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Abstract
Code-switching is a widely prevalent linguistic
phenomenon in multilingual societies like In-
dia. Building speech-to-text models for code-
switched speech is challenging due to limited
availability of datasets. In this work, we fo-
cus on the problem of spoken translation (ST)
of code-switched speech in Indian languages
to English text. We present a new end-to-end
model architecture CoSTA that scaffolds on
pretrained automatic speech recognition (ASR)
and machine translation (MT) modules (that
are more widely available for many languages).
Speech and ASR text representations are fused
using an aligned interleaving scheme and are
fed further as input to a pretrained MT mod-
ule; the whole pipeline is then trained end-to-
end for spoken translation using synthetically
created ST data. We also release a new eval-
uation benchmark for code-switched Bengali-
English, Hindi-English, Marathi-English and
Telugu-English speech to English text. CoSTA
significantly outperforms many competitive
cascaded and end-to-end multimodal baselines
by up to 3.5 BLEU points. Code and datasets
have been publicly released.1

1 Introduction

More than half of the world’s population is pre-
sumed to be bilingual (Grosjean, 2021), often
leading to code-switching (CS) in conversational
speech, where speakers interweave words and
phrases frommultiple languages within a single ut-
terance. Recent work has explored code-switching
in automatic speech recognition (ASR) and ma-
chine translation (MT) fairly extensively. In con-
trast, spoken translation (ST) of code-switched
speech has been somewhat under-explored. This
is largely due to the lack of evaluation benchmarks
for ST using code-switched speech and the pre-
dominantly monolingual bias of current state-of-
the-art ASR/MT systems.

1https://github.com/csalt-research/CoSTA

In this work, we present a new and effective end-
to-end solution for ST of code-switched speech
CoSTA, starting from pretrained ASR and MT
backbones. Simply cascading ASR and MT mod-
ules in a sequence is not very effective, since code-
switched speech results in many ASR errors which
cascade further via the MT module into the final
ST predictions. We propose using a speech en-
coder for the input speech and a text encoder for
the ASR text to derive speech and text represen-
tations, respectively. These sequences are force-
aligned and the speech-text representations are in-
terleaved according to the alignment. This merged
representation is then fed as input to a pretrained
MT module, and the entire pipeline is trained end-
to-end with an ST objective.2 Aligned interleav-
ing of speech-text representations is an important
design choice in CoSTA that is critical to deriving
superior ST performance. We believe that the inter-
leaving in CoSTA also aids code-switched transla-
tion by transliterating to English (if there are En-
glish terms that appear in the native script during
training).
Apart from a new ST model for code-switching,

we release a new suite of code-switched evalua-
tion sets for ST in Bengali-English, Hindi-English,
Marathi-English and Telugu-English by starting
from ASR data in the IndicVoices dataset (Javed
et al., 2024). The ASR references are translated
into English with the help of human annotators.
We also release two new podcast-based evaluation
sets for ST with more complex code-switching in
Hindi-English and Telugu-English. (We also de-
velop two new monolingual evaluation sets for ST
in Telugu and Hindi, to evaluate how our model
fares on largely monolingual inputs.) To the best
of our knowledge, we are the first to release ST
resources to translate from the four Indic code-

2At test time, we first produce an ASR output from the
speech encoder which is subsequently used to create the inter-
leaved speech-text embeddings.

https://github.com/csalt-research/CoSTA
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switched language pairs to English.
We do not assume access to any human-labeled

ST data and train our model on a modest 30
hours of synthetic ST data, where translations are
generated automatically from ASR ground-truth
transcriptions. We compare our trained model
against state-of-the-art cascaded baselines and end-
to-end baselines such as SeamlessM4T (Seamless-
Communication et al., 2023) and Whisper-ST
(Radford et al., 2023), which have been trained on
substantially larger datasets. Despite CoSTA be-
ing trained in a low-resource setting with synthet-
ically generated translations, our model achieves
the best BLEU scores significantly outperforming
the best end-to-end baseline by at most absolute 3
points. Interestingly, our model also demonstrates
robustness to code-switching, showing no signif-
icant degradation in performance with increasing
amounts of code-switching in a sentence.
In summary, our main contributions are:

1. We propose CoSTA, a new end-to-end archi-
tecture for code-switched ST. We introduce
an interleaving technique that aligns speech
and text embeddings, boosting translation ac-
curacy into English for code-switched speech
(detailed in Section 3).

2. We release new ST evaluation benchmarks
for four different languages code-switched
with English: Marathi, Telugu, Bengali, and
Hindi (detailed in Section 4).

3. We show many detailed ablation experiments
and demonstrate how CoSTA is robust to
varying degrees of code-switching (detailed
in Sections 5 and 6).

2 Related Work

To overcome the limitations of traditional cascaded
spoken translation (ST) systems, recent work has
shifted towards end-to-end (E2E) architectures
that directly translate speech into text in a differ-
ent language, eliminating the need for intermedi-
ate transcription (Berard et al., 2016; Weiss et al.,
2017; Kano et al., 2017; Berard et al., 2018; In-
aguma et al., 2020; Wang et al., 2020; Zhao et al.,
2021). However, training such E2E models posed
challenges due to the need for cross-modal, cross-
lingual capabilities and the scarcity of labeled ST
data compared to machine translation (MT) and au-
tomatic speech recognition (ASR).

