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Abstract

Large language models (LLMs) have demon-
strated remarkable performance across a wide
range of tasks. Advances in prompt engineer-
ing and fine-tuning techniques have further en-
hanced their ability to address complex reason-
ing challenges. However, these advanced capa-
bilities are often exclusive to models exceed-
ing 100 billion parameters. Although Chain-of-
Thought (CoT) fine-tuning methods have been
explored for smaller models (under 10 billion
parameters), they typically depend on extensive
CoT training data, which can introduce incon-
sistencies and limit effectiveness in low-data
settings. To overcome these limitations, this
paper introduce a new reasoning strategy Solu-
tion Guidance (SG) and a plug-and-play train-
ing paradigm Solution-Guidance Fine-Tuning
(SGFT) for enhancing the reasoning capabil-
ities of small language models. SG focuses
on problem understanding and decomposition
at the semantic and logical levels, rather than
specific computations, which can effectively
improve the SLMs’ generalization and reason-
ing abilities. With only a small amount of SG
training data, SGFT can fine-tune a SLM to
produce accurate problem-solving guidances,
which can then be flexibly fed to any SLM as
prompts, enabling it to generate correct answers
directly. Experimental results demonstrate that
our method significantly improves the perfor-
mance of SLMs on various reasoning tasks,
enhancing both their practicality and efficiency
within resource-constrained environments.1

1 Introduction

As large language models (LLMs) continue to ex-
pand in scale, they demonstrate remarkable profi-
ciency in tasks such as language generation, trans-
lation, question answering, and so on. Moreover,
they are increasingly being recognized for their

* Corresponding author.
1 Code and data available at https://github.com/

BiJings/SGFT.

potential in addressing more complex challenges,
such as reasoning (Yang et al., 2022) and mathemat-
ical problem-solving (Mishra et al., 2022). The ap-
plication of LLMs to reasoning tasks has garnered
significant academic interest (Qiao et al., 2022),
particularly in the domain of mathematics, where
reasoning tasks present substantial challenges (Lu
et al., 2022). As one of the representative tech-
niques for enhancing the reasoning capabilities of
LLMs, Chain-of-Thought (CoT) reasoning (Wei
et al., 2022; Kojima et al., 2022) enables LLMs to
deduce answers step-by-step rather than directly
providing an answer, thereby producing more ac-
curate and reliable results. However, directly ap-
plying CoT reasoning to small language models
(SLMs) with fewer than 10 billion parameters has
proven to be considerably less effective (Ho et al.,
2022). Lanham et al. (2023) propose that CoT
prompting only performs effectively under specific
scenarios and model scales.

Further, the techniques of CoT fine-tuning have
been proposed for SLMs (Ho et al., 2022). This
kind of methods involves fine-tuning SLMs using
CoT data, allowing them to reason through interme-
diate steps before reaching a conclusion. However,
CoT follows a completely independent process for
each problem, integrating both logical reasoning
and computation. Due to insufficient fitting with
a small amount of data during model training, a
large amount of CoT training data is required. Ac-
quiring and annotating such data is labor-intensive
(Li et al., 2022), and the logical and grammatical
consistency of the data, which depends on manual
annotation, are not always assured.

Additionally, existing CoT involves problem-
solving steps and a final answer. Each step con-
tains specific explanations and calculations, and
the outcome of the current step directly influences
the logical generation of the next. This cascading
effect causes multiple steps of explanations and
calculations to accumulate, leading to error propa-

https://github.com/BiJings/SGFT
https://github.com/BiJings/SGFT
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Figure 1: A wrong case of existing CoT reasoning.

gation and often generating excessive text, which
introduces noise and ultimately affects the accuracy
of the final answer. For example, when using CoT
reasoning to solve the math problem in Figure 1,
an unnecessary step was incorrectly generated dur-
ing the reasoning process: In total, Kate’s friends
eat 36+24=60 pizza slices, which led to miscalcu-
lating the number of cheese pizzas and pepperoni
pizzas in the subsequent steps, ultimately resulting
in an incorrect final answer. This issue is partic-
ularly pronounced in SLMs. Moreover, language
models trained with a large amount of CoT data
may experience a decline in their equally important
general capabilities (Fu et al., 2023). When faced
with common-sense or simple questions, the model
may fabricate non-existent reasoning chains, unnec-
essarily complicating the problem and providing
incorrect answers.

