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Abstract

Scientific research continually discovers and
invents new concepts, which are then referred
to by new terms, neologisms, or neonyms in
this context. As the vast majority of publica-
tions are written in English, disseminating this
new knowledge to the general public often re-
quires translating these terms. However, by
definition, no parallel data exist to provide such
translations. Therefore, we propose to leverage
term definitions as a useful source of informa-
tion for the translation process. As we discuss,
Large Language Models are well suited for this
task and can benefit from in-context learning
with co-hyponyms and terms sharing the same
derivation paradigm. These models, however,
are sensitive to the superficial and morphologi-
cal similarity between source and target terms.
Their predictions are also impacted by subword
tokenization, especially for prefixed terms.

1 Introduction

New concepts are constantly introduced by
researchers around the world, which leads to
a profusion of neologisms. These are also
known as neonyms (Cabré, 1999), as opposed
to neologisms of everyday language (Cartier
et al., 2018). Because most of this research is
published in English (Gordin, 2015; Larivière
and Riddles, 2021),1 communicating in another
language, such as French, requires translating
these terms to facilitate scientific dissemination.2

For example, a teacher wanting to instruct
their French students about “Large Language
Models” would be hardly understandable if they
directly borrowed every term from English, e.g.:

EN: large language models are self-supervised
?? les large language models sont self-supervised
FR: les grands modèles de langue sont auto-supervisés

1In French-speaking countries, a significant part of re-
search in humanities and social sciences is still disseminated
in French. The same holds for other major linguistic areas.

2See, e.g., https://www.helsinki-initiative.org/.

phantasmophobie (phasmophobia) : 
Crainte obsédante ou excessive des fantômes. 

(Obsessive or excessive fear of ghosts.) 
...

anxiété sociale (social anxiety disorder) : 
Crainte d’être dévisagé par d’autres personnes [...]

(Fear of being stared at by others)
...

bidirectionnel (bidirectional) : 
Se dit de ce qui est capable de transmettre de
l'information dans les deux sens.
(Having to do with the ability to transmit data in either direction.) 

Input Definition
Crainte obsédante ou
excessive des dents.

(Obsessive or excessive fear of teeth.)

Output term
odontophobie

(odontophobia)

LLM

Morphological
Analysis

34 common characters

7 common characters
ICL

Search

Prefixation

Suffixation

Neoclassical

Native

Syntagmatic

Figure 1: Overview of our experiments: in DEF setting,
given a definition, we study how to retrieve relevant ICL
examples, here co-hyponyms. An LLM is then tasked
to generate a term matching the definition. We also
perform several analyses, including a morphological
analysis of the output term. See text for details.

Quoting Liu et al. (2021): “Precisely defining
the terminology is the first step in scientific
communication”.

Translating scientific neologisms is a fundamen-
tal problem for traditional Machine Translation
(MT) systems that rely on parallel data, which,
by definition, can not contain such new words.3

Therefore, we propose to leverage definitions of
terms as a way to translate them more accurately.
We study how to take this information into account
and, in particular, how to select relevant examples
for in-context learning, in a linguistically motivated
manner. We conduct extensive experiments on two
thesauri covering 13 diverse domains, from Hu-
manities to Computer Science and find our meth-
ods to be domain-agnostic. As we focus on trans-
lation from English into French, we rely on the
fact that neologisms are mostly formed through
five non-exclusive morphological processes (pre-

3At least, not with their new intended meaning.

https://www.helsinki-initiative.org/
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fixation, suffixation, and neoclassical, native, or
syntagmatic compounding), and study (i) how mor-
phological divergences between the source and tar-
get impact translation; (ii) whether systems outputs
conform to attested morphological patterns (see
Figure 1).

Terminology remains a major source of critical
errors for MT (Haque et al., 2020), which is often
tackled by augmenting MT systems with domain-
specific resources and dedicated (pre-)processing
modules (Semenov et al., 2023). Our work could
benefit such approaches by enriching said thesaurus
or providing on-the-fly translations by extracting
definitions from source documents (Jin et al., 2013;
Head et al., 2021; August et al., 2022; Huang et al.,
2022).

We tackle Neologism Translation with Large
Multilingual Language Models (mLLMs), which
are effective for many MT and NLP tasks (Xu et al.,
2024). We show that these models are able, to
some extent, to translate terms from English to
French, to generate a term from its (French) def-
inition, and also to combine both sources of in-
formation. We also show that LLMs benefit from
in-context learning examples that are co-hyponyms
or belong to the same derivational paradigm as the
source term/definition (see Figure 1). However, we
also highlight several limitations of these models:
(i) their tokenizer, based on crude heuristics such as
BPE (Gage, 1994), tends to over-segment prefixed
terms, which is detrimental to translation quality;
(ii) they perform much better if the source and tar-
get term are superficially similar (likely cognates
or loanwords), which makes the task closer to otho-
graphic conversion than translation (e.g. exocytosis
→ exocytose); (iii) their performance correlates
with terms frequency in a large corpus, which may
be used as a proxy of their degree of lexicalization.

This work opens up new challenges for MT and
more broadly NLP, on an important topic for knowl-
edge dissemination. It also sheds light on the some-
what overlooked issue of morphological processing
in LLMs. We propose several avenues for future
work to address the limitations outlined above. Our
code and data are freely available.4

2 Related Work

While we rely on definitions to generate neolo-
gisms, some work has been done in the opposite
direction, to generate the definition of a given word

4https://github.com/PaulLerner/neott

(Noraset et al., 2017). Interestingly, like us, they
leverage the structure of definitions in genus and
differentiae (Chodorow et al., 1985; Montemagni
and Vanderwende, 1992). The genus is a hypernym
of the input term (see Figure 1, phasmophobia is a
kind of fear). We will find that terms sharing the
same hypernym prove to be useful examples for
In-Context Learning.

