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Abstract

Large Language Models (LLMs) are composed
of neurons that exhibit various behaviors and
roles, which become increasingly diversified as
models scale. Recent studies have revealed
that not all neurons are active across differ-
ent datasets, and this sparsity correlates pos-
itively with the task-specific ability, leading
to advancements in model pruning and train-
ing efficiency. Traditional fine-tuning meth-
ods engage all parameters of LLMs, which
is computationally expensive and may not be
necessary. In contrast, Parameter-Efficient
Fine-Tuning (PEFT) approaches aim to min-
imize the number of trainable parameters, yet
they still operate at a relatively macro scale
(e.g., layer-level). We introduce Neuron-Level
Fine-Tuning (NeFT), a novel approach that
refines the granularity of parameter training
down to the individual neuron, enabling a more
parameter-efficient fine-tuning model. The ex-
perimental results show that NeFT not only ex-
ceeded the performance of full-parameter fine-
tuning and PEFT but also provided insights into
the analysis of neurons. Our code and data are
available at: https://github.com/NLP2CT/
NeFT.

1 Introduction

Neurons, as fundamental components of Large Lan-
guage Models (LLMs), fulfill diverse roles across
model regions. As language models scale, the neu-
rons display varying phenomena. Increase in model
size enhances the the capability to generalize from
text to basic and even unseen concepts (Patel and
Pavlick, 2022). The internal concepts may be dis-
tributed across numerous neurons, and a significant
proportion of neurons can become inactive, never
triggering across diverse datasets (Durrani et al.,
2020; Voita et al., 2023). This sparsity has been
substantiated by recent studies utilizing it to prune
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LLMs or enhance the efficiency of LLM inference,
suggesting that not all neurons need to be active, a
trait that becomes more pronounced in larger mod-
els (Ma et al., 2023; Frantar and Alistarh, 2023; Liu
et al., 2023; Kurtic et al., 2023; Song et al., 2023).

LLMs commonly adapt to specific tasks
through full-parameter supervised fine-tuning
(SFT). Parameter-efficient fine-tuning (PEFT),
which operates on a layer-level modular param-
eter selection basis (Houlsby et al., 2019; Li and
Liang, 2021; Lester et al., 2021; Hu et al., 2022),
seeks to reduce the trainable parameters during
model training. Building on insights from model
interpretability research, we propose that the gran-
ularity of parameter training can be refined to the
neuron level. Consequently, we present a Neuron-
Level Fine-Tuning (NeFT) approach, designed to
improve model performance by selectively updat-
ing neurons identified as sensitive.

In an initial experiment, we identified sensitive
neurons for the NLI task on Llama-2-7b-chat (Tou-
vron et al., 2023) and used a trained probe to select
a subset of neurons. The preliminary experiment
suggest that training on these neurons outperform
the full-parameter fine-tuning. To identify sensitive
neurons for more complex tasks like translation and
summarization, we devised a method that evaluates
neuron similarity pre- and post-SFT, treating those
with low similarity as sensitive. The NeFT sur-
passes the full-parameter fine-tuning model in task
performance. To understand why it works, we fur-
ther categorized neurons into three types, namely
strongly affected, suppressed, and indirectly af-
fected neurons, and introduced “rank difference”
to assess neuron utilization. Our findings indicate
that: 1) Neurons exhibit varying degrees of sensi-
tivity during the SFT process. 2) Neurons strongly
affected by SFT elicit significant alterations in pa-
rameter utilization patterns. 3) Neurons that are
important for one task tend to be relevant for others.
This consistency implies that neurons identified in

https://github.com/NLP2CT/NeFT
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one context may be beneficial for transfer learning
in similar datasets.

2 Background

Parameter Efficient Fine-tuning PEFT tech-
nique aims to enhance the performance of pre-
trained models on tasks while minimizing the num-
ber of trainable parameters and computational com-
plexity. This approach is particularly beneficial for
reducing the training costs associated with large
pre-trained models. PEFT can be a empirical
choice of specific layers or modules, and some stud-
ies have shown that training only a single layer can
sometimes outperform full-parameter fine-tuning.
For instance, Yuan et al. (2023b) found that for
translation tasks, embedding fine-tuning is effective
than full-parameter fine-tuning except low-resource
settings. However, the empirical choice and layer-
wise searching is time-consuming while recent ad-
vances focus on leveraging external module to up-
date all the layer-level parameters.

Adapter The goal of adapter (Houlsby et al.,
2019; Pfeiffer et al., 2021; Rücklé et al., 2021;
Liu et al., 2022) is to insert a small number of pa-
rameters into the model, and then train only these
parameters when fine-tuning a downstream task,
leaving the original parameters of the pre-trained
model unchanged. This makes the trainable param-
eters more efficient and ensures that the original
knowledge is not forgotten.

LoRA Low-Rank Adaptation (LoRA; Hu et al.
2022) has emerged as one of the most prevalent
methods in both academic research and industry
applications. LoRA’s principal concept involves
decomposing a large weight matrix into two low-
rank matrices, significantly reducing the number of
trainable parameters. Although the two low-rank
matrices introduced by LoRA add to the model’s
architecture, they do not introduce additional com-
putational costs during inference as they function
concurrently with the original structures. For the
sake of practical implementation, LoRA generally
applied to affecting the computation of linear or
multi-head attention mechanisms.

