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Abstract
Chinese Automatic Readability Assessment
(ARA) aims to classify the reading difficulty of
Chinese texts. To address the issues of insuf-
ficient high-quality training data and underuti-
lization of linguistic features in existing meth-
ods, we propose a method that combines adap-
tive pre-training with feature fusion based on
an interactive attention mechanism. First, we
enhance the model’s ability to capture differ-
ent text difficulties through domain- and task-
specific adaptive pre-training. Then, we pro-
pose an Adaptive Task-guided Corpus Filter-
ing (ATCF) method, utilizing embeddings gen-
erated by the pre-trained model and applying
nearest-neighbor search along with a sample
balancing mechanism to ensure comprehen-
sive learning across various difficulty levels.
Finally, we propose an Interactive Attention-
Driven Feature Fusion method that integrates
linguistic and deep features, providing rich dif-
ficulty information to the model. Experiments
on Chinese textbook dataset demonstrate that
our method achieves state-of-the-art (SOTA)
performance. Transfer learning experiments
further indicate that our approach generalizes
well to extracurricular reading and Chinese as
a Foreign Language (CFL) ARA tasks.

1 Introduction

Text difficulty, often referred to as readability, is a
measure of how challenging a text is to read. ARA
aims to evaluate and categorize the difficulty levels
of texts based on various features, including lexical,
syntactic, and semantic characteristics. This task
is crucial for leveled reading and also has signifi-
cant applications in areas such as essay evaluation
(Wang, 2017) and book recommendation (Pera and
Ng, 2014).

Early research on ARA primarily focused on the
development of readability formulas grounded in
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pedagogical heuristics and psychological theories
(Klare, 2000; Davison and Kantor, 1982). These
formulas are known for their interpretability and
computational efficiency, yet they mainly consider
surface-level text features, failing to capture deeper
structural and semantic information, which limits
their overall effectiveness.

With advancements in natural language process-
ing, traditional machine learning approaches that
leverage a broader spectrum of features have been
applied to train ARA models (Sung et al., 2015;
Denning et al., 2016). These models incorporate
not only surface features but also lexical, seman-
tic, and syntactic analyses. While they outperform
readability formulas, these methods heavily depend
on labor-intensive feature engineering and selec-
tion processes, which often fall short in capturing
the intricate internal characteristics of texts.

The emergence of deep learning techniques has
brought new opportunities for ARA research (Mar-
tinc et al., 2021; Sun et al., 2020). By harnessing
the powerful deep feature extraction capabilities
of deep learning models, the performance of ARA
has seen significant improvement.

Research on Chinese native language ARA
started relatively late, but recent studies have begun
exploring deep learning methods. These studies
typically use multiple versions of Chinese language
textbooks as their corpora and primarily employ
two approaches: the first approach involves us-
ing end-to-end neural networks to integrate deep
features extracted by pre-trained language models
with linguistic features at the character, word, and
sentence levels, followed by training a classifica-
tion model (Cheng et al., 2020); the second ap-
proach focuses on constructing customized neural
network architectures tailored to the characteristics
of leveled corpora (Li and Wu, 2023). These deep
learning-based ARA models effectively extract and
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utilize semantic and structural information from
texts, thereby achieving promising performance.

However, existing methods still face certain lim-
itations. Although the first approach leverages
BERT (Devlin et al., 2019), which performs ex-
ceptionally well in Chinese language processing,
BERT struggles with processing long texts and fails
to extract effective features from the lengthy texts
found in higher-grade Chinese textbooks. Addi-
tionally, the neural network models used in both
approaches require a large amount of high-quality
training data, yet the available textbook data is
limited in scale, preventing the models from fully
realizing their potential.

To address the aforementioned issues, we pro-
pose a Chinese ARA method leveraging adaptive
pre-training and an interactive attention mecha-
nism.

First, we collect a corpus of Chinese reading ma-
terials and perform Domain-Adaptive Pre-training
(DAPT) on the long-sequence pre-trained model
BIGBIRD (Zaheer et al., 2020).

Then, we propose an ATCF method, which
embeds both domain-specific corpora and task-
specific corpora (training datasets) into a vector
space using an adaptive pre-trained model. By
employing nearest neighbor search, the method re-
trieves the k-nearest domain samples most similar
to the task samples. Additionally, the number of
selected samples is controlled based on the ratio of
sample distribution across different difficulty lev-
els, aiming to obtain high-quality pre-training data
that is highly relevant to the ARA task.

