1{argmaxp(x) = i}

Pi =
1

L

∑
x∈B

pi(x)

(4)

a hyper-parameter α is a multiplicative coeffi-
cient for the load balancing loss.

5 Experiments

This section elucidates our exploration of lan-
guage model sparsity through several method-
ologies. We employ three distinct approaches
to transform dense language models into their
sparse counterparts: sparse upcycling (SU), task-
representation based sparse upcycling (TRSU),
and context-representation based sparse upcycling
(CRSU). Subsequently, all models, both dense and
sparse, undergo instruction tuning to ensure align-
ment. We then conduct comprehensive evaluations
to assess and compare the performance and charac-
teristics of these models.

5.1 Experimental Setup

5.1.1 Training Datasets
We evaluate TRSU’s effectiveness through a com-
prehensive multi-task learning framework. We fo-
cus on three fundamental domains: natural lan-
guage (text), programming (code), and mathemati-
cal reasoning (math), following Ding et al. (2024).
While these domains are essential for demonstrat-
ing the capabilities of LLMs, their integration into
a unified model presents significant challenges.
The training process leverages a curated dataset
from established open-source resources: OpenOrca
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Model Size
MMLU HellaSwag HumanEval MBPP GSM8K MATH Average
Acc (%) Acc (%) Pass@1 (%) Pass@1 (%) Acc (%) Acc (%) (%)

Danube 2
1.8B 39.7 70.9 34.5 30.2 49.2 13.7 39.7
2×1.8BSU 38.8 70.1 32.8 28.6 48.7 12.8 38.6
2×1.8BTRSU 40.2 70.4 36.2 30.7 49.8 14.0 40.2

Llama 2
7B 47.4 75.2 47.6 53.7 59.2 17.3 50.0
2×7BSU 47.1 73.9 44.3 51.4 58.5 16.8 48.6
2×7BTRSU 49.5 74.8 48.4 54.1 59.9 18.0 50.7

Table 1: Overall TRSU results of dense and sparse models across benchmarks.

Model Size
MMLU MMLU-Pro IFEval HumanEval MATH Average
Acc (%) Acc (%) Acc (%) Pass@10 (%) Acc (%) (%)

Danube 2
1.8B 44.2 14.8 26.6 19.6 4.9 22.0
2×1.8BSU 43.6 15.1 25.8 19.5 4.1 21.6
2×1.8BTRSU 44.5 15.8 27.2 20.2 4.7 22.5

Llama 2
7B 49.7 19.7 35.2 25.0 7.4 27.4
2×7BSU 48.9 19.9 33.7 25.0 6.7 26.8
2×7BTRSU 50.1 20.5 37.1 27.1 7.1 28.4

Table 2: Overall CRSU results of dense and sparse models across benchmarks.

dataset (Lian et al., 2023a), Magicoder Evol In-
struct (Luo et al., 2023b), Magicoder OSS In-
struct (Wei et al., 2024), and MetaMathQA (Yu
et al., 2024a), following filtration and sampling
procedures.

To assess CRSU’s domain-agnostic capabilities,
we employ SlimOrca (Lian et al., 2023b), a cu-
rated subset of OpenOrca (Lian et al., 2023a). This
dataset extends the FLAN Collection (Longpre
et al., 2023) by incorporating step-by-step reason-
ing patterns derived from GPT-3.5 and GPT-4.

5.1.2 Implementation Details

We implement our approach using Mergekit (God-
dard et al., 2024) to transform dense language mod-
els into sparse architectures. Unlike conventional
sparse upcycling that randomly initializes expert
routers, our method derives task and context repre-
sentations from both the base model and training
data. We then apply K-means clustering to gener-
ate representative router parameters (see Appendix
B).

Our experiments utilize two base models: H2O-
Danube2-1.8B (Singer et al., 2024) (hereinafter
Danube 2 1.8B) and Llama 2 7B (Touvron et al.,
2023). Training proceeds for one epoch using an
8 × 80GB A100 GPU cluster, with a batch size
of 128 and maximum sequence length of 4096.
Model optimization employs the AdamW opti-

mizer (Loshchilov and Hutter, 2019) with learning
rates of 1× 10−5 and 2× 10−5 for the Danube 2
1.8B series and Llama 2 7B series, respectively.