Sparse Fine-Tuning Sparse fine-tuning distin-
guishes itself from methods that add external mod-
ules like adapters or LoRA by introducing an initial
step to pinpoint critical parameters. This process
leverages various metrics, such as Fisher informa-
tion (Sung et al., 2021) or L0 regularization (Guo

et al., 2021a), to determine which parameters are
essential (Chen et al., 2020; Prasanna et al., 2020).
These identified parameters are then specifically
targeted in the subsequent training phase. To date,
sparse training (Guo et al., 2021b) techniques have
been preliminarily investigated within the context
of pre-trained LMs (Guo et al., 2021b; Dao et al.,
2022), LLMs (Ansell et al., 2024; Thangarasa et al.,
2023). However, they have not been examined from
a neuron-level perspective.

3 Preliminary Experiment

Previous interpretability analyses within feedfor-
ward networks (FFNs) have revealed notable phe-
nomena at the neuron level. Research by Gurnee
and Tegmark (2023) has demonstrated that certain
neurons exhibit sensitivity to specific entities and
can encapsulate world knowledge. Motivated by
this insight, we begin our investigation to select
certain neurons using the similar probing approach
and examine their effectiveness during SFT.

3.1 Select Neurons

Given that NLI classification task is well-suited
for probing, we choose it as our testbed of prelimi-
nary experiment to discover neurons related to the
NLI task. We first processed the XNLI dataset1

through the Llama-2-7b-chat model (Touvron et al.,
2023) to obtain the hidden states for each layer.
For each sentence in the dataset, we averaged the
hidden states across all tokens, resulting in a set
of hidden states for each layer. We paired each
hidden state data with the corresponding target la-
bels, i.e., Entailment, Neutral, and Contradiction,
to train a Ridge classifier as a probe. Next, we
use the trained probe to identify the neurons most
sensitive to XNLI tasks. Specifically, we selected
100,000 neurons as sensitive neurons according to
the cosine similarity between the neurons and the
hidden states of probe decision space.

3.2 Experimental Results

Upon isolating the sensitive neurons, we implement
a gradient masking technique on the non-sensitive
neurons throughout SFT process. This approach
guarantees that updates are confined exclusively
to the previously identified sensitive neurons. No-
tably, our NeFT strategy does not require the in-
corporation of additional architectural elements,
resulting that a mere 6% of the total parameters

1https://github.com/facebookresearch/XNLI

https://github.com/facebookresearch/XNLI
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Figure 1: This diagram shows the whole process of our proposed Neuron-Level Fine-Tuning method. (1) Prepare
two models, one is the original model (MOrg) and the other is the model (MFT) trained with full-parameter
fine-tuning. (2) Calculate the cosine similarity for each pair of neurons in the corresponding positions of MOrg and
MFT and select the x% neurons with the lowest score and refer to these neurons as sensitive neurons. (3) Mask the
gradients of non-sensitive neurons during SFT training to ensure that only the selected neurons are updated.

Accuracy (%)

English French German

FT-full 82.8 70.7 67.0
NeFT 84.9 76.9 80.2

Table 1: Preliminary experiment of NeFT effectiveness
was conducted on XNLI tasks. NeFT demonstrated su-
perior performance compared to full-parameter training.

were modified during training. All remaining train-
ing parameters are maintained in alignment with
the full-parameter fine-tuning.

The results presented in Table 1 prove that NeFT
is possible to outperform full-parameter fine-tuning
by training only on a small number of sensitive neu-
rons. However, this experiment on the NLI task
may not fully exemplify the generality of NeFT.
In the subsequent sections, we will introduce a
methodology designed to identify and train sensi-
tive neurons in more intricate contexts, thereby ex-
tending the applicability of NeFT across a broader
spectrum of tasks.

4 Methodology

Current probing techniques fall short in addressing
complex tasks. To remedy this, we propose a flexi-
ble approach as shown in Figure 1 and Algorithm
1. to facilitate the identification of sensitive neu-
rons that are most influential to model performance
improvements.

Algorithm 1 Neuron-Level Fine-Tuning (NeFT)

Require: SFT Dataset D, model MOrg.
1: Train full parameters of MOrg on dataset D

within limited steps K and obtain MFT.
2: Calculate similarity scores {S(i,n)} by Eq.1.
3: Select x% of the neurons {w(i,n)} ←

argminS(i,n) Select(WOrg, {i}, {n}).
4: for 1, . . . ,Epochs do
5: for 1, . . . ,Batches do
6: Calculate gradient g of each batch.
7: g({WOrg \ {w(i,n)}})← 0
8: Back propagate the gradient g.
9: end for

10: end for

4.1 Prepare Models

In fact, training a model entails the discernment and
engagement of sensitive neurons. By evaluating
neurons that deviate most from their initial state, we
can ascertain which ones the model has prioritized
during its training, thereby revealing their sensitiv-
ity to the task at hand. Building on this premise,
we begin by preparing an initial model alongside
its fine-tuned counterpart for the designated task.
We employ the SFT dataset D to fine-tune initial
model MOrg with all parameters, resulting in the
fine-tuned model MFT. In practice, for the sake
of efficiency, the fine-tuned model also can be de-
rived within a limited number of training steps. Our



9396

analysis in subsequent sections suggests that this
abbreviated training regimen yields a model whose
performance is not significantly different from one
that has been trained to convergence.