To address the above issues of existing CoT
techniques, we propose a new training paradigm,
Solution-Guidance Fine-Tuning (SGFT), to im-
prove the reasoning capabilities of small language
models. Different from existing CoT, we present
a new reasoning strategy Solution Guidance (SG),
which only expects the SLMs to generate problem-
solving guidance without calculations or extra ex-
planations. SG focuses on problem understanding
and decomposition at the semantic and logical lev-
els, rather than specific computations. With only
a small amount of SG training data, SGFT can
effectively fine-tune a SLM to generate accurate
problem-solving guidances. Then, we only need
to use the generated solution guidances as input
prompts for another SLM, which can produce the
correct answers without additional training.

To verify the effectiveness of our method,

we conducted experiments on multiple reasoning
benchmark datasets. The results demonstrate that,
compared to traditional CoT fine-tuning applied di-
rectly to SLMs, our method significantly enhances
performance in mathematical and common-sense
reasoning tasks while preserving the original capa-
bilities of SLMs. Additionally, since our approach
requires significantly less training data, it is more
practical and efficient for real-world applications.

Our key technical contributions are as follows:

• We introduce a new reasoning strategy Solu-
tion Guidance (SG) for small language mod-
els (SLMs), which focuses on problem under-
standing rather than specific calculations. SG
can effectively reduce data generation costs
and significantly improve the reasoning capa-
bilities of SLMs.

• We propose a plug-and-play fine-tuning
paradigm, named SGFT, for enhancing the
reasoning capabilities of SLMs. Using only a
small amount of SG training data, SGFT can
fine-tune a SLM to generate accurate problem-
solving guidances. These guidances can then
be flexibly used as input prompts for any
SLM, allowing it to directly produce correct
answers.

• Experiments on multiple reasoning bench-
marks datasets demonstrate that our method
significantly improve the reasoning capabil-
ities of various SLMs. Our approach can
be implemented on a single consumer-grade
GPU, and achieve better performance with
only 3% of the training data required by CoT
fine-tuning.

2 Related Work

Chain-of-Thought Reasoning. In prompt engi-
neering, Chain-of-Thought (CoT) (Wei et al., 2022)
has shown excellent performance in reasoning tasks
for large models. The method of automatically
generating CoT prompts (Zhang et al., 2022) uses
similarity-based retrieval methods, improving the
performance of large language models in zero-shot
reasoning tasks. Diao et al. (2023) combine ac-
tive prompting with CoT, incorporating uncertainty
measures and self-consistency methods to enhance
the accuracy and consistency of reasoning. Turpin
et al. (2023) believe that the chain of thought ex-
planation is sometimes unreasonable. Wang et al.
(2023) introduce the knowledge chain prompting
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method, which boosts the reasoning abilities of
language models, and proposed a post-validation
mechanism to ensure the accuracy of the reason-
ing chain. Wang et al. (2022) propose to replace
greedy decoding with self-consistency, which fur-
ther improves the effectiveness of CoT. Analyzing
incorrect answers in-depth (Zhong et al., 2024),
by adjusting the CoT for erroneous cases, encour-
ages large language models to better understand
the problems and utilize critical information for
improved reasoning. Chae et al. (2024) decom-
pose the reasoning process of language modeling
into two steps Think-and-Execute improves the rea-
soning. Thought-of-Tree (ToT) (Yao et al., 2023)
builds on the Chain of Thought approach for more
complex planning of tasks.

Distillation of Reasoning Ability. Small models
have much smaller internal mapping space com-
pared to large models. Despite this, small models
still possess certain reasoning abilities (Fu et al.,
2023). Our focus is on leveraging these abilities
to solve complex problems. Ho et al. (2022) first
propose using large-scale language models (such
as GPT-3 175B) as teacher models, generating
CoT to fine-tune smaller student models. This ap-
proach significantly reduces the model size require-
ments and greatly enhances the performance of
small models on complex reasoning tasks. Subse-
quent work has further refined the CoT fine-tuning
method for small models (Magister et al., 2022). Li
et al. (2022) propose a multi-task learning frame-
work to enable small models to acquire reasoning
abilities and generate explanations. Fu et al. (2023)
specialize the training of small models, enhanc-
ing multi-step mathematical reasoning tasks. Re-
searchers (Choi and Ahn, 2024) demonstrate that
fine-tuned small models can achieve results compa-
rable to large language models in specific domains.
This has significant implications for resource op-
timization in practical applications. Article (Zhu
et al., 2023) provide a summary of quantization,
distillation, and other methods applied to large lan-
guage models.