Neologism Translation is related to Multilin-
gual Term Extraction (Laroche and Langlais, 2010;
Delpech et al., 2012; Rigouts Terryn et al., 2020),
except that, importantly, we do not assume that the
target term exists anywhere. Indeed, we will see
that a significant part of the terms in our test data
do not appear even a single time in a large corpus
such as OSCAR (Abadji et al., 2022).

Our framing of Neologism Translation some-
what resembles the Reverse Dictionary task (Hill
et al., 2016; Pilehvar, 2019). However, Reverse
Dictionary is an Information Retrieval task that
consists of mapping the representation of a defi-
nition to an existing word embedding of a known
word. On the contrary, we design here a fully gen-
erative task for unknown words.

The study of Zhang et al. (2020) comes closest to
our work but is restricted to a monolingual setting
in the very specific domain of genetics, where a
term is linked to several genes according to its
molecular function, biological process, and cellular
component.

3 Neological and Morphological Processes

Typology Our typology of neologisms is adapted
from Lieber (2010) and Daille (2017), and relies
on morphosyntactic features that can easily be de-
tected automatically. Complementary typologies,
which vary according to the studied phenomena,
have also been proposed, see, e.g. (Lombard and
Huyghe, 2020). We retain the following five con-
structions that cover the largest part of our corpus,
both in English and French:

(i) Prefixation, where an affix is concatenated
at the beginning of a word to form a new one (e.g.,
pre+train = pretrain).

(ii) Suffixation, where affixation is performed at
the word’s end (e.g. generalize+ation = general-
ization).

(iii) Native compounding, which compounds
two independent words. This process is more reg-
ular in English (e.g. bench+mark = benchmark)
than in French (Arnaud, 2003).

https://github.com/PaulLerner/neott
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Legend term formation
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hallucination
attention

run (V → N)
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azophilic
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sequence-to-sequence
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Figure 2: Overview of the studied neological processes. Adapted from (Daille, 2017).

(iv) Neoclassical compounding, which com-
pounds only bound morphemes, i.e. morphemes
that cannot act as independent words (e.g.,
azo+philic = azophilic). Like native English but
unlike native French, the head of neoclassical com-
pounds is always located at the rightmost position,
in both languages: e.g. azophilic means “attracted
to azote”, not “azote is attracted” (Namer, 2003;
Amiot and Dal, 2008).

(v) Syntagmatic compounding, where syn-
tagms that follow syntactic rules of the language
are lexicalized into terms, thereby losing the com-
positionality of meaning. Therefore, they often
cannot be translated by a composition of transla-
tions of its constituents (Daille and Morin, 2005),
e.g. “zero-shot learning” translates to “apprentis-
sage sans exemple” in French, literally “learning
without example”.

Note that for (i), (ii), and (iv), derivation is of-
ten accompanied by a phonological or graphemic
change at the junction between morphemes. Fi-
nally, note that these processes are not exclusive
but can be combined, e.g. bidirectional is a pre-
fixation (bi-) of a suffixation (-al).5. All studied
morphological processes are illustrated in Figure 2.

Figure 2 also includes rarer processes that would
require a disambiguating context and are therefore
not handled by the morphological classifier intro-
duced below: (i) Semantic neology, where a lexi-
cal unit is associated with a new concept through a
metaphoric transfer between two domains, result-
ing in a homonym. (ii) Conversion, where the
part-of-speech (POS) of a word changes without
affixation, resulting again in a homonym (Tribout,
2010). (iii) Back-affixation, which requires a di-

5It could also be interpreted as the suffixation of the noun
*bidirection although it is unattested (Corbin, 2012). See
also Copot and Bonami (2024) for a “baseless” approach
to derivation where both directional and *bidirection could
interact with bidirectional.

achronic perspective to recognize it among other
affixations (e.g. vivisect is formed by removing tion
from vivisection, and not the other way around).

We finally do not study the following processes,
although they are frequent in both English and
French: (i) Borrowing, because we precisely seek
to avoid it (e.g. entrepreneur is borrowed as is from
French). (ii) Acronyms, which cannot be trans-
lated without their expanded form.

The reader should refer to Dal (2003b), Lieber
(2010), or Corbin (2012) for a more complete in-
troduction to morphology,6 going beyond English
and French, and therefore, the above processes
(e.g. templates in Semitic languages). Finally note
that we are not interested in inflections (e.g. singu-
lar/plural), which do not form new lexemes.

Morphosyntactic Classification We build two
multi-label classifiers, one per language, to iden-
tify the morphosyntactic processes described above.
They rely on character n-gram features and are
trained on Wiktionary in the FastText framework
(Joulin et al., 2017). They are very accurate with
92.5 F1 in English and 95.8 F1 in French, see Ap-
pendix C for details. This classifier is used below
to analyze the morphological processes used to
coin new terms (see Figure 1), to evaluate English-
French congruences and divergences and how they
impact the performance of the models.

4 Methods

We study the translation of neologisms in three
settings, always in the EN-FR direction, which is
our main application scenario (see Section 5.1):7

6See also Aronoff (1976) and Fradin (2015) for a lexematic
approach to morphology and Dal (2003a) and Mattiello (2017)
on analogy.

7Moreover, as most neonyms are first formed in English,
then translated to French, studying the reverse direction (FR-
EN) would be plagued by translationese, which is known to
lead to overoptimistic results (Zhang and Toral, 2019).
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Setting Prompt template

TERM Le terme anglais {src_term} peut se traduire en français par :
“The English term {src_term} can be translated in French as :”

DEF {def} définit le terme :
“{def} defines the term :”

DEF+TERM {def} définit le terme anglais {src_term} qui peut se traduire en français par :
“{def} defines the English term {src_term} which can be translated to French as :”

Figure 3: Prompt templates used with LLMs corresponding to our three settings, with English translations

(i) TERM: translate the contextless source term.
This is our baseline condition. (ii) DEF: generate
the target term from its definition in the same lan-
guage, one of the main novelties of our work (see
Figure 1); (iii) DEF+TERM: translate the source
term given its definition, combining the two sources
of information. Both input terms and definitions
are extracted from public thesauri (see Section 5.1).