4.2 Select Neurons by Model Itself
We define an individual neuron as a distinct entry
within the weight matrix. For example, in a linear
layer of an MLP with a weight matrix of dimen-
sion Rm×n, a single neuron corresponds to a row
in this matrix, which is dimensionally represented
as R1×n. We then calculate the cosine similarity
for each corresponding pair of neurons between the
original model and the fine-tuned model. A neuron
at a given position (i, n) within the models is de-
noted by W

(i,n)
Org and W

(i,n)
FT , where i represents the

layer index and n indicates the n-th neuron within
that layer. Following the formula in Equation 1, we
calculate the cosine similarity score {S(i,n)}:

S(wOrg, wFT) =
wOrg · wFT

||wOrg|| × ||wFT||
(1)

where wOrg ∈W
(i,n)
Org , wFT ∈W

(i,n)
FT . The k neu-

rons with the lowest cosine similarity scores are
then selected for further training process.

4.3 Neuron-Level Fine-Tuning
After calculating the similarity scores for each neu-
ron pair, we rank the neurons according to their
similarity scores to pinpoint the ones to which the
model allocates the most attention during train-
ing, characterized by their lower similarity scores.
We record the location of these neurons, repre-
sented by the positional information (i, n). To train
solely the identified neurons, we modify the gra-
dient g(WOrg). Prior to each update during the
training process, we refer to the previously saved
positional information (i, n) to decide if the gradi-
ent of a specific neuron should be retained or set
to zero. This gradient masking policy ensures that
only the specific neurons are updated.

5 Experiments

We conducted our main experiments using the
Llama-2-7b-chat model, focusing on machine trans-
lation and cross-lingual text summarization tasks.
Additionally, we investigated the generalizability
of NeFT by evaluating its performance across dif-
ferent model architectures and examining its effec-
tiveness on general-purpose instruction-following
datasets.

5.1 Experimental Settings

Data For the machine translation task, we
sourced our training and development datasets from
the News Commentary2 (Tiedemann, 2012) and
Lego-MT (Yuan et al., 2023a). The test set was
collated from Flores-101 (Goyal et al., 2022) and
Lego-MT, ensuring a diverse range of linguistic
challenges. Specifically, we utilized two distinct
data sources for our experiments: For the English-
Maori (En→Mi) and English-Bosnian (En→Bs)
language pairs, both training and test sets were
sourced from Lego-MT. For all other language
pairs, we sampled training data from the WMT19
News Commentary corpus and used Flores-101 for
test sets. To facilitate efficient training, we ran-
domly sampled a subset of the original training
corpus. Regarding the cross-lingual text summa-
rization task, our dataset was taken from CrossSum
(Bhattacharjee et al., 2023). Due to computational
resource limitations, we restricted our training to
sentences comprising fewer than 1024 tokens. Re-
sulting in a small number of training samples, espe-
cially on the language pairs Fr→Zh and Hi→Zh.
For these datasets, this results in 0.1k sentences,
making this a low-resource setting.

To evaluate the model’s performance on general-
purpose tasks, we employed the Alpaca dataset
(Taori et al., 2023) for training. For evaluation, we
utilized the IFEval benchmark (Zhou et al., 2023)
and the validation split of MMLU (Hendrycks et al.,
2021) as our test sets.

Training Setup For the machine translation task
and cross-lingual text summarization task, we con-
ducted our experiments on the Llama-2-7b-chat
model. We fine-tuned all models with a batch
size of 6 for translation tasks and a batch size of 3
for summarization tasks until they reached conver-
gence. The optimal checkpoints were determined
based on the lowest validation loss observed on
the development datasets. Typically, the check-
point corresponding to the lowest evaluation loss
emerged from the first epoch. However, in the sum-
marization task, particularly when dealing with
smaller datasets, this convergence point might oc-
cur during the second epoch. For training with
LoRA, convergence was typically attained within
2 to 3 epochs. In the case of NeFT, when a cer-
tain percentage x% of the model parameters were
trained, we denoted this as NeFTx%. Similarly, for

2https://huggingface.co/datasets/wmt/wmt19

https://huggingface.co/datasets/wmt/wmt19
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En→Zh En→Fr Fr→Zh

Method %Para. 20k 100k 20k 100k 20k 100k

Llama2-7B-Chat - 41.28/3.15 55.44/6.96 46.38/1.85
FT-full 100 74.46/22.20 78.31/26.42 79.18/25.98 81.72/30.27 72.07/18.19 76.30/22.22
FT-embed 2 78.64/23.49 79.78/25.38 82.80/29.03 83.80/30.15 78.22/22.77 77.89/20.80
FT-{in | out} 41 77.58/24.34 79.61/27.35 81.97/28.13 83.87/32.96 76.31/20.89 78.22/22.77
LoRAr=256 9 80.95/27.13 79.40/26.22 83.38/32.25 83.10/32.78 79.91/22.84 78.34/22.24
NeFT9% 9 82.27/28.69 82.91/30.48 84.75/34.14 85.53/35.98 80.10/24.07 80.87/25.61

Hi→Zh Hi→Fr En→Mi En→Bs

Method %Para. 4.5k 4.5k 10k 10k

Llama2-7B-Chat - 43.15/0.35 48.43/0.75 39.31/0.28 38.68/0.38
FT-full 100 53.93/6.21 57.90/6.09 63.26/13.63 64.21/6.95
FT-embed 2 58.73/6.86 60.94/6.15 49.65/2.21 58.18/4.05
FT-{in | out} 41 60.54/9.03 63.09/7.17 64.07/14.37 67.38/7.48
LoRAr=256 9 60.47/8.64 61.12/5.36 52.31/4.33 66.85/7.79
NeFT9% 9 66.23/10.69 68.43/9.67 62.73/13.08 71.63/9.58

Table 2: COMET/BLEU score comparison of each method on the translation task. For LoRA and NeFT, we report
the performance when tuning 9% of model parameters. In the majority of cases, NeFT outperforms the baseline
methods. More detailed results are available in Appendix Table 7.