To address these challenges, prior work ex-
tensively explored techniques to leverage small
amounts of labeled ST data including pretraining
(Weiss et al., 2017; Berard et al., 2018; Bansal
et al., 2019;Wang et al., 2020; Alinejad and Sarkar,
2020; Dong et al., 2021b; Zhang, 2021; Tang et al.,
2022; Le et al., 2023; Lam et al., 2024), data aug-
mentation (Park et al., 2019; Gangi et al., 2019;
Shanbhogue et al., 2023), self-training (Pino et al.,
2020; Wang et al., 2021; Fang et al., 2022), and
using self-supervised pre-trained audio representa-
tions (Nguyen et al., 2020; Wu et al., 2020; Wang
et al., 2021; Tang et al., 2022). Recognizing lim-
itations in the single encoder architecture, prior
work explored enhancements such as employing
a second encoder to extract semantic information
from speech or incorporating both acoustic and tex-
tual information into a stacked encoder(Dong et al.,
2021a,b). Multi-task frameworks have also been
shown to enhance the robustness of ST models
(Tang et al., 2021; Ye et al., 2021; Bhavsar et al.,
2022; Zhang et al., 2023).
To bridge the modality gap between speech and

text, several methods like mutual learning (Zhao
et al., 2021), projection into a common representa-
tion space (Han et al., 2021; Duquenne et al., 2022),
modality matching (Chen et al., 2022), contrastive
learning (Ye et al., 2022; Yin et al., 2023) and
cross-modal regularization with scheduled sam-
pling (Fang and Feng, 2023) have also been ex-
plored. In very recent work, multimodal mod-
els like SeamlessM4T (Seamless-Communication
et al., 2023), Maestro (Chen et al., 2022), mSLAM
(Bapna et al., 2022) learn shared representations
for speech and text and simultaneously support
multiple speech-to-text tasks like ASR and ST.
None of the above-mentioned prior works were

focused on code-switched ST. Weller et al. (2022)
addressed this challenge by creating a code-
switched corpus for Spanish-English and explor-
ing both cascaded and end-to-end architectures for
speech translation. Huber et al. (2022) proposed a
unified Language Agnostic E2E STmodel (LAST)
that is well-suited for code-switched ST.
CoSTA distinguishes itself from prior work by

bootstrapping on pretrained MT and ASR mod-
els and combining speech and text modalities us-
ing a new interleaving technique. We also release
new ST evaluation sets for four language pairs,
Telugu-English, Marathi-English, Hindi-English
and Bengali-English, that have not been previously
addressed in any prior work.
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3 CoSTA: Model Architecture

To train CoSTA, we assume access to a spoken
translation (ST) corpus D = {(si, xi, yi)}Ni=1 with
N training triples, where each triple consists of
speech in a source language (si), its transcript (xi)
and its translation in a target language (yi). Since
we do not have access to any ST training data for
our code-switched languages of interest, we cre-
ate D by starting from an ASR corpus of code-
switched speech such as IndicVoices and syntheti-
cally generating English translations using a pre-
trained model (such as IndicTrans (Gala et al.,
2023)).

Figure 1: Model with aligned interleaving, which aligns
corresponding speech and text embeddings and inter-
leaves them before passing them through the text en-
coder (IndicTrans or NLLB).

Figure 1 shows a schematic diagram of CoSTA.
We assume access to pretrained ASR and MT
models, which are encoder-only and encoder-
decoder models, respectively. We use fine-
tuned Indic Wav2Vec (Javed et al., 2022) as our
speech encoder and we use two different mod-
els as pretrained MT modules, IndicTrans2 (Gala
et al., 2023) and NLLB (Costa-jussà et al., 2022),
thereby having two variants of CoSTA. CoSTA
uses the IndicWav2Vec speech encoder to trans-
form the input speech s into a sequence of speech
representations {s1, . . . , sT } of length T . The
source transcript x is tokenized and transformed
into a sequence of text embeddings {x1, . . . , xM}
of length M , using the tokenizer and the text em-
bedding layer of the text encoder (either Indic-
Trans or NLLB). To bridge the length discrepancy

between speech representations and token embed-
dings, two convolutional layers with a stride of 4
each are added after the ASR encoder (as in Ye
et al. (2022)). The resulting features are of dimen-
sionality d × T/4 where d is the dimensionality
of the encoder representations and the time dimen-
sion is reduced by a factor of 4.

Aligned interleaving. Given an input speech
representation sequence s = s1, . . . , sT and its cor-
responding text token sequence x = x1, . . . , xM ,
how should we aggregate these representations to
produce the target translation y? We adopt the
following simple strategy. A forced alignment
(Zhang and Hira, 2024) between s and x deter-
mines the number of speech frames aligned to each
xj ∈ x. The representations of these aligned
speech frames are averaged to compute s̄j . This
gives us the following interleaved alignment: xs =
{(s̄1, x1), . . . , (s̄M , xM )}. xs is fed as input to text
encoder and decoder modules. Simpler strategies
like concatenating both sequences lead to degraded
performance. Aligned interleaving of speech-text
representations is critical to achieving high ST per-
formance on code-switched speech.

Training and Inference. Our training loss is a
combination of three objectives:

L = LST + λ1LASR + λ2LMT

• LST = −
∑N

n=1 logP (yn|sn, xn) is a cross
entropy-based ST loss applied to the Indic-
Trans2 decoder. The text encoder takes both
sn and xn as inputs with aligned interleaving,
and both the encoder and decoder are super-
vised using LST to produce yn.

• LASR is the standard CTC-based ASR
loss (Graves et al., 2006). This is applied to
the output of the encoder-only ASR model
and encourages the model to perform well on
the intermediate ASR task.

• LMT = −
∑N

n=1 logP (yn|xn) is the standard
cross-entropy MT loss to train the MT en-
coder and decoder, encouraging the model to
perform well on the intermediate MT task.

The triplets in the training corpus D are suf-
ficient as supervision for all three of the above-
mentioned loss terms. λ1 and λ2 are scaling factor
hyperparameters for the loss terms that we tune on
a validation set (λ1 = 1 and λ2 = 1.5).