We cast these three subtasks in a text-to-text
generation framework, where an LLM is tasked
to complete a prompt (Brown et al., 2020; Raffel
et al., 2020). Because of the mixed language input
in setting DEF+TERM, we use mLLMs. The prompt
may contain several examples to enable in-context
learning (ICL). We study four ways to select these
examples: the first two serve as baselines, while
the last two are linguistically motivated:

(i) Random: sampling from the set of examples
for ICL.

(ii) Domain: similar to Random, additionally
requiring ICL examples to belong to the same do-
main as the target term (“oracle” condition).

(iii) Co-hyponyms: terms sharing the same hy-
pernym are often formed in the same way. To
find co-hyponyms, we simply rely on the longest
common string with the beginning of the input
definition (see Figure 1). Therefore, this method
does not apply to the TERM setting, which does
not have access to definitions. For instance, defini-
tions starting with “Crainte obsédante ou excessive
des”8 identify several phobias, e.g. traumatophobie
(traumatophobia) or odontophobie (odontophobia).
With “Opération consistant à”,9 we find deverbals
in -ation or -age, e.g. dénaturation (denaturation),
quantification (quantizing), or tricotage (knitting).

(iv) Derivation paradigms: as hinted at
above, terms stemming from the same derivational
paradigm, i.e. sharing a base, prefix, or suffix,
may serve as analogical context to form new terms.

8“Obsessive or excessive fear of”.
9“Operation consisting of”.

For example, pretraining was likely formed on the
model of preprocessing; likewise for underfitting
modeled after overfitting. Like for co-hyponyms,
we rely on the longest common string, but this time
between source terms, either at the beginning or
the term ending. Therefore, this method does not
apply to the DEF setting, which does not have ac-
cess to the source term. Note that this method is
not limited to morphological affixes but can also
find whole words in common between syntagms.
For example, “air gap” and “air flotation” share
the word air in their initial and “unmoderated news-
group” and “unmerchantable” share the prefix un-.

The last two methods can be both combined in
the DEF+TERM setting by concatenating their top
results, while keeping the total number of exam-
ples to five. The hyperparameters for this fusion
are set through grid search on the validation set.10

We limit the number of examples to five to keep a
reasonable input length and as we found the perfor-
mance to quickly saturate, consistently with prior
work (e.g. Bawden and Yvon, 2023).

4.1 Implementation

We experiment with two mLLMs: BLOOM (Big-
Science et al., 2023) and CroissantLLM (Faysse
et al., 2024). BLOOM was the first open-source
mLLM to scale up to billions of parameters. It
is highly multilingual, trained on 46 natural lan-
guages, including EN and FR. We experiment with
both 1.1B and 7.1B parameters versions. Crois-
santLLM is an EN-FR bilingual model, trained on
an equally large amount of data in the two lan-
guages. With only 1.3B parameters, it was de-
signed to be efficient at inference time, to make up
for its costly pretraining, following Liu et al. (2019)
and Hoffmann et al. (2022).

Each of our three prompt templates (see Fig-

10The optimum for Derivation paradigms is three prefixes
and two suffixes. When fusing with Co-hyponyms the opti-
mum is one co-hyponym from the definition, three prefixes,
and one suffix.
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ure 3) correspond to one settings presented above.
We experimented with a few different wordings
but found that the prompt content hardly mattered
because of ICL examples, consistently with prior
work (e.g. Zebaze et al., 2024). ICL examples use
the same prompt template, but include both the in-
struction and the target term. Different examples
are separated by the three characters ###, which
serves as end-of-sequence signal.

Apart from LLMs, we use mBART as a stan-
dard sequence-to-sequence baseline for the TERM

setting (standard MT). More precisely, we fine-
tune mBART50-One-to-Many, a 610M parameter
model (Tang et al., 2021), on 1.1M EN-FR parallel
sentences from SciPar (Roussis et al., 2022). This
process ensures that the model is robust to scientific
vocabulary. Still, mBART only translates from EN

to FR and is not suited for the conditions DEF and
DEF+TERM. This model achieves 37.3 BLEU on
a held-out test set of 3K sentences (Papineni et al.,
2002). See Peng et al. (2024) and Appendix D for
additional details.

4.2 Evaluation

We draw inspiration from standard Question An-
swering metrics (e.g. Rajpurkar et al., 2016) and
considered: (i) Exact Match (EM) between the tar-
get and output strings;11 (ii) token-level F1 score
after standard preprocessing (case insensitive, stop-
words and punctuation filtering). At a time when
LLM-based metrics flourish, one might criticize
these metrics for being overly strict and not mod-
eling semantic similarity. However, we argue that
evaluating terminological equivalence is mostly not
a semantic matter: the meaning of the terms is
highly dependent on the domain and words that
would otherwise be synonymous often cannot be
used interchangeably. For instance “*big language
model” is an incorrect variant of “large language
model”, although big and large are synonyms (i.e.
semantically close, even with a non-neural metric
like METEOR; Banerjee and Lavie, 2005). More-
over, LLM-based metrics are known to bias to-
wards models with the same architecture or train-
ing data (He et al., 2023; Panickssery et al., 2024),
while EM is equally strict for all models.

In addition to EM and F1, we alsol assess
whether our models generate terms with the same

11EM is also used to evaluate morphological reinflection
in the SIGMORPHON Shared Task, where it is referred to as
“accuracy” (Cotterell et al., 2016).