Finally, we present the Interactive Attention-
Driven Feature Fusion method. This method em-
ploys interactive computations and mapping to de-
rive the attention weights and interaction informa-
tion necessary for merging linguistic features with
deep features extracted by the adaptive pre-trained
model. The fusion of these features provides the
model with more detailed difficulty-related infor-
mation.

Experiments conducted on the Chinese text-
book dataset demonstrate that the proposed method
achieves SOTA performance. Transfer learning ex-
periments indicate that the proposed method also
outperforms the SOTA models on both Chinese
extracurricular reading ARA task and CFL ARA
task.

We will release our code1.

1https://github.com/YaxNLP/ChineseARA_ATCF_FF

2 Related Work

2.1 Traditional Machine Learning Methods

Traditional machine learning approaches treat ARA
as a classification task, utilizing linguistic features
of the text as inputs and outputting the difficulty
level. Compared to readability formulas, these
models not only consider surface-level features
but also analyze deeper features such as syntactic
complexity and grammatical structures, leading to
better performance in identifying challenging texts
(Schwarm and Ostendorf, 2005; Heilman et al.,
2008; Feng, 2010). For instance, Xia et al. (2016)
achieved 80.3% accuracy on the Weebit dataset by
training a SVM classifier with features such as lex-
ical, syntactic, sentence length, language model,
and discourse features. Vajjala and Lucic (2018)
manually extracted six categories of features, in-
cluding n-grams, parts of speech, psycholinguistic
features, syntax, discourse, and traditional features,
achieving 78.1% accuracy with an SVM classi-
fier on the OneStopEnglish dataset. These studies
demonstrate that leveraging a rich set of linguistic
features can significantly enhance the accuracy of
text difficulty assessment.

In the context of Chinese, Chen et al. (2011) em-
ployed mutual information to select keywords and
constructed an SVM model based on the TF-IDF
values of these words. Sung et al. (2014) built an
SVM model using 31 linguistic features across lex-
ical, semantic, and syntactic levels as predictors.
Wu et al. (2020) developed a text feature system
with more layers and dimensions, achieving accu-
rate predictions of difficulty levels in lower-grade
texts. These studies further validate the effective-
ness of multi-level linguistic features in Chinese
ARA.

2.2 Deep Learning Methods

In contrast to traditional machine learning meth-
ods, deep learning approaches can automatically
learn and extract deep features from texts, avoiding
the complex process of manual feature extraction
while significantly improving the accuracy of ARA.
Research by Deutsch et al. (2020) demonstrated
that Hierarchical Attention Networks (HAN) could
extract detailed information from texts, outperform-
ing SVM classifiers, highlighting the importance
of using deep learning models with strong gener-
alization capabilities in text difficulty assessment
tasks. Lee et al. (2021) enhanced classification ac-
curacy by combining the deep features output by

https://github.com/YaxNLP/ChineseARA_ATCF_FF
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the RoBERTa model with manually extracted lin-
guistic features and feeding them into a Random
Forest classifier. Martinc et al. (2021) found that
truncating texts could lead to the loss of difficulty-
related information. When datasets contain a large
number of long texts, HAN performs best; however,
BERT excels on datasets with a predominance of
shorter texts.

In the Chinese context, Liu et al. (2017) com-
bined CNN and LSTM (Hochreiter and Schmidhu-
ber, 1997) to capture both short-range features and
long-range dependencies, significantly outperform-
ing SVM in experiments on 345 Chinese language
textbook texts. Cheng et al. (2020) used the BERT
model to extract sentence features from texts, then
applied BiLSTM to concatenate sentence features
to obtain deep document-level features, finally inte-
grating these deep features with linguistic features
at the character, word, and sentence levels, achiev-
ing an accuracy of 46% in fine-grained classifica-
tion for 12th-grade texts. However, concatenating
features can lead to the loss of contextual informa-
tion, which may impact model performance. Li
and Wu (2023) employed a variable-length convo-
lutional layer to extract deep features from texts,
achieving an accuracy of 56% in an eight-level
classification task, validating the importance of
deep features. However, this method did not uti-
lize linguistic feature information. These studies
underscore the potential of deep learning models in
Chinese text difficulty assessment tasks, while also
pointing out the challenges in effectively extracting
useful information with current methods.