For TRSU experiments, we convert the base
models into MoE architectures, incorporating two
domain-specific experts (code and math) in each
Transformer block. We benchmark both SU and
TRSU models against the original dense models.
The CRSU experiments extend this framework with
four experts per Transformer block, comparing
both SU and CRSU performance.

5.1.3 Evaluation
We conduct comprehensive evaluations of both
dense and sparse models across diverse bench-
marks to assess their capabilities after fine-tuning.
Our evaluation strategy is tailored to the specific
training objectives:

• For multi-task trained models, we focus on
assessing their ability to simultaneously han-
dle multiple complex tasks. The evaluation
spans three key domains: MMLU (Hendrycks
et al., 2021a) and HellaSwag (Zellers et al.,
2019) for text, HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021) for
code, and GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021b) for math.

• For models trained on SlimOrca, which en-
compasses a broader distribution of general
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instructions, we evaluate their performance
across: MMLU (Hendrycks et al., 2021a) and
MMLU-Pro (Wang et al., 2024) for general
knowledge and reasoning, IFEval (Zhou et al.,
2023b) for instruction understanding and ex-
ecution, HumanEval (Chen et al., 2021) and
MATH (Hendrycks et al., 2021b) for technical
problem-solving.

To ensure consistency and facilitate fair com-
parisons, all evaluations adhere to a standardized
instruction-following paradigm. Test instances are
transformed into a uniform chat template format,
maintaining consistent interaction patterns across
all benchmarks. Detailed evaluation protocols, met-
rics, and implementation specifics are provided in
Appendix C.

5.2 Main Results
Tables 1 and 2 present comprehensive performance
comparisons across different model configurations.
Several key findings emerge from our experiments:

Effectiveness of Task-Representation Sparse Up-
cycling The TRSU approach demonstrates supe-
rior performance compared to both dense models
and traditional sparse upcycling (SU) across the
majority of benchmarks. In the Danube 2 1.8B
series, TRSU yields an average performance gain
of 0.5 percentage points relative to the dense base-
line (40.2% vs. 39.7%) and a more substantial
improvement of 1.6 points compared to SU (40.2%
vs. 38.6%). The Llama 2 7B series exhibits even
more pronounced improvements, with TRSU sur-
passing the dense model by 0.7 points (50.7% vs.
50.0%) and SU by 2.1 points (50.7% vs. 48.6%).

Context-Representation Benefits The empirical
results in Table 2 demonstrate that CRSU effec-
tively captures contextual patterns, particularly in
reasoning-intensive tasks. This advantage mani-
fests most notably in MMLU-Pro and IFEval per-
formance metrics. The Llama 2 7B CRSU variant
exhibits substantial improvements in both IFEval
(37.1% vs. 35.2% dense) and MMLU-Pro (20.5%
vs. 19.7% dense), suggesting enhanced capabilities
in context-dependent reasoning tasks.

Trade-offs in Mathematical Tasks While our
sparse approaches generally enhance performance
across most benchmarks, we observe distinct pat-
terns in mathematical reasoning tasks. In the CRSU

configuration, both model series exhibit marginal
performance degradation on MATH compared to

Model Size Text Code Math

Danube 2
2×1.8BTRSU 55.3 33.4 31.9
3×1.8BTRSU 54.8 33.2 31.3

Table 3: Evaluation on TRSU models with different
number of experts in each sparse layer.

Model Size MMLU MMLU-Pro

Danube 2
2×1.8BCRSU 42.7 14.1
4×1.8BCRSU 44.5 15.8
8×1.8BCRSU 44.7 15.9

Table 4: Evaluation on CRSU models with different
number of experts in each sparse layer.

their dense counterparts. This phenomenon may
be attributed to the relative underrepresentation of
mathematical content in the training corpus, re-
sulting in suboptimal mathematical context spe-
cialization during the construction of contextual
representations. The limited exposure to mathe-
matical patterns and reasoning structures poten-
tially impedes the development of mathematics-
specific routing capabilities, subsequently affecting
the models’ mathematical problem-solving profi-
ciency.