9197

During inference, the ASR transcript is derived
from the ASR encoder-only model first, and subse-
quently force-aligned with the input speech to cre-
ate the interleaved representation sequence.

4 Dataset Details

4.1 Code-switched Evaluation Sets
To create code-switched evaluation sets, we
extracted approximately two hours of speech-
transcription data for each of Telugu, Hindi,
Marathi, and Bengali from IndicVoices with fairly
high Code-Mixing Index (CMI) scores. CMI met-
ric quantifies the amount of code-switching in a
corpus; CMI of 0 indicates monolingual inputs,
and the maximum value of 0.5 indicates an equal
mix of both matrix (e.g. Telugu) and embedded
language (e.g. English) tokens. We translated
these transcripts into English using IndicTrans2
and manually post-edited any errors. Table 1 pro-
vides statistics for the four code-switched evalua-
tion sets.

Te Hi Mr Bn
Duration (Hrs.) 2.3 2.5 2.2 2.1
Instances 587 728 575 624
# Speakers 102 85 110 124
CMI Score 25.5% 22.1% 21.7% 23.3%

Table 1: Statistics of the code-switched evaluation set.

Podcast Evaluation Sets. To further evaluate
our models on a more challenging dataset, we ob-
tained permission from Telugu3 and Hindi podcast-
ers4 to create new code-switched evaluation sets,
referred to as the “podcast evaluation sets”. This
dataset is highly conversational, multi-speaker,
code-switched and has many disfluencies, making
it more challenging than the code-switched eval-
uation sets derived from IndicVoices. The CMI
scores for both the sets exceed 30%, indicating a
significantly higher amount of code-mixing. We
manually annotated the transcripts for the podcast
speech and created English translations after re-
moving disfluencies from the corresponding tran-
scripts. Statistics of the podcast evaluation sets are
shown in Table 2.

4.2 Training/Fine-tuning Data
Due to the absence of existing speech-
transcription-translation datasets for the code-

3Telugu Podcast
4Hindi Podcast

Language Duration (Hrs.) Instances CMI Score
Telugu 2.5 624 32.14%
Hindi 2.2 578 30.21%

Table 2: Statistics of the podcast evaluation set.

switched languages Telugu-English, Hindi-
English, Marathi-English, and Bengali-English,
we sourced 30 hours of ASR data for each
language from IndicVoices (Javed et al., 2024).
IndicVoices is an ASR dataset comprising 7348
hours of natural, spontaneous speech from 16237
speakers across 22 Indian languages, featuring
monolingual and code-switched speech. We
were careful to use largely monolingual data
during training to show that we get performance
gains on code-switched ST without access to
any code-switched speech during training. 5.
We translate the ground-truth transcripts of the
30-hour dataset into English using IndicTrans2
(Gala et al., 2023), the current state-of-the-art
MT model for Indic-to-English translation. We
reiterate here that our training set consists of
ground-truth ASR transcriptions and synthetically
generated translations.

4.3 Monolingual Evaluation Sets
We also extract monolingual evaluation sets from
IndicVoices for each of Telugu and Hindi, and
translated the speech transcripts into English using
IndicTrans2. We created monolingual datasets as
a control to check how well CoSTA performs on
them. The translations were manually verified to
post-edit any errors in the machine-generated out-
puts. Statistics of the monolingual evaluation sets
are presented in Table 3. Annotation guidelines
for all these evaluation sets can be found in Ap-
pendix G.

Language Duration (Hrs.) Instances # Speakers
Telugu 2.5 581 126
Hindi 2.6 643 137

Table 3: Statistics of the monolingual evaluation set.

5 Main Results

Cascaded Baselines. A cascaded ST baseline
consists of a state-of-the-art ASR followed by an
MT system that translates the ASR transcript. For
ASR, we used IndicWav2Vec (Javed et al., 2022),

5We applied CMI filtering to retain predominantly mono-
lingual data, with a threshold of CMI < 5 for all languages.

https://rawtalks.in
https://www.pulybazi.in
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Experiment Mr-En Te-En Bn-En Hi-En

BLEU WER BLEU WER BLEU WER BLEU WER
C
as
ca
de
d IndicWav2Vec + NLLB 9.21 43.12 11.23 37.95 13.24 38.90 17.82 33.21

Seamless (ASR) + NLLB 8.32 45.60 9.80 38.23 14.77 37.56 17.80 35.10
Seamless (ASR + MT) 9.29 45.60 10.12 38.23 15.16 37.56 18.12 35.10
IndicWav2Vec + IndicTrans 14.32 43.12 15.65 37.95 17.01 38.90 17.42 33.21
IndicWav2Vec (ASR) + IndicTrans
(MT) FT

15.18 41.97 16.76 36.53 18.19 37.81 19.74 32.90

En
d-
to
-E
nd

Whisper ST 14.60 46.54 19.35 44.15 22.31 45.05 24.36 36.15
IndicWav2Vec + IndicTrans 18.91 43.42 22.05 42.39 25.15 37.03 25.41 35.28
Seamless E2E 18.30 43.60 26.77 38.23 25.61 37.56 27.30 35.10
Seamless E2E FT 19.62 42.21 27.54 36.10 27.93 37.56 28.99 34.11
Seamless FT MT+ST 19.50 42.13 27.10 36.11 27.40 37.40 28.10 34.09
Seamless FT ASR+ST 19.66 40.75 27.83 35.61 28.65 35.15 29.65 32.20
Seamless with Interleaving 19.81 41.65 28.54 34.10 29.01 34.92 30.73 30.65

CoSTA with Seamless 20.48 40.15 28.91 33.21 29.96 34.89 31.20 30.19
CoSTA with NLLB 21.05 39.40 29.71 34.52 31.23 34.42 31.76 29.92
CoSTA with IndicTrans 21.43 38.58 29.87 34.37 31.05 34.58 33.12 29.19