Model Setting FranceTerme TERMIUM
EM F1 EM F1

mBART TERM 26.3 41.3 31.1 49.7

CroissantLLM TERM 25.6 42.2 30.3 50.3
CroissantLLM DEF 4.6 19.8 3.8 22.7
CroissantLLM DEF+TERM 25.3 42.9 30.2 51.5
BLOOM-1.1B TERM 15.9 31.3 17.1 37.1
BLOOM-1.1B DEF 1.1 11.3 1.4 15.4
BLOOM-1.1B DEF+TERM 17.8 34.9 20.0 41.2
BLOOM-7.1B TERM 23.7 40.3 27.5 47.7
BLOOM-7.1B DEF 10.0 24.7 7.5 26.6
BLOOM-7.1B DEF+TERM 27.1 44.6 32.1 53.5

Table 1: Definition-augmented Translation results on
the test sets of FranceTerme and TERMIUM, with 5
randomly selected ICL examples for LLMs. Best overall
results are bolded while best results in settings TERM
and DEF are underlined.

morphological processes as the reference, as de-
scribed in Section 3 (see Figure 1).

5 Results

5.1 Datasets
We experiment with two EN-FR bilingual thesauri
in this work: FranceTerme12 and TERMIUM,13,
which are curated by the French and Canadian
governments, respectively. Both of these thesauri
are well-studied in the neology literature (Pecman,
2012; Tonti, 2023; Holeš, 2024). We filter loan-
words (cf. Section 3) by removing terms that are
identical in EN and FR (case insensitive; 2.9%
of FranceTerme, 4.6% of TERMIUM). To filter
acronyms, we discard terms with two consecutive
upper-case letters (1.8% of FranceTerme, 2.3% of
TERMIUM). We also filter entries with missing
data to only keep triples of (EN term, FR term,
FR definition).14 FranceTerme finally amounts to
6,623 terms equally and randomly split into vali-
dation and test sets. When testing, the validation
set will serve for ICL and vice-versa. TERMIUM
is much larger so we randomly keep 5,000 terms
for validation, 5,000 for testing, and the remaining
194,992 for ICL. TERMIUM broadly covers 13
coarse-grained domains (listed in Table 3), which
are balanced enough so that we can confidently

12https://www.culture.fr/franceterme, open license
compatible with CC-BY 2.0, version of November 17 2023.

13https://www.btb.termiumplus.gc.ca/ Open Gov-
ernment Licence - Canada, version of February 6 2023.

14FranceTerme definitions are only available in FR, the tar-
get language. TERMIUM provides both EN and FR definitions,
so we provide additional results in Appendix A with machine-
translated definitions. We find our results to be consistent with
both reference and machine-translated French definitions.

https://www.culture.fr/franceterme
https://www.btb.termiumplus.gc.ca/
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Setting ICL FranceTerme TERMIUM
EM F1 EM F1

TERM Random 23.7 40.3 27.5 47.7
TERM Domain 26.3 42.6 29.6 49.7
TERM Paradigm 27.0 43.8 36.3 55.4
DEF Random 10.0 24.7 7.5 26.6
DEF Domain 10.1 25.1 8.6 27.5
DEF Co-hyponyms 10.7 25.8 10.5 30.0
DEF+TERM Random 27.1 44.6 32.1 53.5
DEF+TERM Domain 28.5 46.0 32.5 54.2
DEF+TERM Fusion 31.2 48.2 40.7 60.0

Table 2: Results of BLOOM-7.1B on the test sets of
FranceTerme and TERMIUM according to our ICL se-
lection strategy: (i) random (baseline); (ii) domain (base-
line); (iii) derivation paradigm (not applicable to DEF);
(iv) co-hyponyms (not applicable to TERM); (v) fusion
of the latter two. Best overall results are bolded while
best results in settings TERM and DEF are underlined.

compute statistics for each of them (from 83 sam-
ples in Metal. to 895 in MPS in the test set). On the
other hand, FranceTerme covers ≈ 70 very imbal-
anced domains (some containing just one sample)
so we only consider it as a whole.

5.2 Definition-augmented Translation

We now explore the three settings of Neologisms
Translation with our four models, keeping ICL se-
lection random (see Table 1). We find that TERM,
translating the contextless source term, is much
easier than DEF, where the input is the FR defi-
nition. However, the performance of models in
setting TERM are limited, with mBART, BLOOM-
7.1B, and CroissantLLM all reaching similar per-
formance. We find that BLOOM-7.1B is able to
combine information from source term and defi-
nition in setting DEF+TERM, significantly outper-
forming TERM. Model size is particularly impor-
tant in this setting, as we observe that BLOOM-
1.1B and CroissantLLM, which are roughly the
same size, barely outperform or even deteriorate
TERM when using the additional definition. There-
fore, we focus on BLOOM-7.1B in the following
experiments. BLOOM-7.1B DEF+TERM is so ef-
fective that it outperforms an oracle late fusion
of TERM and DEF, suggesting an interaction be-
tween the two sources of information. For instance,
BLOOM-7.1B DEF+TERM correctly predicts cap-
teur de mission for mission sensor “capteur réal-
isant des mesures qui font partie de l’objet de la
mission d’un engin spatial”,15 unlike TERM which

15“sensor performing measurements that are part of the
mission of a spacecraft”.
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Figure 4: Exact Match (EM) of BLOOM-7.1B (DEF)
w.r.t. term’s corpus frequency, comparing random and
co-hyponym ICL selection, on FranceTerme’s test set.
The upper part shows the number of examples in each
bin. Note the logarithmic scale of the x-axis.

predicts mission de reconnaissance and DEF which
predicts instrument de mesure (“measuring instru-
ment”).

5.3 In-Context Learning

Results according to our different ICL strategies
are in Table 2. We find that our strategies consis-
tently improve over random and domain selection,
even though the latter accesses the ground-truth
domain through an oracle. The performance gains
are especially high for TERMIUM, where the set
of examples for ICL is much larger. Furthermore,
we show in Table 3 that our methods are domain-
agnostic, with significant improvements in 12 out
of 13 domains of TERMIUM, from Humanities to
Computer Science. In the rest of this section, we
will focus on FranceTerme for the sake of space,
but our results are consistent on both datasets.