3 Method

As Figure 2 shows, our approach consists of the
following steps: solution guidance generation,
solution-guidance fine-tuning, and collaborative
inference of SLMs based on SG. Specifically, GPT-
4o is employed as the teacher model to assist in
solution guidance generation. With the generated

SG data, we fine-tune a SLM to break down com-
plex problems into a series of manageable solution
steps. Then, the generated solution guidances, as
well as the original question, are passed to another
SLM to generate the final answer without extra
training.

3.1 Solution Guidance Generation
In fine-tuning large language models, the quality
and structure of training data are critical. While
traditional data such as CoT has proven effective
for many tasks, it still presents certain limitations.
This chapter introduces a new type of training data
SG, and the method for its generation. Using GPT-
4 as the teacher model, we generate data that differs
from traditional CoT. We will examine the princi-
ples, implementation details, and advantages of this
approach in terms of reducing noise and improving
data quality.

Data Paradigm Setup. First, we randomly se-
lected a subset of 2,000 questions from the GSM8K
training set, referred to as Q = {qi}N , and the cor-
responding Solution Guidance for these questions,
denoted as di, D = {di}N forming the set SG.
Therefore, G = {(qi, di)}N is a datasets contain-
ing N training instances. We conducted a detailed
error analysis of CoT method, found that incorrect
answers mainly stem from inaccurate solution ob-
jectives, calculation errors, and logical flaws. To
address these, we experimented and identified that
correct step decomposition and sequencing are cru-
cial for high-quality LM responses. Based on this,
we defined SG’s structure, which contains step-by-
step solution objectives and their sequence. Then,
we prompted GPT-4o to generate more SG training
data based on this structure.

Our goal is to identify one or more recurring
patterns across different questions. Rather than
meticulously analyzing and solving each question
individually, we extract commonalities in mathe-
matical reasoning problems to derive general so-
lution steps. The fine-tuned model is then used to
analyze each question specifically. For example,
a typical pattern might be: "Step 1: Identify the
primary problem, Step 2: Determine the necessary
operations on specific values, Step 3: ...". The
fine-tuning task focuses on learning this process,
with the procedural patterns also originating from
GPT-4.

Generation SG Data from LLM. The Solution
Guidance (SG) we introduce is a novel concept. For
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Figure 2: The figure illustrates the complete architecture of our approach. In this diagram, SLM denotes the Small
Language Model, LLM represents the Large Language Model, and SG (Solution Guidance) refers to the data
schema introduced in our method.

Prompts for
original SG data

prompt_i: Please generate the [Problem Type], [Solution Objective],
[Constraints], and [Priorities and Considerations] for this question:"Q".
prompt_ii: Please generate a step-by-step solution for this problem.
You don’t need to solve it; just output the steps in 2 to 6 steps.

Prompts for
SG training data

prompt_iii: Please generate a step-by-step solution for this problem.
You don’t need to solve it, just output the steps in 2 to 6 steps.
Examples for the SG data are as follows : [Q1+SG1]...[Q7+SG7]

Prompts for
finetuning on SLM

prompt_iv: Please generate a step-by-step solution for the following
problem with no calculations. You don’t need to solve it, just
output the steps in 2 to 6 steps.
prompt_v: Please generate a step-by-step solution for the following
problem with no calculations. You don’t need to solve it, just output
the steps in 2 to 6 steps. Examples for the SG data are as follows :
[Q1+SG1]...[Q3+SG3]

Table 1: Prompts used in different stages. We employed prompt_i and prompt_ii to generate individual pieces of
data from GPT-4o. Subsequently, we used prompt_iii to generate SG data in batches. Prompt_iv and prompt_v were
selected as the prompts for adopting the context strategy and the few-shot approach during fine-tuning.

the questions in the training set, we form a set of
questions Q = {qi}M , and input each question into
GPT-4o, prompting it to output the process of solv-
ing the problem. At this point, GPT-4o outputs M
processes ei , and answers ai (in our experiments,
we used M = 7). After verifying the correctness
of the answers, we denote E = {(qi, ei, ai)}M .
Table 1 presents the prompts that we utilized, we
employed prompt_i and prompt_ii to obtain the
original SG.