Table 4: Comparison of cascaded and E2E baselines with CoSTA for Marathi (Mr), Telugu (Te), Bengali (Bn), and
Hindi (Hi) on the code-switched evaluation set. BLEU and WER scores are reported. The best baseline is in bold.
The best CoSTA numbers are bold and underlined; statistically significant improvements (at p < 0.01 using the
Wilcoxon signed rank test) using CoSTA compared to the best baseline are highlighted in green.

a multilingual speech model pre-trained on 40 In-
dian languages and fine-tuned for ASR on 9 In-
dian languages. We also leveraged the ASR capa-
bilities of SeamlessM4T-v2, a multimodal model
that can take either speech or text as input for
translation (Seamless-Communication et al., 2023)
(henceforth referred to as Seamless). For MT,
we experimentedwith two state-of-the-art multilin-
gual MT models, NLLB (Costa-jussà et al., 2022)
and IndicTrans2 (Gala et al., 2023) (henceforth
referred to as IndicTrans). Additionally, we set
up a Seamless (ASR + MT) cascaded baseline
where Seamless is used for both ASR andMT. The
above-mentioned baselines are all used zero-shot.
We also fine-tuned the best cascaded baseline (In-
dicWav2vec + IndicTrans) on our 30-hour training
dataset; IndicWav2vec is finetuned on the speech-
transcription pairs for ASR and IndicTrans is fine-
tuned on the transcription-translation pairs for MT.

End-to-End (E2E) Baselines. For E2E base-
lines, we used state-of-the-art E2E ST models,
Whisper (Radford et al., 2023) and Seamless
(Seamless-Communication et al., 2023) that we
refer to as “Whisper ST” and “Seamless E2E”,
respectively. We also ran an experiment giving
speech embeddings from the Indicwav2vec en-
coder without text embeddings. directly to the MT
Module (IndicTrans), and we call it IndicWav2Vec
+ IndicTrans. While Seamless itself is a strong

baseline, comparable in performance to GPT-4o
(OpenAI, 2024), we enhanced it further by fine-
tuning it on our 30 hr training set to establish
stronger baselines. “Seamless E2E” represents
the use of SeamlessM4T-v2 without any additional
fine-tuning. “Seamless E2E FT” indicates that
Seamless was fine-tuned directly for ST. “Seam-

Experiment Te-En Hi-En

C
as
ca
de
d IndicWav2Vec + NLLB 11.82 12.31
Seamless (ASR) + NLLB 08.91 11.56
Seamless (ASR + MT) 09.98 12.34
IndicWav2Vec + IndicTrans 14.97 15.20
IndicWav2Vec (ASR) + Indic-
Trans (MT) FT

15.16 15.95

En
d-
to
-E
nd

Whisper ST 17.68 21.08
IndicWav2Vec + IndicTrans 22.91 25.89
Seamless E2E 25.76 26.12
Seamless E2E FT 26.49 27.01
Seamless FT MT+ST 26.12 26.40
Seamless FT ASR+ST 26.87 26.93
Seamless with Interleaving 26.95 27.11

CoSTA with Seamless 27.93 27.86
CoSTA with NLLB 28.05 28.51
CoSTA with IndicTrans 28.75 29.46

Table 5: Comparison of cascaded and E2E baselines
with CoSTA for the languages Telugu and Hindi on the
podcast evaluation set. BLEU scores are reported. The
best baseline is in bold. The best CoSTA numbers are
bold and underlined; statistically significant improve-
ments (at p < 0.01 using the Wilcoxon signed rank
test) using CoSTA compared to the best baseline are
highlighted in green.
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less FT MT+ST” refers to fine-tuning first for
MT using only the transcription-translation pairs
and subsequently fine-tuning on ST using speech-
translation pairs from our 30-hr dataset. “Seam-
less FT ASR+ST” refers to an initial fine-tuning
for ASR (using speech-transcription pairs) fol-
lowed by further fine-tuning for ST (using speech-
translation pairs). Finally, we also trained another
model that makes more natural use of the pre-
trained speech and text encoders in Seamless. We
interleaved the embeddings from the speech en-
coder and the text encoder (with the ASR text) and
pass them after pooling to the text decoder. We call
this model “Seamless with Interleaving”.

CoSTA. We train two variants of CoSTA where
the MT Module is either NLLB or IndicTrans;
these variants are called “CoSTA with NLLB” and
“CoSTA with IndicTrans”, respectively. We also
trained CoSTA with the ASR and MT modules be-
ing Seamless ASR and MT, respectively. We call
this “CoSTA with Seamless”.

Results. Tables 4 and 5 show the results of
CoSTA in comparison with the cascaded and
E2E baselines on the IndicVoices and podcast
evaluation sets, respectively. We show both
BLEU scores of the final translations, as well as
word error rates (WERs) of the ASR transcripts.
CoSTA significantly outperforms strong E2E
baselines wrt BLEU scores on all four language
pairs in Table 4 and both podcast evaluation sets
in Table 5. It is also evident that E2E baselines
are significantly better than cascaded baselines
for code-switched evaluation sets. The baseline
”Seamless with Interleaving” also uses ASR tran-
scripts during inference. CoSTA outperforms this
baseline as well, showing that our performance
gains come from more than just ASR transcript
access. From the WERs in Table 4, we also
observe that significant improvements in BLEU
scores are not contingent on obtaining significant
reductions in WER (e.g., Bn and Hi).

Table 6 shows the results of all systems on the
two monolingual evaluation sets. Here, we find
cascaded baselines to be better than E2E baselines.
Despite being E2E, CoSTA is statistically compa-
rable in performance to the best cascaded baseline
for monolingual evaluation sets.