En→Zh Fr→Zh Hi→Zh

2.3k 0.1k 0.1k
Method %Para. R1 R2 RL R1 R2 RL R1 R2 RL

Llama2-7B-Chat - 2.80 1.79 2.43 5.17 2.81 4.36 1.13 0.78 1.09
FT-full 100 21.88 17.39 20.71 30.24 19.79 25.36 10.16 4.35 9.42
FT-embed 2 1.35 0.67 1.09 10.48 6.39 8.32 0.73 0.19 0.67
FT-{in | out} 41 23.13 18.16 22.07 32.45 26.59 29.24 15.51 8.21 13.60
LoRAr=256 9 19.94 15.73 18.74 4.48 2.72 4.48 2.46 0.45 2.16
NeFT9% 9 24.31 19.27 23.29 33.57 26.67 31.46 15.23 9.70 14.21
NeFT12% 12 23.38 18.71 22.54 29.96 22.26 25.33 13.56 8.12 12.58
NeFT6%Union 12 26.05 21.06 25.07 30.85 22.86 26.60 15.78 9.32 14.36

Table 3: Performance comparison of each method on cross-lingual summarization task. For comparing LoRA with
NeFT, we report the performance when tuning 9% of model parameters. The results indicate that NeFT remains
effective even in low-resource settings.

LoRA configurations, if the LoRA rank was set to
r, we represented this as LoRAr.

To evaluate model performance beyond transla-
tion tasks, we conducted additional experiments
with Llama-3.2-1B (Dubey et al., 2024) and
Mistral-7B-v0.1 (Jiang et al., 2023) on instruction-
following tasks. All models were fine-tuned for
one epoch using a batch size of 8.

Baselines Our method was evaluated against four
baselines:1) FT-full: This strategy fine-tunes all
parameters of the LLM. 2) FT-{in | out}: This
approach fine-tunes the weights of input and output
projection layers of all the MLPs. 3) FT-embed
(Yuan et al., 2023b): This technique focuses solely
on fine-tuning the embedding layer. 4) LoRA (Hu
et al., 2022): We apply it to fine-tune all linear

structures within each layer (excluding the head
layer of language model).

To maintain the integrity of the comparison, we
adjusted the number of trainable parameters of
NeFT to closely align with those employed in the
LoRA configurations.

Evaluation We employ the COMET (Rei et al.,
2020) and ordinary BLEU score (Papineni et al.,
2002) to assess the quality of machine translations.
COMET is a neural metric designed for the multi-
lingual evaluation of machine translation systems.
Higher COMET or BLEU scores indicate better
translation quality. In the context of text sum-
marization, we utilize the ROUGE metric (Lin,
2004) to evaluate the extent to which the machine-
generated summary encapsulates the core points of
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the reference summary. ROUGE are represented
as “R(N )” in the reported results, where N corre-
sponds to the length of the N -gram. For IFEval
and MMLU benchmarks, we followed the official
evaluation settings and metrics.

5.2 Main Results

Performance and Generalization Table 2 and 3
present the comparative performance of different
PEFT methods. Our results demonstrate that NeFT
consistently outperforms other approaches across
various tasks and language pairs. For the three lan-
guage pairs where we compare two different data
scales (En→Zh, En→Fr, Fr→Zh), we maintain the
same subset of fine-tuned neurons within each pair,
demonstrating NeFT’s robustness across different
training data sizes.

In addition to its superior performance on tar-
geted language pairs, we also find that NeFT have
a potential to improve cross-lingual generalization.
For summarization task, we merge an equal num-
ber of neurons identified from the translation task
of a specific language pair with those from the sum-
marization task. For instance, neurons from the
NeFT9% configuration in the summarization task
were combined with those from the NeFT9% setting
in the translation task. This amalgamated config-
uration is referred to as NeFT6%Union. Our obser-
vations indicate that the potential for further im-
proving cross-lingual summarization with neurons
identified in translation task is more pronounced
when dealing with high-resource language pairs
like English-to-Chinese translation. Additionally,
we provide a comprehensive comparison in respect
to LoRA across language pairs in Appendix A.

For instruction-following tasks, both models
were fine-tuned on the Alpaca dataset for one
epoch and evaluated on the IFEval benchmark and
MMLU validation set. As shown in Table 4, NeFT
consistently outperforms full fine-tuning across
both model architectures, demonstrating its poten-
tial applicability beyond cross-lingual tasks.