We then examine whether these processes ei, ex-
hibit any consistency or regularity and summarize
the patterns identified. Based on the responses, we
outline the problem-solving pattern as follows: "1.
Identify the total requirements and known infor-
mation; 2. Solve step-by-step, setting intermediate
goals and calculating their values; 3. Summarize
all intermediate results and perform unit conver-
sions; 4. Arrive at the final answer and verify it."
Subsequently, we used prompt_iii in the Table 1
to generate the SG for question qi based on this
pattern as di. Examples of the data are shown in

the Table 2, resulting in G = {(qi, di)}N as the
training data.

It is evident that our SG differs from the original
CoT approach. While CoT emphasizes a step-by-
step solution, including specific calculations for
each problem, SG offers higher-level guidance. SG
focuses on providing a framework for problem-
solving rather than detailing the exact computa-
tional process.

Data Cleaning. In the generated datasets, we
manually replaced some instances involving spe-
cific numerical calculations to ensure that the
datasets focuses on problem understanding and
textual logical reasoning. We also removed data
related to pure mathematical calculations, as nu-
merical computation is not the capability we aim
to generalize.

3.2 Solution-Guidance Fine-Tuning (SGFT)
After acquiring the SG data, we focus on transfer-
ring the data generation capability to smaller mod-
els. We explore fine-tuning strategies and analyze
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Question Solution Guidance
Bailey starts with a certain amount of money.
Then she receives a weekly allowance of $5
for 8,00 weeks. At the end of the 8,00 weeks,
if she has a total of $100, how much money
did Bailey start with?

Step 1: Calculate the total amount of
allowance Bailey receives in 8 weeks.
Step 2: Calculate the amount of money
Bailey started with.

A classroom has a whiteboard which is shared
between the 4 teachers who take turns using
the classroom. Each teacher has 2 lessons per
day and uses the whiteboard in each lesson.
If the whiteboard is cleaned 3 times per lesson,
how many times is the whiteboard cleaned in a day?

Step 1: Calculate the total number of
lessons in a day.
Step 2: Calculate the total number of times
the whiteboard is cleaned in a day.

An interior design firm offers installation for
$129.00. It includes hanging 4 mirrors,
2 shelves, 1 chandelier, and 10 pictures.
They will install additional items for an extra
$15.00 per item. Angela has 6 mirrors and
2 chandeliers and 20 pictures that she needs
installed/hung. How much will this cost her?

Step 1: Determine the base installation cost.
Step 2: Determine the number of items included
in the base installation service.
Step 3: Calculate the number of additional items
Angela needs installed.
Step 4: Calculate the cost for the additional items.
Step 5: Calculate Angela’s total cost.

Table 2: Examples of training data paradigms in our approach.

the effects of incorporating contextual information,
as well as zero-shot and few-shot examples, on
model performance. Notably, our fine-tuning ap-
proaches and reasoning tasks can be executed on
consumer-grade GPUs.

Fine-Tuning Method Based on LISA. Recent
work by Pan et al. (2024) revealed that LoRA’s
(Hu et al., 2021) fine-tuning primarily targets the
lowest and highest layers of large language models
(LLMs), specifically the embedding and linear head
layers. Building on this insight, the LISA method
was proposed, which significantly reduces GPU
memory consumption by selectively freezing cer-
tain layers using layer-wise importance sampling
during training. For a 7B model, LISA demon-
strates a training speed approximately 1.5 times
faster than LoRA.

LISA employs a regularization loss function
based on the AdamW optimizer, ensuring training
stability while effectively leveraging the layer-wise
importance sampling strategy. The objective func-
tion optimized by LISA includes a regularization
term and is formulated as follows:

freg (w) = f(w) +
1

2
wTSw (1)

In this context, S is a finite positive semi-definite
diagonal matrix, and w represents the model pa-
rameters. This regularization term helps control the
model’s complexity and prevents overfitting. LISA
has the following convergence guarantee during op-
timization, where f∗

reg represents the optimal value
of freg :

1

T

T∑
t=1

freg (wt)− f∗
reg ≤ O

(
1√
T

)
(2)

To optimize fine-tuning efficiency and balance
computational resources, we adopted this advanced
fine-tuning method. By adjusting only a small
number of parameters, this approach enables ef-
fective fine-tuning even with limited computational
resources.