5.3 Ablations and Analysis

5.3.1 Number of experts

In the TRSU experiments, we transform dense mod-
els into MoE architectures by implementing dual
experts within each Transformer block. This de-
sign aims to enable expert specialization across
code and math domains, while treating text pro-
cessing as a shared responsibility between experts.
We further investigate whether designating text as
a distinct domain would enhance performance. Ta-
ble 3 shows the performance comparison between
two-expert and three-expert configurations, eval-
uated on the same benchmarks as Table 1. The
slight performance decline from Danube 2 2×1.8B
to 3×1.8B suggests that dedicating a specific ex-
pert to text processing offers no substantial bene-
fit. This finding indicates that MoE architectures
may be more effective for tasks with clear domain
boundaries rather than general language tasks that
require integrated world knowledge.

For CRSU experiments, we explore the scalabil-
ity benefits of increasing expert count. Resource
limitations constrained our investigation to 2-, 4-,
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Training Process 25% 50% 75% 100%

Performance Diff. +1.9% +1.4% +1.1% +0.9%

Table 5: Performance difference between Danube 2
4×1.8BCRSU and Danube 2 4×1.8BSU during the training
process.

Model Size Consistency

Danube 2
2×1.8BSU 0.69
2×1.8BCRSU 0.83

Danube 2
4×1.8BSU 0.61
4×1.8BCRSU 0.76

Danube 2
8×1.8BSU 0.54
8×1.8BCRSU 0.70

Table 6: Routing consistency scores for different expert
configurations.

and 8-expert configurations, where context repre-
sentations are clustered accordingly to determine
routing parameters. Table 4 demonstrates that ex-
panding from 2 to 4 experts yields meaningful per-
formance improvements in general language tasks.
However, further expansion to 8 experts shows di-
minishing returns, suggesting an optimal balance
point in the trade-off between model complexity
and performance gains.

5.3.2 Data Efficiency

We analyze the performance trajectories of Danube
2 4×1.8B models using SU and CRSU approaches
at four training milestones: 25%, 50%, 75%, and
100%. Table 5 shows that CRSU consistently outper-
forms SU, with the largest gap (+1.9%) observed
at 25% of training. The performance difference
gradually decreases to +0.9% at completion.

This pattern indicates that while standard SU

eventually learns effective routing patterns, the
representation-guided initialization in CRSU pro-
vides a better starting point for expert specializa-
tion. The clustering-based approach requires fewer
training examples to discover meaningful special-
ization patterns, making it particularly valuable in
scenarios with limited training data or computa-
tional resources.

5.3.3 Routing Analysis

This section analyzes the routing dynamics of
sparsity-crafted models during training and infer-
ence.

Model Expert Code Math

Danube 2 2×1.8BSU
0 54.1% 47.6%
1 45.9% 52.4%

Danube 2 2×1.8BTRSU
0 40.7% 62.0%
1 59.3% 38.0%

Table 7: Proportions of tokens assigned to each expert
on text data from code and math domains. Values are
reported as the average of layers.

Training. To evaluate routing consistency in
MoE models developed through SU and CRSU, we
analyze four checkpoints: initial state, one-third,
two-thirds, and final state of training. We assess
model performance on a held-out test set of 1,000
samples. The Jaccard similarity index quantifies
routing consistency by measuring the overlap of
activated experts for each input token across check-
points. Table 6 shows that CRSU achieves higher
routing consistency than SU across all expert con-
figurations. This indicates that enhanced router
initialization promotes stable routing behavior re-
gardless of expert count, enabling more efficient
optimization under limited training resources.

Inference. We analyze the routing patterns of
models upcycled through TRSU to determine
whether representation-based initialization during
training leads to task-specific expert specializa-
tion. Using the GSM8K (Cobbe et al., 2021) and
MBPP (Austin et al., 2021) datasets, we measure
expert selection distribution in TRSU models. Ta-
ble 7 reveals that models with task-based router
weights exhibit clear task-specific expert allocation
patterns, effectively matching experts to their spe-
cialized domains. In contrast, models with random
router weight initialization show more uniform ex-
pert allocation across tasks, primarily due to the
auxiliary load balancing loss constraints.