6 Analysis

6.1 Utilization of Neurons

Metric To explore the divergence of neuron uti-
lization, we compared models trained under various
NeFT configurations by analyzing neuron utiliza-
tion. Specifically, during inference process, for
each neuron, we computed the Pearson correlation
between its weight vector and the hidden state rep-

Model / Method IFEval MMLU
(Strict / Loose) Validaition

Llama-3.2-1B
FT-full 0.104 / 0.111 0.253
NeFT1.2% 0.131 / 0.144 0.254

Mistral-7B-v0.1
FT-full 0.089 / 0.100 0.247
NeFT9% 0.262 / 0.274 0.466

Table 4: Performance comparison between NeFT and
full fine-tuning on general-purpose tasks across different
model scales. Evaluation metrics include instruction
following capability (using strict and loose matching
criteria) and MMLU accuracy. Results show NeFT
consistently outperforms full fine-tuning while using
only a small fraction of trainable neurons.

resentations from all preceding layers. The neurons
were then ranked in descending order based on their
maximum correlation scores, yielding a neuron im-
portance ranking denoted as Rank. To discern the
contrast in neuron utilization between models, we
compute the rank disparity for each neuron across
the two models, represented as ∆Rank. We then
determined the mean of the absolute values of these
rank differences, Avg(∆Rank), to quantify the
overall divergence in utilization of the neurons.

0 0.010.03 0.1 0.3 0.5 0.7 0.9 0.970.99 1
Percentiles (Top %) of Pearson Scores

0

10000

20000
Avg ΔRank (All)

Figure 2: Average rank differences between NeFT6%

and NeFT3% were calculated for neurons. The ranks
were sorted based on pairwise Pearson scores in de-
scending order.

Shifts of Neuron Utilization To analyze how uti-
lization of neurons shift after fine-tuning, we cate-
gorize the neurons into different buckets according
their Pearson correlation scores and calculate the
average rank differences of each bucket between
NeFT6% and NeFT3%, denoted as Avg(∆Rank).
The bucketing strategy relies on the top percentiles
of the overall Pearson scores. Figure 2 demon-
strates that the shift in utilization for neurons within
the top 0% to 3% range is negligible, whereas
neurons with intermediate correlation scores ex-
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Figure 3: COMET scores of models trained with differ-
ent NeFT settings when NeFT3% serve as a foundation.
Neurons with different similarity scores were separately
incorporated and trained using 20k English-Chinese
translation data.

hibit the most significant sensitivity to fine-tuning.
These findings suggest that our selection strategy of
sensitive neurons is reasonable. Furthermore, we
also found that this observation is consistent across
various training settings for other NeFT models.

6.2 Effects of Neuron Selection Settings

Performance Comparison To investigate the im-
pact of neuron selection based on similarity score
on NeFT training, we incorporated neurons with
both high and low cosine similarity scores into the
NeFT3% model and examined the respective per-
formance trends. The study used a dataset compris-
ing 20,000 English-to-Chinese translation training
instances. Adding neurons with high similarity
scores were labeled Reversedx% for clarity. Hence,
the notation “NeFT3%+Reversedx%” represents a
hybrid selection strategy by combining neurons
from NeFT3% and Reversedx%. According to the
results presented in Figure 3, the original NeFT
neuron selection strategy consistently outperforms
the contrasting strategy. Moreover, it also shows a
decline in model performance as the proportion of
high-similarity neurons increases.

Dynamics of Neuron Utilization Figure 4 pro-
vides insights into how neuron utilization is in-
fluenced by different NeFT training configura-
tions. In Figure 4 (a), the comparison with
the NeFT3% model which employs the original
selection strategy, shows that neuron utilization
discrepancies becomes more pronounced when
the model is trained with high-similarity neu-
rons. This observation implies that the contrast-

0 25000

NeFT3%+Reversed9%

NeFT3%+Reversed7%

NeFT3%+Reversed6%

NeFT3%+Reversed4%

NeFT3%+Reversed3%

NeFT12%

NeFT10%

NeFT9%

NeFT7%

NeFT6%

39948

37769

38135

36090

36529

26135

27005

22295

18860

17172

(a) Avg ΔRank with NeFT3%

0 20000

NeFT3%+Reversed7%

NeFT3%+Reversed6%

NeFT3%+Reversed4%

NeFT3%+Reversed3%

NeFT10%

NeFT9%

NeFT7%

NeFT6%

9989

9762

14107

15331

22055

21757

21680

23534

(b) Avg ΔRank with NeFT12% &
Avg ΔRank with NeFT3%+Reversed9%

Figure 4: Rank difference Avg(∆Rank) is calculated
in order to assess the shifts in the utilization of neu-
rons. Overall, the neuron utilization of original neuron
selection strategy NeFTx% is more stable than that of
contrasting selection strategy NeFT3%+Reversedx%.

ing strategy, NeFT3%+Reversedx%, tends to in-
duce greater volatility within the neuron utiliza-
tion patterns. Figure 4(b) analyzes the differences
in utilization between models with a larger pro-
portion of trainable parameters and those with
a smaller proportion, while employing the same
fine-tuning strategy. This comparison is made be-
tween both the original selection strategies (e.g.,
NeFT12% vs. NeFTx%) and the contrasting se-
lection strategies (e.g., NeFT3%+Reversed9% vs.
NeFT3%+Reversedx%). From the observed data,
different from Figure 4 (a), it is apparent that
models employing the contrasting neuron selec-
tion strategy are less affected by an increase in the
number of trainable parameters. This suggests that
the original neuron selection strategy has a higher
degree of stability with respect to changes in the
scale of trainable parameters.