3 Method

3.1 Adaptive Pre-training

We collected recommended readings from the
“Compulsory Education’s Chinese Curriculum
Standards (2022 Edition)” (of Education of the
People’s Republic of China, 2022) and the “Gen-
eral High School Chinese Curriculum Standards
(2017 Edition, Revised in 2020)” (of Education
of the People’s Republic of China, 2020), along
with Chinese National College Entrance Exami-
nation (Gaokao) reading materials from 2010 to
2022. Each text was annotated with the recom-
mended learning stage as specified by the curricu-
lum standards, forming the Chinese primary and
secondary school reading corpus (hereafter referred
to as the domain corpus). To prevent the adaptive
pre-training model from prematurely learning text

Pre-trained model

Domain Sentences

Task Sentences

task sentence

nearest neighbor

2nd nearest neighbor

Embedding space

Reading domain

Figure 1: An illustration of ATCF. We map docu-
ments from both the domain corpus and the training
set of the dataset into a shared vector space using the
DAPT+TAPT model. For each document in the training
set, we identify R(l) × k nearest neighbors from the
reading domain. In this figure, k=2

from the Chinese textbook dataset, we employed
fuzzy matching and cosine similarity calculations
to remove duplicate content between the domain
corpus and the dataset. The final corpus consists of
20,939 texts totaling 28.03 million characters, with
an average length of 1,338 characters per text.

We used the domain corpus to perform Masked
Language Modeling (MLM) on BIGBIRD, en-
abling the model to acquire domain-specific knowl-
edge from the large-scale reading corpus, thus
achieving DAPT. We then performed small-scale
task-specific MLM on BIGBIRD using the train-
ing set of the Chinese textbook dataset to achieve
task-adaptive pre-training (TAPT). Finally, we ap-
plied TAPT on the model obtained from DAPT,
achieving comprehensive adaptive pre-training
(DAPT+TAPT) to further enhance the model’s per-
formance and applicability.

To address the challenges of small and imbal-
anced datasets, we propose ATCF (See Figure 1).
This method is designed to tackle the characteris-
tics of the domain corpus, which is relatively small
in scale, consists of long texts, and has coarse-
grained classification labels. It improves upon
the task-specific data filtering method based on
a lightweight bag-of-words model and KNN (Gu-
rurangan et al., 2020). The specific calculation
process is as follows:

Text Embedding: Equations 1 and 2 represent
the process of embedding the texts from the domain
corpus and the training set into a vector space. D
denotes the domain corpus, which includes both
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texts and their corresponding difficulty labels. T
refers to the training set, also consisting of texts
and their difficulty labels.

domainembeddings = DAPT+TAPT(D) (1)

taskembeddings = DAPT+TAPT(T ) (2)

Sample Count and Selection Ratio Calcula-
tion: Equation 3 calculates the number of sam-
ples for each difficulty level within the training set.
Here, tj represents the jth text in the training set,
lt(tj) indicates the difficulty label of tj , l denotes
the difficulty level, and I equals 1 if the condition
is true, otherwise 0. Equation 4 identifies the max-
imum sample count, while Equation 5 calculates
the selection ratio for each difficulty level.

N(l) =

|T |∑
j=1

I(lt(tj) = l) (3)

Nmax = maxlN(l) (4)

R(l) =
Nmax

N(l)
(5)

Nearest Neighbor Search: For each train-
ing sample, Equation 6 defines the function
find_neighbors, which employs KNN to identify
the nearest neighbor samples. This function returns
the k domain samples that are most similar to the
training sample within the vector space.

neighbors(tj) = find_neighbors(tj , k) (6)

Sample Selection and Ratio Control: Equa-
tion 7 is used to select samples from the domain
corpus, ensuring that the difficulty level of these
domain samples matches that of the training sam-
ples. Here, nei(tj) corresponds to Equation 6, and
s_texts(l) represents the selected set of domain
samples. Equation 8 adjusts the number of se-
lected domain samples to align with the expected
selection ratio R(l). Finally, Equation 9 defines
final_selected_texts, which represents the final se-
lection results.

s_texts(l) =
|T |⋃
j=1

{di|di ∈ nei(tj) and ld(di) = l}

(7)

|s_texts(l)| ≈ k ×R(l) (8)

final_selected_texts =
⋃
l

s_texts(l) (9)
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Figure 2: The process of Interactive Attention-Driven
Feature Fusion.

3.2 Linguistic Features

Based on the standards outlined in the "Compul-
sory Education’s Chinese Curriculum Standards
(2022 Edition)," we extend the 50-dimensional lin-
guistic features proposed by Cheng et al. (2020)
by adding 31 new features. Additionally, the orig-
inal 24-dimensional part-of-speech features were
condensed into 12-dimensional word class features.
The MinMax method was applied to normalize the
different features. A total of 69 linguistic features
were used in this study, and the specific definitions
and implementation methods of the new features
are in Appendix A.