5.4 Frequency Bias and Semantic Change

Our main research interest lies in Neologism Trans-
lation. However, assessing whether a term is neo-
logical or lexicalized is a subjective matter (Lom-
bard and Huyghe, 2020). Therefore, we choose a
continuous scale of neology based on the term’s
frequency in large corpora, namely ROOTS-fr-
open (Laurençon et al., 2022) and OSCAR-fr 22.01
(Abadji et al., 2022). ROOTS-fr-open is a French
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Setting ICL Agr. CS Indus. MPS Mech. Med. Hum. Env. Tele. Jus. Eco. Elec. Metal.

TERM Random 20.5 36.2 16.5 33.0 18.9 31.3 27.2 32.9 32.7 33.1 26.5 24.4 19.3
TERM Paradigm 22.6 44.1 22.7 46.8 28.1 50.0 34.5 39.1 38.1 30.5 31.9 31.1 24.1
DEF Random 5.6 6.0 5.9 6.9 5.1 11.2 10.2 9.1 5.4 5.9 8.4 6.7 4.8
DEF Co-hyponyms 5.6 8.6 9.7 11.7 9.7 15.3 11.5 13.2 6.5 7.6 8.6 7.7 10.8
DEF+TERM Random 29.2 40.5 21.2 36.9 21.9 37.1 34.3 37.4 32.7 32.2 31.3 25.4 28.9
DEF+TERM Fusion 28.7 44.8 28.4 48.5 31.1 52.9 40.9 46.0 44.6 38.1 37.3 34.9 33.7

Table 3: Exact Match of BLOOM-7.1B on the 13 domains of TERMIUM according to our ICL selection strategy:
Agriculture (Agr.), Electronic and Computer Science (CS), Industries (Indus.), Maths Physics and Natural Sciences
(MPS), Mechanics (Mech.), Medicine (Med.), Humanities (Hum.), Environmental Sciences (Env.), Telecommunica-
tions (Tele.), Law and Justice (Jus.), Economy (Eco.), Electricity (Elec.), and Metallurgy (Metal.). Best overall
results are bolded while best results in settings TERM and DEF are underlined.

CC-licensed subset of ROOTS, the dataset used to
train BLOOM. It consists of 4 billion words (20
GB), mostly from Wikimedia. OSCAR-fr 22.01 is
a French cleaned subset of Common Crawl, which
was also partly used to train BLOOM. It consists
of 42 billion words (382 GB).

Figure 4 shows that 15.8% of FranceTerme tar-
get (French) terms do not appear even a single
time in this huge corpus, and most appear less
than 100 times (i.e. the frequency of monolexi-
cal terms is less than 2× 10−9). See Appendix B
for examples of each decile. We find that the ne-
ological feeling (Lombard and Huyghe, 2020) is
weaker after 1,000 occurrences (e.g. effet de re-
bond “rebound effect”). It is not a coincidence that
BLOOM (DEF) predicts terms much more accu-
rately above this 1,000 occurrences threshold (Fig-
ure 4). However, the bulk of the distribution lies
before 1,000, where we find our co-hyponym ICL
selection method to significantly and consistently
improve results. For example, given “Enzyme qui
déphosphoryle les résidus sérine, thréonine ou ty-
rosine préalablement phosphorylés, présents dans
les protéines”,16 BLOOM, with random ICL, fails
to generate protéine-phosphatase (“protein phos-
phatase”, 0 occurrences), while our co-hyponym
selection strategy succeeds because of relevant
ICL examples such as protéine-kinase (“protein-
kinase”): “Enzyme qui phosphoryle les résidus
sérine, thréonine ou tyrosine présents dans les pro-
téines.”17

On the other hand, we observe that most frequent
terms are indeed semantic neologisms, i.e. terms
transferred from one domain to another, with a
meaning change. We find that BLOOM is unable to

16“Enzyme that dephosphorylates previously phosphory-
lated serine, threonine or tyrosine residues in proteins”

17“Enzyme that phosphorylates serine, threonine or tyrosine
residues present in proteins.”

Setting ICL Pre. Suff. Neo. Native Synt.

TERM Random 71.5 86.2 61.1 14.8 87.7
TERM Paradigm 73.4 87.4 59.8 24.4 88.0
DEF Random 59.2 82.0 39.5 15.8 77.6
DEF Co-hyponyms 59.7 82.5 36.7 18.7 79.5
DEF+TERM Random 71.8 86.9 63.3 17.9 87.6
DEF+TERM Fusion 74.8 88.4 65.3 26.5 88.8

Table 4: F1 scores of morphosyntactic processes pre-
diction by BLOOM-7.1B on FranceTerme test set. The
best overall results are in boldface while the best results
in settings TERM and DEF are underlined.

generate semantic neologisms, as its performance
drops after 106 occurrences (Figure 4). For exam-
ple, for pression “marquage serré de l’adversaire
en possession du ballon”,18 which metaphorically
transfers the concept of pressure from physics to
sports, the model generates the literal syntagm mar-
quage individuel (“individual marking”).

5.5 Morphosyntactic Analysis

The multi-label classifier described in Section 3
allows us to analyze the morphological processes
used to coin new terms. We compare the morpho-
logical processes of the models’ outputs with the
corresponding reference (see Table 4). We find
that, even when the output term is incorrect, the
morphological analysis of the output term agrees
mostly with the reference. For example, while
énantiomère (“enantiomer”) does not match the
reference distomère (“distomer”), both are neoclas-
sical compounds. The only exception is for native
compounds, which are rare in French: only 2.8% of
EN native compounds are translated as native com-
pounds into FR. Overall, these performance are in
line with previous results (Table 2): our ICL selec-
tion strategies consistently improves the scores.