Experiment Te-En Hi-En

C
as
ca
de
d IndicWav2Vec + NLLB 26.72 27.30

Seamless (ASR) + NLLB 24.15 25.09
Seamless (ASR + MT) 23.21 25.11
IndicWav2Vec + IndicTrans 28.56 28.78
IndicWav2Vec (ASR) + Indic-
Trans (MT) FT

29.75 29.90

En
d-
to
-E
nd

Whisper ST 19.21 22.12
Seamless E2E 24.45 27.54
Seamless E2E FT 25.43 28.23
Seamless FT MT+ST 25.50 28.70
Seamless FT ASR+ST 26.01 28.65
Seamless with Interleaving 26.09 28.72

CoSTA with Seamless 26.83 28.95
CoSTA with NLLB 29.25 29.01
CoSTA with IndicTrans 29.16 29.43

Table 6: Comparison of cascaded and E2E baselines
with CoSTA for the languages Telugu (Te) and Hindi
(Hi), Marathi (Mr), and Bengali (Bn) on the monolin-
gual evaluation set. We report BLEU scores. We see
that cascaded models outperform E2Emodels when the
input is not code switched.

6 Ablations and Other Experiments

In all subsequent experiments, CoSTA refers to
“CoSTA with IndicTrans” that yielded the best re-
sults in Table 4.

6.1 Evaluation of Code-switched Span
Accuracy

We claim that the improvements in BLEU scores
using CoSTA are aided by improved translations
of code-switched spans. To empirically verify
this claim, we aim to identify what fraction of
English spans in the ground-truth ASR transcrip-
tions appear as-is in the predicted English transla-
tions. First, we isolate all English spans by compar-
ing the ground-truth ASR transcriptions and refer-
ence translations. Let us call these reference spans.
Given a predicted translation, we check how many
English spans in it exactly match the reference
spans and in order. (Table 14 in Appendix A fur-
ther explains this calculation with an example.) If

Best Cascaded Seamless CoSTA

Te-En 8.9% 56.1% 57.9%
Hi-En 14.1% 56.9% 59.6%
Mr-En 7.5% 48.6% 49.7%
Bn-En 8.4% 52.8% 54.2%

Table 7: Comparison of CoSTA with the best cascaded
model (IndicWav2Vec (ASR) + IndicTrans (MT) FT)
and the best E2E model (Seamless with Interleaving).
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two English spans in a translation match two of
four reference spans in the correct order, the match
percentage will be 50%. We note here this is an
exact match of the English words and does not ac-
count for correct synonyms or paraphrases, thus
making it a stricter evaluation of accuracy. Ta-
ble 7 shows these English span accuracies using
CoSTA, the best E2E baseline and the best cas-
caded baseline. CoSTA achieves the highest exact
match among the three (highlighted in bold), thus
indicating that it is most successful in accurately re-
taining English words from the ASR transcriptions
in the predicted translations.

6.2 Robustness of CoSTA’s Performance to
Amount of Code-switching

We assess the correlation between the number of
English words in a sentence and the model’s score
by using a linear model to determine R2 values.
Four distinct bins, each containing 50 sentences
from the code-switched evaluation set are created,
ensuring each sentence is at least 12 words long.
The bins comprise sentences with 3, 5, 7, and
10 English words, respectively. Table 8 shows
BLEU scores for the four bins for Telugu and
Hindi. Our findings indicate nearly no correlation
between the number of English words (indicating
degree of code-switching) and the model’s score
(R2 = 0.006 for Telugu and R2 = 0.016 for
Hindi). This means that the models are fairly ro-
bust to the amount of code-switching in a sentence.

6.3 Using Only LST Loss vs. All Three Losses
(LST, LASR, LMT)

Table 9 shows the results for all four languages on
three different models fine-tuned on the 30 hour
train set, using only the ST loss versus using all
three losses (with λ1 = 1 and λ2 = 1.5). Even
with using only the ST loss, our model shows sig-
nificant improvement (at p < 0.01 using wilcoxon
signed rank test) over Seamless, and using all the
three losses ST, MT and ASR further significantly
improves the BLEU scores.

Bin (English Words) Te-En Hi-En

3 29.82 32.94
5 29.83 33.28
7 29.54 33.27
10 29.91 33.04

Table 8: BLEU scores for the four bins with varying
numbers of English words in Telugu and Hindi Speech.

Seamless FT Only ST Loss CoSTA

Telugu 27.54 28.96 29.87
Hindi 28.99 32.23 33.12
Marathi 19.62 20.71 21.43
Bengali 27.90 30.53 31.05

Table 9: We compare CoSTA, Seamless E2E FT, and an
ST loss-only model on four languages using the code-
switched evaluation set. Results significantly better
than both Seamless and ST loss models are in bold.

6.4 Mean-Pooling vs. Direct Interleaving
We examine the impact of speech embedding ag-
gregation on CoSTA’s performance. We compare
‘Mean-Pooling’ where speech embeddings corre-
sponding to a text embedding are averaged (mean-
pooled) before being interleaved with the text em-
bedding and passed to the IndicTrans Encoder with
‘Direct Interleaving’ where speech embeddings are
directly interleaved with the text embedding with-
out mean-pooling. We conducted this comparison
using varying amounts of fine-tuning data from 5
hours to 30 hours. Evaluations were performed on
the Telugu IndicVoices code-switched evaluation
set. Table 10 shows that mean-pooling speech em-
beddings consistently outperforms the direct inter-
leaving approach, regardless of the amount of fine-
tuning data used.

FT Data Mean Pooling Direct Interleaving

5 hrs 23.90 23.81
10 hrs 27.16 24.15
15 hrs 28.65 24.76
20 hrs 29.55 25.51
25 hrs 29.72 25.98
30 hrs 29.87 26.40

Table 10: Comparison of BLEU scores on the Telugu
code-switched evaluation set: Mean Pooling vs. Direct
Interleaving of speech embeddings during aligned inter-
leaving, using varying amounts of fine-tuning data.