3.3 Interactive Attention-Driven Feature
Fusion

To effectively integrate features extracted by pre-
trained language models and linguistic features, we
propose an Interactive Attention-Driven Feature
Fusion method. The core of this method lies in
leveraging an adaptive interactive attention mecha-
nism to enhance the interaction and representation
capabilities between features. The feature fusion
process is illustrated in Figure 2. The specific steps
are as follows:

Feature Dimension Expansion: First, the lin-
guistic features are expanded to the same dimen-
sionality as the pre-trained model features to facili-
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tate subsequent feature fusion, as shown in Equa-
tion 10. The term fc denotes a fully connected
layer.

up_ling = fc1(ling) (10)

Attention Calculation: The attention weights
S between the pre-trained model features
(pooler_output) and the expanded linguistic fea-
tures (up_ling) are computed:

pooler_output = dense(cls_output) (11)

S = softmax(pooler_output · up_lingT ) (12)

In Equation 11, cls_output is the representation
of [CLS] extracted from the pre-trained language
model’s output, which contains information about
the entire sequence. The term dense refers to a
linear layer that maps to the same dimension. The
pooler_output is typically used for downstream
classification tasks.

Based on the attention weights S, content-related
representations are computed using Equations 13
and 14:

Ch = S · pooler_output (13)

Cl = ST · up_ling (14)

As shown in Equations 15 and 16, the content-
related representations are concatenated with the
original features to obtain the enhanced representa-
tions:

en_pooler = [pooler_output;Ch] (15)

en_ling = [up_ling;Cl] (16)

Attention Fusion: The attention weights α for
the fused features are calculated as shown in Equa-
tion 17:

α = softmax(fc2([en_pooler; en_ling])) (17)

Using the attention weights α, the fused features
h are obtained according to Equation 18:

h = α · en_pooler + (1− α) · en_ling (18)

Finally, the fused features h are concatenated
with the pre-trained model features pooler_output,
supplementing the pre-trained model features with
additional information to derive the final features
f in Equation 19:

f = [pooler_output;h] (19)

4 Experiments

The experimental setup is detailed in Appendix B.

4.1 Dataset

We integrate the graded Chinese language textbook
corpus for primary and secondary schools (Cheng
et al., 2020) and the gold standard corpus of pri-
mary school Chinese textbooks (Liu et al., 2021).
Additionally, the study includes the recently re-
vised primary school Chinese textbooks. The final
dataset comprises textbooks from 13 different edi-
tions covering primary, middle, and high school
levels, with poetry and classical Chinese texts re-
moved for the experiments. For duplicate texts, the
latest revised edition was prioritized.

To ensure comprehensive experimentation, two
granularity levels for difficulty classification were
adopted: an eight-level classification and a five-
level classification (Li and Wu, 2023). The dataset
was divided into training, validation, and test sets
in an 8:1:1 ratio. The eight-level classification is
defined as follows: 0-5 for grades 1-6 (primary
school), 6 for middle school, and 7 for high school.
The five-level classification is defined as follows:
0 for grades 1-2, 1 for grades 3-4, 2 for grades 5-6,
3 for middle school, and 4 for high school. Dataset
details are provided in Appendix C.

4.2 Adaptive Pre-training, Fine-tuning and
Classification of Fused Features

We conducted adaptive pre-training of the Chi-
nese version of BIGBIRD2 using five different
data scales, applying the Whole Word Masking
(WWM) strategy during masked language model
training. This strategy masks entire words to
improve the model’s understanding of word in-
tegrity. Table 1 shows the training steps, time,
dataset size, and post-training loss. We fine-tuned
BIGBIRD and other adaptive pre-trained models
with key hyperparameters, including batch_size=2,
max_length=2048, 5 epochs, cross-entropy loss,
and the AdamW optimizer (eps=1e-8). The op-
timizer was combined with a linear learning rate
scheduler, where the learning rate increases during
the first 10% of training steps, then decreases lin-
early to zero. A parameter search was conducted
with learning rates of 8e-6, 1e-5, and 3e-5. Both
the pre-training and fine-tuning of BIGBIRD were
implemented using the Transformers v4.42.3 li-

2https://huggingface.co/Lowin/chinese-bigbird-wwm-
base-4096



9018

Pre-training Model Loss Steps Time Data
DAPT 1.274 2k 15.3h 20932
TAPT 1.682 0.7k 4.9h 2800
DAPT+TAPT 1.042 0.7k 4.9h 2800
25NN-TAPT 1.285 1k 7.5h 8463
DAPT+25NN-TAPT 1.054 1k 7.5h 8463