Category of Neurons Based on the observed
ranking shifts, we further classify neurons into one
of three different categories: “Strongly Affected
Neurons”, “Suppressed Neurons”, and “Indirectly
Affected Neurons”. The neurons exhibiting a rank
difference ∆Rank exceeding 100,000 are cate-
gorized as Strongly Affected Neurons, indicating
significant influence from NeFT training. Within
the subset of strongly affected neurons, not all ex-
hibited upward movement in their rankings. Conse-
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Figure 5: The distribution of three types of neurons
(Strongly affected, Suppressed, and Indirectly affected)
across models under various training settings.

quently, we classify neurons that decreased in rank
as Suppressed Neurons. The training of a specific
subset of neurons inherently impacts the remain-
ing, untrained neurons during the inference process.
Within the subset of strongly affected neurons, we
observe that a substantial number of strongly af-
fected neurons were not directly engaged in NeFT
training. These neurons are thus designated as In-
directly Affected Neurons.

Categorized Comparison Additionally, we as-
sessed the quantity of different neuron types within
the original selection strategy NeFTx% and the
contrasting strategy NeFT3%+Reversedx%. The
categorization includes strongly affected neurons,
suppressed neurons, and indirectly affected neu-
rons, as illustrated in Figure 5. The trend indi-
cates a higher count of strongly affected neurons
in the contrasting strategy compared to the origi-
nal selection strategy (Figure 5 (a) and Figure 5
(b)). In the case of suppressed neurons, there is
a noticeable trend: as the number of strongly af-
fected neurons rises, the quantity of suppressed
neurons increases correspondingly, maintaining a
consistent proportion. In Figure 5 (c), the num-
ber of strongly affacted neuron found between two
NeFT3%+Reversedx% settings is much lower than
that between NeFT3%+Reversedx% and NeFT3%.
Also, the proportion of indirectly affected neurons
is very low which different from Figure 5 (a) and

Original (20k) Separated (20k)

FT-full 74.46/22.20 FT-full 73.30/22.11
NeFT9% 82.27/28.69 NeFT6% 82.00/28.45
NeFT9%Early 81.91/28.50 NeFT6%Trans 82.02/28.57

Table 5: COMET/BLEU scores of NeFT-tuned English-
Chinese translation model under different settings.

Figure 5 (b).
Based on the above observations discussed in

this section, we infer that the inclusion of neurons
with high similarity score causes drastic changes in
the model’s neuronal utilization patterns. However,
as the number of neurons increases, the extent of
change becomes relatively small. Additionally, the
trend observed with the inclusion of more neurons
may imply that only a minimal number of strongly
affected neurons are subject to indirect influence,
leading to minimal shifts in the neurons’ utilization.

6.3 Ablation Study

Neuron Selection We also focus on assessing the
impact of neurons selected by the model prior to its
convergence. We selected neurons from a model
that had been trained on the English-to-Chinese
(En-Zh) translation dataset for only 800 steps, and
these neurons are denoted as NeFTx%Early and
would be used to select sensitive neurons. As
shown in Table 5, the neurons identified by the un-
converged model also can delivers satisfactory re-
sults, indicating that effective neuron selection does
not necessarily require a fully converged model.

Neuron Generalization To evaluate whether the
identified critical neurons generalize across differ-
ent data distributions within the same domain, we
conducted experiments with two distinct English-
to-Chinese (En-Zh) translation datasets. First, we
identified the critical neurons using our primary
training dataset. Then, we evaluated the transfer-
ability of these neurons by applying NeFTx%Trans

to an independent, non-overlapping dataset (de-
noted as ’Separated’ in the tables) from the same
language pair. The results in Table 5 indicate that
neurons, once identified by the model, can be ef-
fectively employed across similar datasets, main-
taining consistent performance. This suggest the
potential for neurons identified in one domain to
be extrapolated to other domains.

Overlap Analysis We conducted further analysis
on the overlap of neurons identified under different
settings as per the ablation experiments previously
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Neurons Overlap NeFTx%

3% 6% 9% 12%

Original (20k) | Separated (20k) 63% 68% 72% 76%
Original (20k) | Original (100k) 61% 65% 68% 71%
Conv (20k) | Non-conv (20k) 63% 68% 72% 75%

Table 6: Overlap proportion of neurons across different
data and training settings.

described. The data presented in Table 6 reveal that
while the specific neurons selected across different
settings are not identical, there is a considerable
degree of overlap. Furthermore, the extent of this
overlap escalates with an increase in the number
of neurons designated for selection. Despite some
variability in the specific neurons identified, the
overall impact on the performance of models re-
mains largely consistent, as evidenced by the previ-
ous results. Table 6 compares the neuron overlap
between models trained to full convergence (Conv)
and those trained with limited optimization steps
(Non-conv).

Taking into account the insights from the preced-
ing sections, we can deduce that the crucial factor
regarding neuron selection is not the inclusion of a
substantial quantity of non-sensitive Reversedx%
neurons. Regarding NeFTx% neurons, the selec-
tion criteria do not require excessive precision, ap-
proximate selections are found to be adequate.