6.5 Cross-Domain Generalization Using
Kathbath Data

To assess the generalizability of CoSTA when
using a corpus different from IndicVoices during
training, we experiment with using a fine-tuning
set from Kathbath (Javed et al., 2023). Kathbath
comprises 1,684 hours of labeled read speech
spanning 12 Indian languages. We trained Telugu
and Hindi models using 30 hours of Kathbath
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data and translating ground-truth transcripts
into English using IndicTrans2 to create speech-
transcript-translate pairs. Table 11 shows the
comparison between CoSTA, and all the cascaded
and end-to-end baseline models when fine-tuned
on Kathbath and evaluated on the code-switched
test sets from IndicVoices. We observe that our
model significantly outperforms all baselines,
demonstrating its ability to generalize well when
trained on cross-domain data.

Experiment Te-En Hi-En

C
as
ca
de
d IndicWav2Vec + NLLB 11.23 17.82

Seamless (ASR) + NLLB 9.80 17.80
Seamless (ASR + MT) 10.12 18.12
IndicWav2Vec + IndicTrans 15.65 17.42
IndicWav2Vec (ASR) + Indic-
Trans (MT) FT

16.68 19.85

En
d-
to
-E
nd

Whisper ST 19.35 24.36
Seamless E2E 26.77 27.30
Seamless E2E FT 27.38 29.05
Seamless FT MT+ST 27.23 29.21
Seamless FT ASR+ST 28.05 29.13

CoSTA 28.54 33.56

Table 11: BLEU scores of all baselines with CoSTA for
code-switched Telugu (Te-En) and Hindi (Hi-En) using
Kathbath fine-tuning. Best baseline is in bold. Statisti-
cally significant improvements (at p < 0.01 using the
Wilcoxon signed rank test) are highlighted in green.

6.6 Projected Concatenation
We compared our interleaving technique with an
alternative where the mean-pooled speech embed-
dings (dimension d) and their corresponding text
embeddings (dimension d) are concatenated, re-
sulting in embeddings of dimension 2d. These con-
catenated embeddings are then projected back to
dimension d using a single transformer encoder
(with 16 attention heads). The resulting embed-
dings are then passed through the IndicTrans en-
coder. We refer to this technique as Projected Con-
catenation. Table 12 shows performance on all
four code-switched evaluation sets after training
using both interleaving strategies. While projected
concatenation outperforms the Seamless E2E base-
line, our interleaving module proves to be signifi-
cantly better on all four evaluation sets.

6.7 Teacher Forcing vs. Scheduled Sampling
During training, we employ teacher forcing and
pass the ground truth ASR transcripts through
the text embedding module. However, during
inference we rely on ASR transcripts generated

CoSTA Projected Concatenation

Te-En 29.87 26.94
Hi-En 33.12 32.21
Mr-En 21.43 20.11
Bn-En 31.05 29.81

Table 12: BLEU comparison of CoSTA with Projected
Concatenation that merge and project the speech-text
embeddings using a learnable projection layer. We eval-
uate on four code-switched evaluation sets. Statistically
significant improvements are highlighted in bold.

by the ASR head of our model. To bridge this
gap between training and inference, we compare
teacher forcing with scheduled sampling that grad-
ually introduces ASR-generated transcripts from
ourmodel into the text embedding layer by linearly
decreasing the probability of using ground truth
(p) at a fixed rate per epoch. We train our model
on 30 hours of training data for all four languages
and evaluate on our code-switched evaluation sets.
Our results in Table 13 demonstrate that teacher
forcing significantly outperforms scheduled sam-
pling for all languages.

Teacher Forcing Scheduled Sampling

Te-En 29.87 29.31
Hi-En 33.12 32.17
Mr-En 21.43 19.87
Bn-En 31.05 30.16

Table 13: Comparison of CoSTA (teacher forcing) with
the model trained using scheduled sampling. Higher
BLEU for each language pair is highlighted in bold.

7 Conclusion

In this work, we propose a new technique
CoSTA for code-switched spoken translation
where aligned speech and ASR text representa-
tions are fed as inputs to a pretrained MT model
and finetuned end-to-end using ST data. We
outperform multiple state-of-the-art cascaded and
end-to-end baselines on code-switched evaluation
sets in Telugu-English, Hindi-English, Marathi-
English and Bengali-English. We also create a new
evaluation benchmark for these language pairs for
which no ST resources previously existed.
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Limitations

1. Our model necessitates labeled data com-
prising speech, transcription, and translation
triplets for training. However, speech data
is often scarce, particularly for low-resource
languages making it challenging to acquire
enough training data for our model.

2. We assume fine-tuned ASR and MT models
as the building blocks to our model.

3. Our model still relies on the ASR module to
transcribe speech into text during inference,
which does not address the issue of high la-
tency in the cascaded systems.

4. While we filtered the training data to ensure
a low code-mixing index (CMI < 5), this met-
ric does not capture the presence of transliter-
ated words. The potential impact of transliter-
ated words on the performance of our speech
translation system was not explicitly investi-
gated in this study. Future work should exam-
ine the effects of transliteration on both ASR
and MT components, as well as explore the
trade-offs between using mixed scripts versus
native scripts for code-mixed text in speech
translation tasks.
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A Code-switched span accuracy
Evaluation

Table 14 shows the process of calculating the exact
match between spans of predicted and reference
translations. We extract the spans from the code-
switched ground-truth transcript. Corresponding
spans are then matched, that means that the mea-
sure is order-dependant.