Table 1: Adaptive pre-training models. (1) DAPT:
BIGBIRD was trained on the full domain corpus, (2)
TAPT: BIGBIRD was trained on the training set texts,
(3) DAPT+TAPT: BIGBIRD was first trained on the
domain corpus and then on the training set texts, (4)
25NN-TAPT: using ATCF with k=25, BIGBIRD was
trained on both the selected task corpus and the train-
ing set texts, and (5) DAPT+25NN-TAPT: BIGBIRD
was first trained on the domain corpus and then further
trained on the selected task corpus and the training set
texts.

brary. For the fused features, a three-layer linear
mapping was applied to predict the class labels,
with each layer activated by the ReLU function.
Detailed hyperparameters for adaptive pre-training
and classification of fused features are provided in
Appendix D.

4.3 Evaluation Metrics

Considering that ARA is an ordinal multi-class
problem, the evaluation metrics used in the
experiments include Accuracy, Weighted Preci-
sion, Weighted Recall, Weighted F-Measure, and
Quadratic Weighted Kappa (QWK). These metrics
are consistent with those used in studies by Martinc
et al. (2021) and Lee et al. (2021). The SciKit-learn
(Pedregosa et al., 2011) library was employed to
implement these evaluation metrics.

4.4 Baseline Models

TextCNN: This model utilizes 128-dimensional
Word2Vec embeddings, three convolutional layers
with filter sizes of 3, 4, and 5, and 100 channels,
followed by max-pooling and feature vector con-
catenation.

BiLSTM: This model employs 128-dimensional
Word2Vec embeddings, two bidirectional LSTM
layers with 50 hidden states, a fully connected layer,
and two dropout layers (rate = 0.1) to prevent over-
fitting.

BERT+Ling (Cheng et al., 2020): The text is
split into sentences, and sentence vectors from the
bert-base-chinese model are fed into a BiLSTM
to capture contextual relationships, forming a 512-
dimensional deep feature vector. Both the deep and
69-dimensional linguistic features are projected

to 32 dimensions, added, activated by Tanh, and
passed to a fully connected layer for classification.

ChatGPT3: Based on GPT-3.5, trained with data
up until January 2022.

BERT (Devlin et al., 2019) and LERT (Cui
et al., 2022): Fine-tuning BERT4 and LERT5 using
the Transformers library.

VBCNN (Li and Wu, 2023): This model
uses 128-dimensional Word2Vec embeddings, a
VBCNN with variable kernel sizes (1, 3, 5) and 128
channels for local feature extraction, stacked con-
volution blocks for downsampling, and a BiLSTM
with 64 hidden units for sequential processing.

The detailed hyperparameters of the baseline
models and the prompt used for ChatGPT are listed
in Appendix E.

5 Results

Table 2 presents the results for the eight-class and
five-class classification experiments.

Shi et al. (2023) found that since ChatGPT’s
parameters are inaccessible and it cannot be fine-
tuned on specific datasets for task adaptation, its
classification performance is poor when used di-
rectly. The results in this study show that the same
conclusion applies to the Chinese ARA task.

In both classification tasks, fine-tuned BIGBIRD
outperformed most baseline models. The perfor-
mance improvement of BIGBIRD over VBCNN
was modest. However, achieving better results
through fine-tuning alone highlights the strength of
pre-trained language models.

DAPT and TAPT outperformed the base BIG-
BIRD model in both classification tasks. D-TAPT
achieved better performance than both DAPT and
TAPT in the eight-class classification, demonstrat-
ing the advantages of combining domain-adaptive
and task-adaptive pre-training. In the five-class
classification, D-TAPT slightly underperformed
compared to DAPT and TAPT, possibly due to
the broader classification criteria, which made the
benefits of pre-training less pronounced than in the
eight-class task.

25-TAPT showed strong performance in both
classification tasks, suggesting that highly task-
relevant data can further improve the model’s per-
formance in ARA. D-25-TAPT achieved the best
results among pre-trained models.