Convergence Speed Figures 6 and 7 illustrate the
training dynamics of NeFT compared to baseline
methods on the English-to-Chinese translation task
(20k examples). The convergence curves demon-
strate that NeFT consistently achieves lower valida-
tion loss across different experimental settings. No-
tably, when a sufficient number of sensitive neurons
is selected, NeFT exhibits significantly faster con-
vergence rates compared to traditional fine-tuning
approaches. This accelerated optimization suggests
that focusing on sensitive neurons effectively re-
duces the search space while maintaining model
performance.

7 Conclusion

In this study, we introduced Neuron-level Super-
vised Fine-tuning, NeFT, an innovative approach
to supervised fine-tuning. NeFT focuses on iden-
tifying task-specific neurons within a model by
evaluating the similarity between the neurons of
the trained and the original model. By selecting
and training on neurons that exhibit low similarity.
Our empirical results demonstrate that NeFT gener-
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0.8

0.9

1.0

1.1

Lo
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FT-Full
NeFT9%
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Figure 6: Comparison of loss curves during train-
ing among full fine-tuning (FT-full), NeFT with 9%
critical neurons (NeFT9%), and LoRA with rank 16
(LoRAr=16).
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Figure 7: Validation loss comparison between
parameter-matched pairs: NeFT achieves better per-
formance with fewer parameters in both settings
(NeFT0.4% vs. LoRAr=16 and NeFT9% vs. LoRAr=256,
where LoRA uses slightly more parameters).

ally surpasses full-parameter fine-tuning and other
fine-tuning methodologies across various settings.
When compared with LoRA, NeFT consistently
shows superior or comparable results at most levels
of parameter counts. Furthermore, our analyses
shed light on the functioning of distinct neurons
in the NeFT process and the impact of various set-
tings. This understanding contributes to a more
nuanced view of the fine-tuning process and opens
avenues for further optimization and refinement of
neuron-level training strategies. In the future, we
will keep applying NeFT method to more genera-
tion and reasoning tasks.
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Limitation

First of all, this work is limited by experiment-
ing on task-specific benchmarks using Llama-2-
7B model. Moreover, this work encounters cer-
tain constraints due to the capabilities of current
distributed frameworks, particularly regarding gra-
dient operations. Specifically, we are unable to
apply gradient operations universally across all
structural components of the model. Consequently,
our experiments are confined to the up_proj and
down_proj projections within the Llama-2-7b-
chat architecture, and we have not extended our in-
vestigation to include the gate_proj projections.
Despite these restrictions, the NeFT methodology
has demonstrated impressive results. For future
analyses, there are existing neuron-pruning meth-
ods that treat neurons as discrete units, as refer-
enced by (Fang et al., 2023; Zhuang et al., 2020;
Han et al., 2015; Sun et al., 2023; Ma et al., 2023).
These methods could potentially be leveraged in
model pruning to eliminate certain neurons. This
would enable a more concentrated examination of
the neurons that contribute the most value to the
model’s performance, thereby optimizing the fine-
tuning process by focusing on the most impactful
neurons.
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A Appendix

Compare with LoRA We conducted a compre-
hensive comparison with LoRA as shown in Figure
8. We varied LoRA rank between 8 and 256 in
order to maintain a comparable number of train-
able parameters with NeFT neurons. Our findings
reveal that NeFT outperforms LoRA in terms of
translation quality, particularly in the X-to-Chinese
translation direction. For detailed comparisons and
scores, please refer to Appendix Table 7.

Table 7 presents the results of NeFT and LoRA
under various training settings for translation of
each language pair. It also includes a comparison
between NeFT and LoRA at similar trainable pa-
rameter scales.

En  Zh

Fr  Zh

Hi  Zh

14

14

18

10

10

6

NeFT Win LoRA Win

Figure 8: Comparison of NeFT and LoRA across dif-
ferent trainable parameter settings. NeFT consistently
utilizes fewer parameters than LoRA at each level. The
details are presented in Appendix Table 7. We high-
light the best performing method for each language
pair (shown in rows) using underlined values. The win
statistics are computed vertically, representing the total
number of times each method achieves the best perfor-
mance across different language pairs.

https://proceedings.neurips.cc/paper/2020/hash/703957b6dd9e3a7980e040bee50ded65-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/703957b6dd9e3a7980e040bee50ded65-Abstract.html
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# Lang En→Zh (20k) BLEU BLEU
NeFT | Params En→Zh Fr→Zh Hi→Zh LoRA | Params En→Zh Fr→Zh Hi→Zh

Rank 8 | 20.0M 81.01/27.12 78.38/23.02 45.33/2.85
NeFT0.4% | 25.6M 81.22/27.20 78.71/22.71 40.28/2.40 Rank 16 | 40.0M 81.24/27.27 78.70/23.03 46.09/2.88
NeFT1.5% | 102.4M 81.86/28.31 79.32/23.29 42.79/2.17 Rank 64 | 159.9M 80.99/27.33 77.34/22.20 37.16/0.90
NeFT3% | 204.8M 81.88/28.34 79.51/23.76 38.23/0.99 Rank 128 | 319.8M 81.06/27.25 78.30/22.80 33.19/0.20
NeFT6% | 409.6M 81.92/28.67 78.99/23.75 37.18/0.80 Rank 256 | 639.6M 80.95/27.13 77.81/22.59 31.12/0.09
NeFT9% | 614.4M 82.27/28.69 79.84/24.01 34.38/0.45
NeFT12% | 819.2M 82.10/28.39 79.75/23.79 36.44/1.30