B Model output comparison

Table 15 shows the outputs of three Hindi models:
the best cascaded model (IndicWav2Vec for ASR
combined with IndicTrans for MT, fine-tuned),
the best seamless model (Seamless fine-tuned
ASR+ST), and CoSTA. We observe that the pres-
ence of English in Hindi speech introduces multi-
ple propagation errors, resulting in erroneous En-
glish translations from the cascaded model, while
the Seamless model and our end-to-end model at-
tempt to mitigate this issue. In fact, CoSTA out-
performs the others in accurately capturing English
words within Hindi speech.

C Combining Speech and Text

We compare different approaches for aggregating
speech and text embeddings before passing them
through the IndicTrans encoder. We evaluate four
strategies: interleaving mean-pooled speech em-
beddings and text embeddings, starting with either
speech or text, appending mean-pooled speech em-
beddings either before or after the text embeddings.
We fine-tune our Telugu and Hindi Models with 30
hour data using all four approaches. Our findings
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Example 1 (Match) Example 2 (No Match)
ASR ground-truth transcript
with code-switching

I went to the बाज़ार and bought
कुछ vegetables.

She is going to the दुकान for some
fruits.

Reference Translation I went to the market and bought
some vegetables.

She is going to the shop for some
fruits.

Predicted Translation I went to the market and bought
some vegetables. She goes to the shop to get fruits.

Extracted English Spans from
Reference

[I went to the, and bought, veg-
etables]

[She is going to the, for some
fruits]

Result

All extracted English spans from
the reference exactly match the
corresponding segments in the
predicted translation. Hence ex-
act match = 100%

Extracted English segments
from the reference do not ex-
actly match the corresponding
segments in the predicted trans-
lation. Hence exact match = 0%

Table 14: To assess the accuracy of code-switched span translation, we evaluate the exactmatch between the English
spans in the reference translation and the predicted translation. This involves identifying the English spans in the
code-switched transcript and then comparing these spans with those in the predicted translations. It is important to
note that this process is order-dependent.

ASR Ground-Truth Best Cascaded Seamless CoSTA

हां उसी रात मजा आता है
and गौशाला भी होती है
ɣजसमें कʏ गाय कʏ पूजा
होती है।

Yes, that is also very
enjoyable. There is
also a go school where
cows are worshiped.

Yes, it’s a lot of fun in
that too. There is also
a cowshed in which
cows are worshiped.

Yes, there is a lot of fun
in that too and there
is also a cowshed in
which cows are wor-
shiped.

हमारे यहां तो ऐसे ही होता
है और मतलब बाजार में
काफʏ भीड़ होती है, रंगोली
लेते हैं आजकल तो ready-
made

This is how it is here,
and I mean, there’s a
lot of crowd in the mar-
ket. We buy Rangoli.
Nowadays, it’s even in
the rainy season.

It happens like this
here andmeans there is
a lot of crowd in the
market, we take ran-
goli nowadays ready-
made

It happens like this
in our place and that
means there is a lot
of crowd in the mar-
ket, nowadays we buy
readymade rangoli.

अǵा सुन ना वो कुछ col-
lege में अपना function
रखा है।

Well, listen, he has or-
ganized his function in
some college.

Well, listen, he has
kept his function in
some college.

Listen, there’s a func-
tion happening in our
college.

Table 15: Example generated outputs from the best hindi cascaded model (IndicWav2Vec for ASR combined with
IndicTrans for MT, fine-tuned), the best seamless model (Seamless fine-tuned ASR+ST), and CoSTA. Note that
error propagation is observed in the cascaded model (highlighted in red), arising frommultiple factors: an incorrect
transcript in the first example, the English word ready-made being incorrectly transcribed by the Hindi ASR model
in the second example, and a machine translation error in the third example. Additionally, the English words uttered
in the speech are correctly captured by CoSTA (highlighted in blue), unlike in the cascaded and seamless models.

in Table 16 indicate that interleaving consistently
outperforms appending, with statistically signifi-
cant improvements (at p < 0.01, Wilcoxon signed
rank test). However, no discernible difference in
performance was observed between starting the in-
terleaving process with speech or text embeddings.

D Size of Fine-tuning Dataset

We gradually increased the size of the fine-tuning
dataset from 5 hours to 30 hours to monitor BLEU
scores on the code-switched evaluation sets as a
function of size. Table 17 shows that the BLEU
scores stabilized for both CoSTA and Seamless
(finetuned) with about 30 hours of fine-tuning data.
While Seamless outperformed CoSTA with 5 and
10 hours of fine-tuning data, CoSTA achieved sta-
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Te-En Hi-En

Append (Speech First) 18.98 21.16
Append (Text First) 17.91 20.75
Interleave (Speech First) 29.87 33.12
Interleave (Text First) 29.45 33.05

Table 16: Comparison of different speech and text fu-
sion strategies (two appending vs two interleaving).

tistically significant improvements (at p < 0.01,
Wilcoxon signed rank test) over Seamless using
data of size 15 hours (and more).

FT Data Te-En Hi-En

CoSTA Seamless CoSTA Seamless

5 hrs 23.90 26.85 25.12 27.81
10 hrs 27.16 27.10 27.35 28.43
15 hrs 28.65 27.23 29.27 28.65
20 hrs 29.55 27.34 31.54 28.76
25 hrs 29.72 27.52 32.91 28.90
30 hrs 29.87 27.54 33.12 28.99

Table 17: Comparison of the BLEUScores with CoSTA
and seamless with varying numbers of hours of fine-
tuning data. We do this experiment on the languages
Telugu and Hindi.

E Lambda values for ASR and MT loss

To determine the values for λ1 and λ2, we con-
ducted experiments using various combinations.
We tested values of 0, 0.5, 1, and 1.5 for each pa-
rameter. We train a Telugu model with 30 hours
of our fine-tuning data for each combination of λ1

and λ2, and then evaluated on the code-switched
evaluation set. The highest score on the evaluation
set was achieved when λ1 = 1 and λ2 = 1.5. The
scores obtained with different values of λ1 and λ2

are presented in Table 18.