3https://chatgpt.com
4https://huggingface.co/google-bert/bert-base-chinese
5https://huggingface.co/hfl/chinese-lert-base
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Model-8c Acc QWK Pre Rec F1
TextCNN 47.0 85.5 46.3 47.0 46.4
BiLSTM 49.3 88.5 50.4 49.3 49.1
BERT+Ling 47.6 87.8 45.1 47.6 45.2
ChatGPT 24.2 58.1 27.4 24.2 23.6
BERT 51.6 89.2 53.5 51.6 52.0
LERT 49.0 89.1 50.3 49.0 49.5
VBCNN 52.4 90.8 53.7 52.4 52.8
Ling 43.9 85.1 45.6 43.9 41.9
BIGBIRD 52.7 92.0 53.5 52.7 52.5
DAPT 55.3 92.3 55.6 55.3 54.6
TAPT 53.3 92.0 51.4 53.3 51.9
D-TAPT 57.0 92.3 57.2 57.0 55.7
25-TAPT 56.7 92.4 56.7 56.7 55.8
D-25-TAPT 57.3 92.3 58.5 57.3 56.7
C(Pre;Ling) 59.2 92.4 60.0 59.3 59.1
Pre+Ling 60.7 92.6 61.0 60.7 60.2
Model-5c Acc QWK Pre Rec F1
TextCNN 66.7 86.1 66.6 66.7 66.6
BiLSTM 70.4 88.3 72.4 70.4 69.8
BERT+Ling 63.5 85.1 62.8 63.5 62.3
ChatGPT 32.8 52.1 33.4 32.8 31.0
BERT 64.4 84.3 64.3 64.4 64.2
LERT 64.1 86.2 64.1 64.1 64.1
VBCNN 68.7 86.5 71.1 68.7 66.7
Ling 59.3 84.0 58.8 59.3 57.7
BIGBIRD 70.1 87.8 70.6 70.1 69.4
DAPT 70.4 88.6 70.7 70.4 69.9
TAPT 70.4 88.2 69.8 70.4 69.9
D-TAPT 69.2 88.2 70.6 69.2 69.0
25-TAPT 71.2 88.9 72.4 71.2 71.1
D-25-TAPT 74.1 89.5 74.6 74.1 74.0
C(Pre;Ling) 75.2 90.2 75.5 75.2 74.8
Pre+Ling 75.8 90.9 76.3 75.8 75.6

Table 2: Results of both eight-class (8c) and five-class
(5c) experiments. Ling: Uses two fully connected lay-
ers to project 69-dimensional linguistic features, fol-
lowed by ReLU activation. D-TAPT: DAPT+TAPT.
25-TAPT: 25NN-TAPT. D-25-TAPT: DAPT+25NN-
TAPT. C(Pre;Ling): Concatenate features extracted by
D-25-TAPT with linguistic features and classify using
two fully connected layers. Pre+Ling: Combines D-
25-TAPT with linguistic features using the Interactive
Attention-Driven Feature Fusion method.

Pre+Ling excelled in both classification tasks,
achieving 60.7% accuracy in the eight-class classi-
fication and 75.8% in the five-class classification,
outperforming all other models. Compared to BIG-
BIRD, it improved accuracy by 8.0% in the eight-
class task and 5.7% in the five-class task, demon-
strating that integrating pre-trained model features
with linguistic features offers more comprehensive
information.

On the test set, we constructed confusion matri-
ces for the eight-class classification of BIGBIRD,
25-TAPT, D-25-TAPT, and Pre+Ling, where the
diagonal values represent the accuracy of each cat-
egory. The results are shown in Figures 3.

BIGBIRD showed stable performance across

Figure 3: Confusion matrices.

most categories but exhibited noticeable confusion
in middle categories, such as categories 3 and 4.
25-TAPT achieved significantly higher accuracy in
the upper-grade levels, indicating the necessity of
increasing pre-training data. D-25-TAPT showed
a more balanced performance, with clearer distinc-
tion in categories 3 and 4. The Pre+Ling model,
by integrating linguistic features, was able to cap-
ture textual characteristics more comprehensively,
resulting in a notable improvement in recognizing
finer-grained categories.

6 Transfer Learning

The CMER6 dataset, compiled by Zeng et al.
(2022), consists of 2,260 extracurricular reading
texts for children and adolescents from mainland
China, divided into 12 levels. The HSK7 dataset,
constructed by Tan et al. (2024) based on the offi-
cial Test of CFL documents, includes 5,721 texts
across six levels. We fine-tuned our adaptive pre-
trained models using both the CMER and HSK
datasets. The fine-tuning results on the CMER
dataset are shown in Table 3, and the results on
the HSK dataset are presented in Table 4. During
fine-tuning, all hyperparameters remained consis-
tent with those used in the textbook dataset, except
for the learning rate on CMER, which was set to
7e-6, 4e-6, and 3e-6, respectively.