18“close marking of opponents in possession of the ball”
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Figure 5: Exact Match (EM) of BLOOM-7.1B outputs
w.r.t. morphosyntactic difference ∆ between EN and
FR processes, in the three usual settings with randomly
selected ICL examples on FranceTerme’s test set. The
upper part shows the number of examples for ∆ ∈ [0, 4].

5.6 Morphosyntactic Divergences

The multi-label classifier also enables us to evalu-
ate the divergences between English source terms
and their reference French counterparts. We study
here how this divergence impacts the performance
of the models. Given E and F , the sets of EN and
FR morphosyntactic processes involved in the gen-
eration of a given term, respectively, we rely on
the symmetric difference between these two sets to
define a distance metric: ∆ = |(E ∪F )\ (F ∩E)|.
We find that model performance is negatively corre-
lated with this distance, especially when relying on
the EN source term, see Figure 5. For example, the
TERM model translates the syntagm of suffixation
“homing head” using the same processes, result-
ing in tête de guidage, not matching the reference
prefixation autodirecteur.

5.7 Translation or Orthographic Conversion?

We saw in Section 5.2 that setting TERM was
much easier than DEF. We show that this is due
to frequent surface similarities between EN and
FR, which makes the translation akin to an ortho-
graphic conversion. We quantify this by computing
the edit distance between EN and FR monolexi-
cal terms.19 Figure 6 shows that the performance
in setting TERM is negatively correlated with the
edit distance, while DEF does not suffer from this

19Doing so for polylexical terms would require more cau-
tion, because of syntactic divergences between EN and FR.
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Figure 6: Exact Match (EM) of BLOOM-7.1B (TERM)
outputs w.r.t. edit distance between EN and FR monolex-
ical terms, with randomly selected ICL examples on
FranceTerme’s test set. The upper part displays the
number of examples in each bin. Edit distance is at least
1 because loanwords were filtered out.

bias. For example, the model correctly predicts the
following terms with an edit distance of 3 or less:
mycotoxin → mycotoxine, exocytosis → exocytose,
iconomatic → iconomatique. This result holds for
both character-level and token-level edit distance.
For token-level distance, we may assume that the
model directly copies tokens from source to target.
The examples above actually share the following
tokens: “_my c oto”, “_ex”, and “_ic onom”,
respectively.

5.8 Prefixation, Fertility, and BPE

BLOOM, as mBART and CroissantLLM, relies on
BPE tokenization, like most LLMs (Gage, 1994;
Sennrich et al., 2016). While BPE circumvents
out-of-vocabulary (OOVs) issues by splitting rare
words into subwords, it only relies on character
n-grams co-occurrences and rarely generates mor-
phologically sound segmentations (Church, 2020).
When pre-tokenizing text on whitespace, tokens
beginning a word bear a special mark “_”; without
pre-tokenization, a whitespace will occur before
each word start (Kudo and Richardson, 2018; Wolf
et al., 2020). This means that prefixations and suf-
fixations are not treated equally, with two issues for
prefixations: (i) even if segmented correctly, the
base and derivation will not share any representa-
tion (e.g. “_collision” vs. “_pré collision”;
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Figure 7: Distribution of word fertilities for prefixed and
suffixed terms on FranceTerme’s test set (left). Density
is normalized separately for prefixes and suffixes to
ease visualization. Exact Match (EM) of BLOOM-7.1B
(DEF+TERM) outputs w.r.t. word fertilities (right). The
upper part shows the number of examples in each bin.

Hofmann et al., 2021); (ii) most likely, the de-
rived term will be over-segmented, as the occur-
rences of the base in word-internal position are too
rare to warrant a dedicated vocabulary entry (e.g.
“collision”). For our running example, précol-
lision is split as “_préc oll ision”20. Unlike
suffixations which are often reasonably well seg-
mented and share representations with their base
(e.g. “_collision neur”).

Figure 7 shows that prefixed terms suffer from
this BPE tokenization more than suffixed forms
and have a much higher word fertility.21 Further-
more, in the same figure, we show that word fer-
tility is negatively correlated with EM. For exam-
ple, BLOOM fails to predict téléconsultation (seg-
mented as “_tél éc ons ult ation”, although
“_consultation” has a dedicated token).

We extend this experiment in Lerner and Yvon
(2025) on controlled datasets with both attested ad-
jectival bases and pseudowords. Consistently, we
find that LLMs struggle to generate prefixations
because of BPE, whereas morphological segmenta-
tion leads to near-perfect accuracy.

6 Conclusion

Neologism translation is a challenge for standard
MT systems that rely on parallel data. We propose
a first effort to leverage definitions to accurately
translate neologisms with Large Language Mod-
els. We found that LLMs were, to some extent,

20Note that these three tokens are not meaningful mor-
phemes in French.

21Fertility is the number of tokens in a given form; for
polylexical terms, we define word fertility as the maximum
fertility over words occurring in the term.

able to generate terms from their definition. More-
over, they can also combine the definition with the
source term to translate it more accurately. As these
models rely on In-Context Learning, we proposed
to retrieve co-hyponyms or terms from the same
derivation paradigm as the source term, which con-
sistently improved results over two datasets cov-
ering 13 diverse domains. The more terms are
neological, which we assess from their corpus fre-
quency, the more co-hyponyms retrieval improves
performance.

However, we also pinpoint several limitations of
these models: (i) they are sensitive to the similar-
ity of source and target terms, either superficial or
morphological; (ii) they rely on BPE tokenization,
which is not morphologically sound and therefore
impacts performance, especially for prefixations.
This first limit is likely to be persistent but should
be controlled in future work. The second limit,
however, may be tackled using morphological seg-
mentation (Smit et al., 2014; Batsuren et al., 2022;
Lerner and Yvon, 2025) or character-based models
(Cherry et al., 2018; Wang et al., 2024).