F Impact of Alignment Noise on
CoSTA’s Performance

In CoSTA, we align speech representations with
corresponding text embeddings. We use forced
alignment to determine the number of speech em-
beddings associatedwith each text embedding. We
introduce varying levels of noise into the align-
ment process during training and examine the ef-
fects on the model’s performance. We begin with
the current forced alignment and add noise to each
alignment index I using the formula ⌊I+N(0, σ)⌋,

λ1 λ2 BLEU

0 0 28.96
0.5 0 29.05
0 0.5 29.11
1 0 29.23
0 1 29.16
1 1 29.51
1.5 1 29.64
1 1.5 29.87

Table 18: The scores obtained with different values of
λ1 and λ2. We train a Telugu Model and evaluate it on
the telugu code-switched evaluation set.

where N(0, σ) is a Gaussian distribution with
mean 0 and standard deviation σ. Let us consider
an example. Consider an original alignment of (2,
5, 8, 11), which indicates that for a given speech
sequence s1 to s13 and a text sequence w1 to w4:
s1 to s2 maps to w1, s3 to s5 maps to w2, s6 to s8
maps tow3, and s9 to s11maps tow4. Now, adding
noise to (2, 5, 8, 11) might yield (3, 6, 8, 12). Con-
sequently, the new alignment would be: s1 to s3
maps to w1, s4 to s6 maps to w2, s7 to s8 maps
to w3, and s9 to s12 maps to w4. If any text em-
beddings are leftover, we just use the last speech
embedding for all the leftovers. Three different
values of σ (σ = 1, 3, 5) were tested to generate
different levels of alignment noise.We conduct this
experiment on Hindi Model trained with our 30 hr
training data, and evaluate using the code-switched
evaluation set. We see in Table 19 that the BLEU
score degrades with the increase in σ (increase in
the noise).

σ BLEU

σ = 0 33.12
σ = 1 30.21
σ = 3 27.68
σ = 5 22.37

Table 19: BLEU scores of the CoSTA model trained
with different levels of alignment noise. The standard
Hindi CoSTA model with no added alignment noise
(σ = 0) is compared against three models trained with
varying degrees of noise (σ = 1, σ = 3, and σ = 5).

G Dataset Annotation Guidelines

G.1 Code-switched and Monolingual
Evaluation sets

For both the code-switched and monolingual eval-
uation sets, approximately two hours of speech-



9208

transcription data were extracted for each of Tel-
ugu, Hindi, Marathi, and Bengali from IndicVoices
(Javed et al., 2024) for the code-switched evalua-
tion set. Additionally, two hours of monolingual
data were extracted specifically from IndicVoices
for Telugu and Hindi for the Monolingual evalua-
tion set. The transcripts were translated using In-
dicTrans2 (Gala et al., 2023), with manual verifica-
tion required to correct any errors in the machine-
generated translations.
The project cost for each language is as follows:

Hindi - Rs. 3000 per hour, Marathi - Rs. 3000 per
hour, Bengali - Rs. 3000 per hour, Telugu - Rs.
3500 per hour.
During the post-editing task, annotators who

were the native speakers of the languages in the
consideration were instructed to remove disflu-
encies and convert words entirely in uppercase
to lowercase. The annotation process included:
marking audio and transcription pairs as mis-
matches without editing if they were completely
discordant, editing translations based on audio con-
tent in cases of minor mismatches between audio
and transcription and excluding non-speech words
from the translation process.

G.2 Podcast Evaluation set

For the podcast evaluation set, annotators were in-
structed to annotate transcripts of podcast speech
and generate English translations after removing
disfluencies from the corresponding transcripts.
Guidelines for the tasks:
The intended final dataset:

1. Code-switched transcriptions with time mark-
ers, for Telugu and Hindi.

2. Disfluency correction.

3. English translations.

Guidelines for code-switched transcriptions:

• Maintain speaker turns to reflect continuous
speech segments from individual speakers.
Use speaker identifiers like ”A” for the first
speaker, ”B” for the second, etc. Timestamps
for these turns are necessary for aligning with
audio clips.

• Transcribe disfluencies faithfully without cor-
recting or omitting them.

• For intra-word code-switched words, retain
the respective language script for each ele-
ment.

• Indicate non-verbal sounds such as laughter
using appropriate symbols or descriptors.

Guidelines for disfluency correction:

• Correct only disfluent sentences; do not intro-
duce additional words or change word order.

• Focus solely on removing disfluent words
while preserving the original sentence’s struc-
ture and meaning.

Guidelines for English translation:

• Create a parallel dataset where each transcript
is translated into fluent English, regardless of
its disfluency status.

• Ensure translations accurately convey the
original speech’s meaning in natural, fluent
English.

Detailed guidelines document can be found here.
The transcription and translations required 4-5
rounds of verification. The cost for both the lan-
guages for all these tasks came out to be Rs.6000
per hour of audio.

H Experimental Details

We fine-tune CoSTA with a learning rate of 6e−5.
We use raw 16kHz speech as input to our model,
and we jointly tokenize bilingual text using Sen-
tencePiece (Kudo and Richardson, 2018). We
use Adam optimizer with parameters β1 = 0.9,
β2 = 0.98, and a 20k-step warm-up period. A
dropout rate of 0.15 is applied during training. We
conducted experiments using Nvidia DGX A100
GPUs. We use SacreBLEU (Post, 2018) to evalu-
ate case-sensitive detokenized BLEU.

https://docs.google.com/document/d/1179-T3nIUsQmybx2BvhNJIqx0kXx5ZtOxQqpoPqodhg/edit?usp=sharing
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