Improvements in Fine-Tuning Based on Prompt
Engineering. Our experiments demonstrated that
incorporating context during fine-tuning signifi-
cantly influenced the model’s behavior. For exam-
ple, when fine-tuning without contextual prompts
using only the data G = {(qi, di)}N , the model
unexpectedly generated specific numerical calcu-
lations and final answers, despite this not being
the intended output at that stage. By introduc-
ing contextual prompt_iv or prompt_v in the Ta-
ble 1, the training data was modified to G′ =
{( prompt + qi, di)}N , leading the model to gener-
ate problem-solving steps rather than final answers.
These findings were validated through our experi-
mental results.

We conducted a series of experiments to assess
the impact of different contexts on model perfor-
mance. Specifically, we tested various contextual
configurations (Dong et al., 2023), ranging from
short to long contexts, and observed that appro-
priate context settings significantly improved task
completion. In addition, we examined the effects of
zero-shot and few-shot examples. Zero-shot tasks
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Model GSM8K SVAMP MultiArith StrategyQA CommonsenseQA
ChatGLM3-6B 27.4 40.8 53.8 62.3 58.1
ChatGLM3-6B_CoT 34.4 47.5 62.1 69.5 64.9
ChatGLM3-6B_SG+ChatGLM3-6B 43.7 51.2 67.4 72.7 69.8
Qwen2-7B 23.6 32.4 50.2 64.1 59.2
Qwen2-7B_CoT 31.2 37.2 57.2 70.3 64.4
Qwen2-7B_SG+Qwen2-7B 39.4 45.7 61.4 72.3 68.7
Llama2-7B 13.3 38.0 48.3 56.4 52.9
Llama2-7B_CoT 21.8 43.4 52.6 60.6 57.3
Llama2-7B_SG+Llama2-7B 28.6 47.8 57.4 64.8 62.1
Llama2-7B_SG+ChatGLM3-6B 38.1 46.6 61.9 69.4 64.3
Llama2-7B_SG+Qwen2-7B 35.4 43.8 58.2 66.2 62.7
ChatGLM3-6B_SG+Llama2-7B 39.6 47.9 64.7 71.7 68.2
ChatGLM3-6B_SG+Qwen2-7B 40.2 50.3 65.4 70.2 67.4
Qwen2-7B_SG+Llama2-7B 42.7 49.1 67.8 73.6 69.3
Qwen2-7B_SG+ChatGLM3-6B 48.3 57.8 72.9 79.8 75.7

Table 3: Performance across five datasets related to reasoning, using the original SLM version as a baseline.
We compared the performance of the original model, the Fine-tune-CoT method (fine-tuned with 30,000 CoT
samples), and our method (fine-tuned with 3,000 SG samples). Additionally, we evaluated the models across
different smaller-scale versions. All experiments in the comparison table utilized zero-shot prompting.

were performed without any examples, whereas
few-shot tasks included a limited number of ex-
amples. Our training data combined task context
with sample examples, and the results showed that
few-shot examples consistently led to better model
performance than zero-shot examples. Due to hard-
ware constraints, the maximum number of exam-
ples was limited to three.

3.3 Collaborative Inference of Small Models

After fine-tuning the smaller model, our approach
enables the model to generate solution guidance
rather than directly solving problems. Its role is to
parse each input problem and generate the corre-
sponding SG, which is then inputted, along with
the original problem, into a response model. This
response model can be any generalized language
model; In our case, we chose a model with fewer
than 10B parameters that had not been fine-tuned
for specific tasks, such as a base or chat small
model. By leveraging the synergy between our
Model_SG and the language model, we signifi-
cantly improved accuracy on mathematical and
common-sense reasoning datasets compared to the
original model.

This division of labor allows the models to retain
their general capabilities while efficiently address-
ing complex reasoning tasks. In our experiments,
we compared the performance of an untuned small
model serving as the guidance model with a sin-
gle fine-tuned model responsible for both guidance
and answer generation. The results confirmed that
our approach, which separates these tasks, is more
effective overall.