The CMER dataset primarily targets fine-grained
classification across 12 semesters from grades 1

6https://github.com/JinshanZeng/DTRA-Readability
7https://github.com/CocoTan1020/MLF-BERT
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Model Acc QWK Pre Rec F1
HAN 23.4 72.1 15.4 - 18.4
BERT 22.3 65.3 30.1 - 13.4
DTRA 26.5 70.5 25.3 - 25.1
PromptARA 26.5 68.7 24.2 - 23.9
Ling 23.6 64.6 14.0 23.6 15.1
BIGBIRD 28.9 72.8 22.4 28.9 23.3
DAPT 27.6 76.0 27.7 27.6 24.8
TAPT 27.4 77.6 31.8 27.4 27.4
D-TAPT 27.8 76.6 27.3 27.8 23.8
25-TAPT 30.5 78.3 27.8 30.5 26.2
D-25-TAPT 26.3 77.2 27.8 26.3 22.3
C(Pre;Ling) 28.0 77.0 26.7 28.0 24.8
Pre+Ling 29.1 79.2 26.2 29.1 27.2

Table 3: Performance of models on the CMER dataset.
Pre is 25-TAPT. DTRA (Zeng et al., 2022) is a model
based on BERT embeddings with a structure similar to
HAN. It learns ordinal information between texts by pre-
dicting the relative difficulty of paired texts and utilizing
distance-related soft labels. PromptARA (Zeng et al.,
2023) enhances deep feature representations extracted
by BIGBIRD with a prompt mechanism and fuses deep
features with linguistic features through an orthogonal
projection layer.

to 6, whereas the DAPT dataset spans texts from
grades 1 through 12, covering more advanced con-
tent, which introduces classification interference.

As shown in Figure 3, the 25-TAPT model out-
performs BIGBIRD in overall performance for
stages 0-2 (grades 1-6) in the textbook dataset. Due
to the shorter pre-training steps and smaller data
size of 25-TAPT, the interference with BIGBIRD
is less significant than that of DAPT, resulting in
superior performance and achieving new SOTA
results.

On the HSK dataset, adaptive pre-trained mod-
els underperformed compared to BERT, suggest-
ing that models pre-trained on native Chinese and
task-specific data have lower adaptability to CFL
corpora. Thus, we performed task-adaptive pre-
training on BERT with the following hyperpa-
rameters: max_length=512, batch_size=32, gra-
dient_accumulation_steps=3, max_grad_norm=1,
and steps=385, resulting in the model B-TAPT. The
label mapping between HSK and the domain cor-
pus is as follows: 0-1 for stage 1, 2-3 for stage
2, and 4-5 for stage 3. We replaced DAPT+TAPT
with B-TAPT in ATCF and set k=50, resulting in
the model B-50-TAPT.

In Table 4, B-50-TAPT significantly improves
B-TAPT’s performance, indicating that the ATCF
approach is also highly applicable to CFL corpora.
While B-50-TAPT’s accuracy is slightly lower than
that of MLF-BERT, it reduces the demand for

Model Acc QWK Pre Rec F1
ELECTRA 88.1 - - - 87.0
MLF-ELECTRA 89.7 - - - 89.4
BERT 91.1 - - - 90.9
MLF-BERT 94.2 - - - 93.9
Ling 61.8 90.1 62.2 61.8 60.5
BIGBIRD 90.2 97.6 90.8 90.2 89.5
DAPT 88.8 97.2 89.8 88.8 87.4
TAPT 88.3 97.1 88.9 88.3 87.5
D-TAPT 89.3 97.3 90.2 89.3 88.0
25-TAPT 88.3 97.1 89.3 88.3 87.3
D-25-TAPT 90.5 97.7 90.8 90.5 90.1
BERT* 90.9 97.8 91.0 90.9 90.8
B-TAPT 92.5 98.2 92.5 92.5 92.4
B-50-TAPT 94.0 98.6 94.0 94.0 94.0
C(Pre;Ling) 93.5 98.5 93.5 93.5 93.5
Pre+Ling 94.2 97.6 94.2 94.2 94.1

Table 4: Performance of models on the HSK dataset.
* denotes experiments conducted on our setup. Pre is
B-50-TAPT. MLF-ELECTRA / MLF-BERT (Tan et al.,
2024) incorporates linguistic features into the embed-
ding and self-attention layers of the ELECTRA / BERT
models.

linguistic feature extraction, thus conserving re-
sources. Furthermore, with the adoption of the In-
teractive Attention-Driven Feature Fusion method,
Pre+Ling surpasses MLF-BERT in the F1 score,
achieving new SOTA.