# Lang Fr→Zh (20k) BLEU BLEU
NeFT | Params En→Zh Fr→Zh Hi→Zh LoRA | Params En→Zh Fr→Zh Hi→Zh

Rank 8 | 20.0M 79.12/24.17 79.71/22.77 38.29/1.18
NeFT0.4% | 25.6M 80.79/24.47 79.63/22.99 61.46/8.61 Rank 16 | 40.0M 79.32/24.26 79.44/22.54 40.22/1.71
NeFT1.5% | 102.4M 81.08/24.98 79.85/23.30 60.63/7.94 Rank 64 | 159.9M 79.72/24.56 79.59/22.55 35.42/0.62
NeFT3% | 204.8M 80.66/24.94 79.82/23.66 60.63/8.09 Rank 128 | 319.8M 71.67/20.85 80.02/22.81 35.09/0.56
NeFT6% | 409.6M 80.96/25.30 80.13/23.64 56.76/6.36 Rank 256 | 639.6M 79.59/24.48 79.91/22.84 35.31/0.56
NeFT9% | 614.4M 80.32/24.72 80.10/24.07 57.98/6.96
NeFT12% | 819.2M 79.52/23.87 79.92/23.96 51.00/3.34

# Lang Hi→Zh (4.5k) BLEU BLEU
NeFT | Params En→Zh Fr→Zh Hi→Zh LoRA | Params En→Zh Fr→Zh Hi→Zh

Rank 8 | 20.0M 58.84/11.98 36.87/0.67 64.48/9.55
NeFT0.4% | 25.6M 50.77/8.49 37.89/1.83 63.53/8.57 Rank 16 | 40.0M 61.84/13.14 39.71/1.48 64.71/9.70
NeFT1.5% | 102.4M 38.69/2.01 35.45/0.90 64.80/9.45 Rank 64 | 159.9M 64.61/11.73 50.07/6.11 63.15/10.01
NeFT3% | 204.8M 38.29/1.38 34.85/0.39 64.53/9.14 Rank 128 | 319.8M 64.39/11.89 53.35/7.33 61.90/9.18
NeFT6% | 409.6M 42.94/2.30 51.11/5.18 65.63/9.68 Rank 256 | 639.6M 63.76/10.80 55.46/8.10 60.47/8.64
NeFT9% | 614.4M 39.37/1.22 35.29/0.47 66.23/10.69
NeFT12% | 819.2M 31.51/0.04 31.16/0.04 65.94/11.21

# Lang En→Fr (20k) BLEU BLEU
NeFT | Params en→Fr Hi→Fr LoRA | Params En→Fr Hi→Fr

Rank 8 | 20.0M 84.07/32.40 40.72/1.65
Rank 16 | 40.0M 84.11/33.03 41.83/1.80

Rank 64 | 159.9M 83.92/32.49 32.97/0.25
NeFT3% | 204.8M 84.70/33.51 48.74/3.51 Rank 128 | 319.8M 83.69/32.30 32.24/0.17
NeFT6% | 409.6M 84.83/34.12 47.67/3.66 Rank 256 | 639.6M 83.38/32.45 30.38/0.06
NeFT9% | 614.4M 84.75/34.14 47.81/3.34
NeFT12% | 819.2M 84.82/34.33 51.73/3.84

# Lang Hi→Fr (4.5k) BLEU BLEU
NeFT | Params En→Fr Hi→Fr LoRA | Params En→Fr Hi→Fr

Rank 8 | 20.0M 71.61/19.87 66.72/7.66
Rank 16 | 40.0M 76.66/20.51 66.27/7.41

Rank 64 | 159.9M 77.38/19.39 64.33/6.68
NeFT3% | 204.8M 52.79/11.04 60.94/6.15 Rank 128 | 319.8M 77.16/18.13 62.31/5.74
NeFT6% | 409.6M 62.18/12.07 67.14/8.16 Rank 256 | 639.6M 75.89/16.45 61.12/5.36
NeFT9% | 614.4M 49.12/8.82 68.43/9.67
NeFT12% | 819.2M 30.55/0.25 68.37/9.98

# Lang En→Mi (10k) BLEU BLEU
NeFT | Params En→Mi LoRA | Params En→Mi

Rank 8 | 20.0M 57.27/5.92
Rank 16 | 40.0M 56.52/5.58

Rank 64 | 159.9M 55.54/5.34
Rank 128 | 319.8M 53.90/4.69

NeFT9% | 614.4M 62.73/13.08 Rank 256 | 639.6M 52.31/4.33
NeFT12% | 819.2M 63.26/13.30

# Lang En→Bs (10k) BLEU BLEU
NeFT | Params En→Bs LoRA | Params En→Bs

Rank 8 | 20.0M 68.97/8.19
Rank 16 | 40.0M 67.68/7.70

Rank 64 | 159.9M 67.75/7.73
Rank 128 | 319.8M 68.69/8.34

NeFT9% | 614.4M 71.63/9.58 Rank 256 | 639.6M 66.85/7.79

Table 7: The COMET/BLEU scores for all LoRA settings and the comparison with NeFT of the corresponding
parameter magnitude in the machine translation experiment.
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