Our model can be fine-tuned and deployed using
a single consumer-grade GPU, yielding superior
results compared to traditional Chain-of-Thought
(CoT) fine-tuning. This opens up new possibilities
for researchers to explore the potential of small
language models, even when working with con-
strained computational resources.

4 Experiments

4.1 Experimental Setup

Training Data: Following the method outlined
by Brown et al. (2020), we randomly selected 7
questions from the GSM8K training set. Using the
prompting procedure detailed in the previous, we
tasked GPT-4o with generating problem-solving
guidance (SG). We then input these 7 questions
into GPT-4o to obtain their corresponding SG. Af-
terward, both the original questions and their SG
were fed back into GPT-4o to generate the final
answers. Once the answers were verified for accu-
racy, these 7 questions and their SG were used as
few-shot examples for the large model. Then we
randomly selected 1000, 2000, and 3000 questions
from the GSM8K training set, instructing the large
model to generate SG for each. This process pro-
vided the necessary training data. We then used the
format of original questions plus SG to generate the
final answers. Any data with incorrect answers was
removed to ensure the training datasets maintained
a high level of accuracy.

Inference Tasks: For mathematical application
problems, we used GSM8K (Cobbe et al., 2021),
SVAMP (Patel et al., 2021), and MultiArith (Roy
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Figure 3: Relationship between the amount of training
data required by the CoT method and our method and
the accuracy on the GSM8K data set, with the x-axis rep-
resenting the amount of data and the y-axis representing
the accuracy.

Figure 4: Comparison of the accuracy of four strategies
for collaborative reasoning with small models, M rep-
resents an original model, M_CoT represents a model
fine-tuned with CoT, and M_SG represents a model fine-
tuned with SG.Test results on the GSM8K dataset.

and Roth, 2016). For commonsense reasoning ques-
tions, we used CommonsenseQA (Talmor et al.,
2019) and StrategyQA (Geva et al., 2021). These
datasets are commonly employed to assess the rea-
soning capabilities of LLMs. Our evaluation metric
is the accuracy on each dataset. Notably, GSM8K
represents an in-distribution dataset, while the re-
maining datasets are out-of-distribution, providing
a more diverse test of the model’s generalization
abilities.

Language Models: From the perspective of
model distillation, we used GPT-4o as the teacher
model. The student models included qwen2-7B-
Instruct (Chu et al., 2024), chatglm3-6B-Instruct
(Zeng et al., 2024), and llama2-7B-chat (Touvron
et al., 2023). To maintain consistent outputs, the
temperature was set to 0 for all models. We per-
formed cross-model inference, using different mod-

fine-tuning strategy GSM8K SVAMP MultiArith
ChatGLM3-6B_SG*
-Zero-shot without context 36.4 45.2 55.3

ChatGLM3-6B_SG*
-Zero-shot with context 43.7 51.2 67.4

ChatGLM3-6B_SG*
-3 shot with context 48.9 57.1 70.8

Qwen2-7B_SG*
-Zero-shot without context 31.2 38.3 53.7

Qwen2-7B_SG*
-Zero-shot with context 39.4 45.7 61.4

Qwen2-7B_SG*
-3 shot with context 46.1 50.7 68.2

Llama2-7B_SG*
-Zero-shot without context 18.8 41.7 51.2

Llama2-7B_SG*
-Zero-shot with context 28.6 47.8 57.4

Llama2-7B_SG*
-3 shot with context 37.2 52.3 63.9

Table 4: Performance of different fine-tuning strategies
across three datasets, using the following variables: no
context, context with zero samples, and context with
3 samples. SG* refers to the model fine-tuned using
SG as the guide model, with the original version of the
same model serving as the response model.

els to generate SG and final answers. For baselines,
we compared with the zero-shot outputs of each
instruction-tuned small model.

4.2 Main Results

As shown in Table 3, the collaborative inference
method for small models improves their ability
to solve complex mathematical reasoning tasks.
Across various mathematical and textual reason-
ing datasets, our approach significantly boosts
accuracy. Traditional CoT fine-tuning requires
large datasets and tends to focus too narrowly
on individual problems, limiting its ability to
generalize problem-solving patterns. In contrast,
our method uses one model for high-level guid-
ance—understanding the problem and providing
strategies—while the other model generates an-
swers based on this guidance. This division of
tasks creates an efficient problem-solving process
while preserving the general capabilities often lost
in fine-tuning.