6 Conclusion

This paper presents representation-based sparse up-
cycling, an innovative approach for transforming
dense language models into efficient sparsely ac-
tivated architectures. Our method improves upon
existing techniques by leveraging task- and context-
aware representations to initialize router weights,
enabling more effective expert specialization while
maintaining computational efficiency. Through
comprehensive evaluation in both multi-task and
general instruction-following scenarios, we demon-
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strate consistent performance improvements over
conventional sparse upcycling and dense models
across diverse benchmarks. The superior routing
consistency and task specialization achieved by our
approach highlights the importance of informed
initialization in sparse architectures and establishes
a promising direction for developing more efficient
and capable language models. The success of our
method suggests that representation-guided routing
could be a key component in advancing the develop-
ment of specialized sparse models, though further
theoretical investigation is warranted to fully under-
stand its mechanisms and potential applications.

7 Limitations

While our representation-based sparse upcycling
method effectively mitigates performance degrada-
tion and shows improvements over dense models,
it has notable limitations. The method’s heavy
reliance on training data sampling may make it
infeasible in scenarios with limited high-quality
data. Additionally, further theoretical investigation
is needed to fully understand the mechanisms be-
hind its effectiveness and establish performance
guarantees. These limitations suggest important
directions for future research in developing more
robust and theoretically grounded sparse architec-
tures.
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200K 100K 50K 200K

Table 8: The composition of the multi-task training
dataset.

instance-level perplexity using Md and identify the
top 5% of instances exhibiting the highest perplex-
ity scores. For each selected instance Ti,j , we cal-
culate layer-wise attention outputs per token from
Md, generating task-specific vector sets. These
vectors undergo clustering analysis, with the result-
ing cluster centroids serving as routing weights for
the experts within each Transformer block.

In CRSU, we employ a similar methodology but
modify the selection criterion. Rather than task-
specific sampling, we randomly select 1% of to-
kens from the aggregated training dataset. We then
perform clustering on the layer-wise attention out-
puts to form N distinct groups. The centroid of
each cluster determines the routing weights for the
corresponding expert in each Transformer block.

C Evaluation Details

We evaluate our models across diverse tasks span-
ning mathematical reasoning, commonsense in-
ference, coding ability, instruction following, and
domain-specific knowledge. The evaluation frame-
work is supported by Language Model Evaluation
Harness (Gao et al., 2023) and Open Instruct (Wang
et al., 2023a). Below are the detailed evaluation
protocols for each benchmark:

• GSM8K: We evaluate mathematical reason-
ing abilities using the test set of Grade School
Math 8K (Cobbe et al., 2021). Using 8 few-
shot examples as demonstrations, we report
the exact-match accuracy where both the fi-
nal answer and solution steps must match the
reference.

• HellaSwag: We assess commonsense in-
ference capabilities using 10-shot examples.
This benchmark tests the model’s ability to
complete situational narratives with plausible
endings, focusing on grounded common sense
in specific scenarios.

• HumanEval: We test Python code genera-
tion capabilities using the HumanEval bench-
mark (Chen et al., 2021). The evaluation uses

0-shot prompting, where models must gener-
ate functionally correct Python code based on
docstring descriptions. We report unbiased es-
timates of pass@k and solutions are sampled
with a temperature of 0.8.

• IFEval: The ability to follow explicit instruc-
tions is evaluated using 0-shot examples. We
report instruction-level strict accuracy

• MATH: We utilize the MATH bench-
mark (Hendrycks et al., 2021b) to assess ad-
vanced mathematical problem-solving capa-
bilities across various topics including algebra,
geometry, and calculus. The evaluation em-
ploys 4-shot examples, and we report both the
solution accuracy.

• MBPP: The Multiple Python Programming
Problems (MBPP) benchmark (Austin et al.,
2021) is used to evaluate Python programming
proficiency. Using 0-shot examples, we as-
sess the model’s ability to generate code that
passes all provided test cases.

• MMLU: We measure the multi-task accu-
racy with 5-shot examples. The results are
reported as the average accuracy across all test
instances, covering multiple subjects ranging
from STEM fields to humanities.

• MMLU-Pro: We evaluate models on an en-
hanced version of MMLU featuring higher-
quality and more challenging questions. The
assessment includes 5 few-shot examples as
in-context demonstrations, and we report the
average accuracy across all subjects.

All evaluations are conducted using standardized
prompting templates and scoring criteria to ensure
consistency and reproducibility. For tasks requiring
code execution or mathematical verification, we
employ isolated environments to maintain security
and deterministic behavior.
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