Our models may prove useful to enrich thesauri
(e.g., providing suggestions to FranceTerme’s trans-
lators and lexicographers). Another obvious appli-
cation is terminology-constrained MT (Semenov
et al., 2023), with challenging research questions,
especially for document-level MT, where one must
find the right balance between terminological con-
sistency and variation. Finally, in our future work
we would also like to study the translation of terms
in a more dynamic settings, considering new deriva-
tives or complex noun phrases as they are coined
or proposed to denote novel concepts in emerging
research works. The latter category, which gener-
alize our ”syntagmatic compounds” , in particular,
is likely to pose difficult translation problems, due
to the opaqueness of the semantic relationships be-
tween their subparts.

Limitations

Our study is limited to a single language pair,
namely EN-FR, which, however, is highly demand-
ing of such technology.22 Moreover, French has
a strong tradition of scientific writings as well as
scientific terminology, as a large body of literature
was published in French until a decline in the mid-
20th century (Bacaër, 2019; Larivière and Riddles,

22Both France and Québec are pushing to disseminate scien-
tific findings in multiple languages. See, e.g., Second French
Plan for Open Science (Vidal, 2021).
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2021) and higher education is given in French. This
is not the case for many low-resource languages
due to a general tendency, observed in many coun-
tries, to use English for higher education, or for
which scientific terminology simply does not exist
(Gordin, 2015).

Furthermore, we conduct extensive experiments
on EN-FR and find our results to be consistent
across two datasets and 13 diverse domains. Our
method could be extended to other languages with
a tradition of scientific writing, e.g., Russian, Chi-
nese, or German (Céspedes et al., 2024). In the lat-
ter case, we could leverage multilingual thesauris
such as IATE (Zorrilla-Agut and Fontenelle, 2019)).
It would be particularly interesting to study other
morphosyntactic processes than those of Section 3.
We also plan to study the FR-EN direction, which
is especially relevant for humanities and social sci-
ences, where a large body of work is still published
in French. However, many concepts in humanities
are culture-dependent and challenging to translate.

As a first step to study definition-to-term gener-
ation, we assume that the definition of the term is
available. In future work, we plan to extract defini-
tions on the fly from source documents (Jin et al.,
2013; Head et al., 2021; August et al., 2022; Huang
et al., 2022). Because of FranceTerme, experiments
of Sections 5.2 and 5.3 were conducted with defi-
nitions in French (the target language). However,
we provide additional results in Appendix A with
TERMIUM definitions machine-translated from
English. Our findings of Sections 5.2 and 5.3
are consistent with these machine-translated defini-
tions.

Studying neologisms in necessarily a race
against the clock. We find that some terms in
FranceTerme and TERMIUM already appear in
large corpora such as OSCAR (cf. Section 5.4).
However, most terms of FranceTerme appear less
than 100 times in a 46 billion words corpus (i.e.
2× 10−9 frequency). We recommend future work
to conduct a similar analysis and focus on the per-
formance on these rare terms. Our ICL method sig-
nificantly improves performance on low-frequency
terms. Also note that terms recorded in a thesauri
show institutionalization, which is a step towards
lexicalization (Hohenhaus, 2005). Finally, we find
that very frequent terms are indeed neologisms but
have gone through semantic change. We plan to
better assess this latter phenomenon by studying
diachronic corpora (Ryskina et al., 2020).
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Setting ICL EM F1

TERM Random 27.5 47.7
TERM Domain 29.6 49.7
TERM Paradigm 36.3 55.4
DEF Random 6.2 23.4
DEF Domain 6.4 23.2
DEF Co-hyponyms 8.2 25.7
DEF+TERM Random 29.2 50.4
DEF+TERM Domain 29.8 50.8
DEF+TERM Fusion 36.6 57.0

Table 5: Results of BLOOM-7.1B on the TERMIUM
test set with machine-translated definitions. Results are
broken down by ICL selection strategy, like in Table 2:
(i) random (baseline); (ii) domain (baseline); (iii) deriva-
tion paradigm (not applicable to DEF); (iv) co-hyponyms
(not applicable to TERM); (v) fusion of the latter two.
Best overall results are bolded while best results in set-
tings TERM and DEF are underlined. Results in setting
TERM are copied from Table 2.

conducted with French definitions, the target lan-
guage, as it is the only language available in
FranceTerme. We provide here additional results
for TERMIUM, which includes both French and
English definitions. This enables us to study a
more general setting, where we do not assume that
a French definition exists.

For this, we automatically translate English def-
initions into French using TowerInstruct-7B-v0.2
(Alves et al., 2024), and reproduce the experiments
of Section 4 with these machine-translated defini-
tions.23

We find the results of Sections 5.2 and 5.3 to
be consistent with these machine-translated def-
initions, as reported in Table 5: (i) definition-
augmented translation (DEF+TERM) improves term
translation (TERM); (ii) the co-hyponym and deriva-
tion paradigm strategies improve over random sam-
pling and domain strategies.

B Frequency and Neology

In addition to the analysis of Section 5.4, Table 6
displays random examples of terms for each decile,
which accurately reflects the feeling of neology.
After the 7th decile, i.e. 1,000 occurrences, the
neological feeling is weaker. Note that pas, the
most frequent term, is a semantic neologism from
the electronics domain and relates to the distance

23Using the tower_instruct_0_shot configuration as in-
structed in https://github.com/deep-spin/tower-eval.