Traditional CoT methods and our approach differ
in the scale of training data. As shown in Figure 3,
under the same fine-tuning strategy, our method
requires only 3.3% of the data used by CoT to
achieve superior performance. This greatly reduces
the computational cost for fine-tuning and lowers
the barrier for practical application. We compared
performance across datasets with 1,000 to 3,000
training examples, noting that accuracy improved
with more data. This suggests that our approach
has greater potential than traditional CoT methods.
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Question: The cheese pizza is cut into 12 slices and the pepperoni pizza is cut into 8 slices. If Kate’s 6 friends each eat 6 cheese pizza slices and 4
pepperoni pizza slices, how many pizza pies does she need to buy?
Correct answer: 6

CoT

Answer:
If Kate’s 6 friends each eat 6 cheese pizza slices, then they eat a total of 6 x 6 = 36 cheese pizza slices. If Kate’s 6 friends each eat 4
pepperoni pizza slices, then they eat a total of 4 x 6 = 24 pepperoni pizza slices. In total, Kate’s friends eat 36 + 24 = 60 pizza slices. Since
each pizza pie is cut into 12 slices for cheese pizza and 8 slices for pepperoni pizza, Kate needs to buy 60 / 12 = 5 cheese pizza pies. She also
needs to buy 60 /8=7 pepperoni pizza pies. Therefore, Kate needs to buy a total of 5 + 7 = 12 pizza pies.
The answer is: 12

Ours

Solution Guidance(SG):
Step 1: Calculate the total number of cheese pizza slices needed per person.
Step 2: Calculate the total number of pepperoni pizza slices needed per person.
Step 3: Calculate the total number of cheese pizzas needed.
Step 4: Calculate the total number of pepperoni pizzas needed.
Step 5: Sum up the total number of pizzas needed.
Answer:
Step 1: Calculate the total number of cheese pizza slices needed per person.
Kate’s 6 friends each eat 6 cheese pizza slices, so the total number of cheese pizza slices needed is 6 friends * 6 slices/friend = 36 slices.
Step 2: Calculate the total number of pepperoni pizza slices needed per person.
Kate’s 6 friends each eat 4 pepperoni pizza slices, so the total number of pepperoni pizza slices needed is 6 friends * 4 slices/friend= 24
slices.
Step 3: Calculate the total number of cheese pizzas needed.
Since each cheese pizza has 12 slices, the total number of cheese pizzas needed is 36 slices / 12 slices/pizza = 3 pizzas.
Step 4: Calculate the total number of pepperoni pizzas needed.
Since each pepperoni pizza has 8 slices, the total number of pepperoni pizzas needed is 24 slices / 8 slices/pizza = 3 pizzas.
Step 5: Sum up the total number of pizzas needed.
The total number of pizzas is 3 cheese pizzas + 3 pepperoni pizzas = 6 pizzas.
The answer is: 6

Table 5: A test example where CoT fine-tuning method provides an incorrect answer. Our models generated SG
and replied with the correct answer based on the SG.

4.3 Ablation Study

In this section, we conducted a detailed abla-
tion study to evaluate the effectiveness of fine-
tuning models using SG. Consistently following
our method, the first model generates SG, while the
second model provides the answers. We tested four
strategies: (1) Two untrained models directly for
collaborative inference. (2) One untrained model
for guidance and a CoT-fine-tuned model for an-
swering. (3) One SG-fine-tuned model for guid-
ance and a untrained model for answering. (4) One
SG-fine-tuned model for guidance and a CoT-fine-
tuned model for answering.

As shown in Figure 4, the optimal setup was
using an SG-fine-tuned model for guidance and an
untrained model for answering. The results suggest
that SG-trained models offer better Solution Guid-
ance, leading to more accurate answers from the
response model. However, when the CoT model
served as the response model, its performance was
worse compared to the original model.

4.4 Comparison among In-context Learning
and Few-shot / Zero-shot Learning

We further explore the effects of in-context (with
prompt_iv in the Table 1), zero-shot, and few-shot
examples (3-shot, with prompt_v in the Table 1)
during fine-tuning on the performance of SG small
model collaborative inference.

In Table 4, we found that when using our method
for fine-tuning, the model’s performance was con-

sistently worse with the zero-shot no-context strat-
egy compared to training with context. Training
with context yielded better results, and increasing
the number of examples further improved perfor-
mance. However, due to equipment and time con-
straints, we limited our experiments to a maximum
of 3-shot examples. The experimental results indi-
cate that the context plus few-shot strategy is the
most effective.

4.5 Case Study

Table 5 presents a test case from the GSM8K
dataset where the traditional CoT approach causes
the model to generate language logic and perform
calculations simultaneously. This results in a mis-
understanding of the problem, leading to computa-
tional errors and an incorrect answer. In contrast,
our method first generates a solution plan (SG) for
the problem and then performs calculations based
on this plan. This structured approach allows the
model to focus on distinct tasks, improving prob-
lem logic and ultimately producing a more accurate
answer.

Table 6 shows Our method is also effective in
common-sense reasoning problems. SG forms a
complete problem-solving path, which includes an-
alyzing the purpose of the problem, the differences
among various options, and evaluating each option.
Based on the guidance of the SG, the model can
obtain the final answer.
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Question: Where is there a telephone book in almost every room?
A). at hotel; B). house; C). library; D). bedsit; (E). closet;
Correct answer: A

Ours

Solution Guidance(SG):
Step 1: Analyze the question to understand the context and identify the key concept, which is "a place where a telephone book is commonly
found in almost every room."
Step 2: Examine the provided choices (hotel, house, library, bedsit, closet) and consider the relevance of each option to the key concept.
Step 3: Evaluate each option based on common knowledge about the presence of telephone books in different types of rooms.
Step 4: Determine the best answer based on the evaluation and reasoning.
Answer:
Step 1: The question is asking where one would commonly find a telephone book in almost every room. The key concept here is the
widespread availability of a telephone book within a certain type of space.
Step 2: Let’s examine the choices:
A) At hotel: Hotels often provide guests with a telephone book in each room for convenience.
B) House: Telephone books are not typically found in every room of a house, but rather in a common area such as a living room or kitchen.
C) Library: Libraries do not have telephone books in every room, as they are typically found in reference sections or at the information desk.
D) Bedsit: A bedsit, which is a single room that serves as both a bedroom and a sitting room, might have a telephone book, but this is not a
guarantee in every bedsit.
E) Closet: A closet is not a place where one would expect to find a telephone book.
Step 3: Based on common knowledge, hotels are known to provide a telephone book in each room as part of their hospitality services.
Houses and libraries do not have telephone books in every room, and closets are not places where telephone books are stored. Bedsits, while
they could have a telephone book, do not guarantee one in every room.
Step 4: The best answer, considering the widespread availability of telephone books in hotels, is A) At hotel.
The answer is: A

Table 6: A test example from CommonsenseQA.

5 Conclusion

This paper proposes a new plug-and-play training
paradigm Solution-Guidance Fine-Tuning (SGFT)
for improving the reasoning capabilities of small
language models, without relying on large amounts
of Chain-of-Thought (CoT) training data. Ex-
perimental results demonstrate that the proposed
approach significantly enhances SLMs’ perfor-
mance in mathematical and common-sense rea-
soning tasks while maintaining their general ca-
pabilities. A new reasoning strategy Solution Guid-
ance (SG) is introduced, which emphasizes prob-
lem understanding and decomposition, reducing
noise from calculation steps in traditional CoT data.
Experiments show that using 1,000 pieces of SG
data outperform 30,000 pieces of CoT data.

6 Limitations

In our work, we aimed to enhance the model’s
reasoning capabilities while preserving its original
abilities, so we chose not to focus on smaller-scale
models. Some researchers have found that even
smaller models, when fine-tuned, can develop cer-
tain mathematical reasoning abilities. Future work
could explore using smaller models (<3B) as guid-
ance models. We also observed that many studies
employ diverse path reasoning, which can effec-
tively improve answer accuracy. Applying this to
our method would involve generating multiple SG
for each question, then selecting the final answer
based on the most consistent output across all SG.
However, given our current computational limita-
tions, we plan to explore these methods further in
future work.
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