Decile Term Occurrences

min classification semi-dirigée 0
“semi-supervised classification”

0.1 moment d’exécution 0
“timing”

0.2 stellarateur 2
“stellarator”

0.3 horloge à fontaine atomique 7
“atomic fountain clock”

0.4 sondage au limbe 22
“limb sounding”

0.5 sauvetage côtier sportif 74
“surf life saving”

0.6 planche nautique 273
“aquatic board”

0.7 effet de rebond 1,052
“rebound effect”

0.8 embardée 4,327
“nudging”

0.9 clonage 45,680
“cloning”

max pas 232,506,256
“pitch”

Table 6: Random examples of terms from FranceTerme
according to their frequency in a large corpus, one per
decile

between two adjacent interconnection lines in an
integrated circuit. However, pas has many differ-
ent meanings, including as negation adverb “not”,
which covers most of its occurrences.

C Morphosyntactic Classification

We build a multi-label classifier for four of the five
classes defined in section 3: prefixation, suffixa-
tion, neoclassical or native compounding. For the
fifth (syntagmatic compounding), we rely on a sim-
ple heuristic: the number of words segmented by
spaCy. If there are several words, we consider the
term to be a syntagm.

To detect these four morphological processes,
we use FastText’s architecture (Joulin et al., 2017),
which provides a linear classifier for character se-
quences, represented by the set of words and char-
acter n-grams found in them. This classifier is
trained in a one-versus-all fashion, equivalent to a
binary classifier for each class.

In this section, we describe in more detail the
data used to train and evaluate this classifier.

C.1 Datasets

We build a training and evaluation set from the Mor-
phyNet etymological databases (Batsuren et al.,
2021) and the one used for the SIGMORPHON

https://github.com/deep-spin/tower-eval
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2022 shared task (Batsuren et al., 2022), both ex-
tracted from English Wiktionary.24 We combine
the two databases because they contain complemen-
tary information: SIGMORPHON contains native
compoundings but only provides morphological
segmentation, while MorphyNet provides the base
of all words and differentiates between prefixation
and suffixation.

However, these two databases share the same
shortcoming: they do not consider neoclassical
compounds, which are found mixed in with affix-
ations. To differentiate between them, we use a
simple heuristic: if all morphemes in a word are
categorized as affixes within MorphyNet, then none
of them are free, so it is a neoclassical compound.

Our algorithm is recursive for decomposing com-
plex words (with more than two morphemes). For
example, bidirectional will be decomposed into
bi+directional (prefixation) and directional will in
turn be decomposed into direction+al (suffixation).
Bidirectional will therefore inherit these two labels.

C.2 Implementation

Statistics from the English and French lexicons are
in Table 7, which confirm that native compounds
are much rarer in French. We also note that neoclas-
sical compounds are less systematically annotated
in French than in English, perhaps because Mor-
phyNet and SIGMORPHON come from English
Wiktionary. We also show how the different pro-
cesses combine in Table 9. Derived terms are often
prefixed and suffixed at the same time, which is
impossible for neoclassical compounds, by con-
struction.

These lexicons are randomly divided into train-
ing (80%), validation (10%), and test (10%) sets.
We train one model for each language. Monomor-
phemes (inflected or not) are kept and serve as
negative examples for all classes during training.

FastText hyperparameters are determined auto-
matically on the validation set using the fastText
Python library. For both languages, we find it opti-
mal to use character n-grams for n ∈ J3, 6K.

C.3 Results

Results on the test set are in Table 8. The classifier
is very accurate and has very good recall, with the
exception of native compounds in French which
are under-represented, due to their rarity, and for
which recall is modest. To a lesser extent, recall for

24https://en.wiktionary.org/

Process # EN # FR

Native 45,463 2,854
Neoclassical 32,766 7,583
Prefixation 190,305 96,721
Suffixation 217,404 155,169

Table 7: Number of words in our English and French
morphological classification corpora for each process
independently

English French

P R F1 P R F1

Native 95.3 93.0 94.1 89.7 66.3 76.2
Neo. 93.4 91.4 92.4 92.2 87.2 89.6
Pre. 91.5 91.3 91.4 93.8 93.5 93.6
Suff. 93.2 93.3 93.2 97.4 98.0 97.7

Overall 92.7 92.4 92.5 95.9 95.7 95.8

Table 8: Precision (P), Recall (R) and F1 for multi-label
morphological classification, in English and French

neoclassical compounds is lower in French than in
English, due to their under-representation in SIG-
MORPHON, as mentioned above.

D Implementation Details

D.1 LLM Implementation
LLMs are implemented in the transformers li-
brary (Wolf et al., 2020) itself based on pytorch
(Paszke et al., 2019). LLMs are quantized in 8 bits
for effective inference on a single V100 GPU with
32GB of RAM. We use greedy decoding.

D.2 mBART Fine-tuning on SciPar
mBART is implemented with fairseq (Ott et al.,
2019). It is fine-tuned with a single NVIDIA RTX
A6000 GPU with 48GB of RAM. It uses a batch
size of 4,096 samples and accumulates gradients
for 4 steps. Early stopping is done according to the
validation BLEU score (Peng et al., 2024).25

D.3 Corpus frequency
For the analysis of Section 5.4, we compute corpus
frequency (case insensitive) using Aho-Corasick’s
algorithm (Aho and Corasick, 1975; Wu et al.,
2012), implemented in the pyahocorasick Python
library.26

25SacreBLEU signature (Post, 2018):
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1

26https://pyahocorasick.readthedocs.io

https://en.wiktionary.org/
https://pyahocorasick.readthedocs.io
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Native Neo. Pre. Suff. # EN # FR

207,074 118,811
✓ 109,353 90,646

✓ 91,115 35,646
✓ ✓ 88,349 60,307

✓ 17,191 3,508
✓ ✓ 9,677 3,640
✓ ✓ 5,593 432
✓ ✓ ✓ 0 0

✓ 34,425 2,162
✓ ✓ 5,552 353
✓ ✓ 808 115
✓ ✓ ✓ 4,373 221
✓ ✓ 138 1
✓ ✓ ✓ 100 2
✓ ✓ ✓ 67 0
✓ ✓ ✓ ✓ 0 0

Table 9: Number of words in our English and French
morphological classification corpora for each process
combination
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