7 Conclusion

This paper proposes a method that combines adap-
tive pre-training with linguistic feature fusion to
enhance the accuracy of Chinese text readability
classification. By embedding both domain-specific
and task-specific corpora into a shared vector space
through adaptive pre-training, our approach supple-
ments task corpora with the most similar domain
texts. Additionally, a quantity-filtering mechanism
based on class proportions ensures a relatively bal-
anced distribution of samples across difficulty lev-
els. The high-quality pre-trained corpus improves
the model’s ability to distinguish text difficulty.
The Interactive Attention-Driven Feature Fusion
captures the complex relationships between multi-
level linguistic and deep features, generating fused
features that provide additional textual information
to the adaptive pre-trained model. Experimental
results demonstrate that the proposed method per-
forms excellently on datasets of Chinese native
language textbooks, extracurricular readings, and
CFL texts.

In future work, we will explore more diverse
pre-training strategies and data augmentation tech-
niques, and investigate whether this method can
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be applied to large language models. Additionally,
since the linguistic features relevant to readability
may vary across different types of datasets, identi-
fying the optimal combination of linguistic features
for specific domains represents another promising
direction for future research.

Limitations

When applying our method to other languages or
domains, a considerable amount of domain-specific
data must be collected and organized, which re-
quires substantial resources. When the domain data
is particularly large, using adaptive pre-trained lan-
guage models for high-quality data filtering can
place heavy demands on computational resources.
One challenge we face is how to automatically an-
alyze the dataset to select appropriate linguistic
features. Too few features may have little impact
on the model’s performance, while too many could
introduce noise, and feature extraction itself can be
resource-intensive.
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Word Class Proportions: Word Class Propor-
tions: The proportions of nouns, verbs, adjectives,
numerals, classifiers, pronouns, adverbs, prepo-
sitions, conjunctions, particles, modal particles,
and interjections. Part-of-speech tagging was per-
formed using the Language Technology Platform
(LTP) (Che et al., 2021).

Syntactic Structure Proportions: The pro-
portions of coordination, modification, subject-
predicate, verb-object, and complement structures.
Syntactic analysis was conducted using LTP.

Sentence Component Proportions: The pro-
portions of subjects, predicates, objects, attribu-
tives, adverbials, and complements. Syntactic anal-
ysis and semantic role labeling were performed
using LTP.

Compound Sentence Type Proportions: The
proportions of causal, hypothetical, inferential, con-
ditional, purposive, coordinative, coherent, pro-
gressive, alternative, adversative, concessive, and
pseudo-adversative types. The CCCSRA dataset
(Yang et al., 2022) was divided into an 8:2 ratio for
training and testing, and BERT was fine-tuned to
achieve a classification model with 98% accuracy
for identifying compound sentence types.

Punctuation Proportions: The proportions of
commas, periods, question marks, exclamation
marks, colons, and quotation marks. These were
identified using pattern matching rules.

B Experimental Setup

The experiments were conducted using PyTorch
on a Windows 11 system, with an NVIDIA RTX
3090 GPU (24GB VRAM) and an AMD Ryzen 7
5700X processor. To ensure reproducibility and fair
comparisons, the random seed for Python, NumPy,
and PyTorch was set to 0.

C Details of the Chinese Textbook Dataset

Figure 4: Chinese textbook dataset length distribution

Label Texts Avg. Chars Total Chars
0 366 155 56878
1 429 320 137384
2 462 555 256440
3 497 783 389576
4 507 1038 526203
5 453 1282 580728
6 436 2231 972530
7 351 3311 1162277
Total 3501 1166 4082016
Label Texts Avg. Chars Total Chars
0 795 244 194262
1 959 674 646016
2 960 1153 1106931
3 436 2231 972530
4 351 3311 1162277
Total 3501 1166 4082016

Table 6: Statistics of the eight-class and five-class clas-
sifications of the textbook dataset.

D Hyperparameters for Adaptive
Pre-training and Classification of
Fused Features

Adaptive Pre-training: The training used a
batch_size of 2, with gradient accumulation (gra-
dient_accumulation_steps=50) to enhance training
efficiency and memory utilization. To prevent gra-
dient explosion, the gradient norm was clipped to
1 (max_grad_norm=1). According to Figure 4, ap-
proximately 85% of the texts are shorter than 2048
tokens, max_length was set to 2048.

Fused feature classification: batch_size=32,
epochs=5, learning_rate=6e-4, using cross-entropy
loss and the AdamW optimizer.

E Baseline Model Hyperparameters

TextCNN: Dropout (with a rate of 0.1) is applied,
followed by a fully connected layer for classifica-
tion. The main hyperparameters are batch_size=64,
epochs=50, learning_rate=0.0001, the optimizer is
AdamW, and the loss function is cross-entropy loss.

BiLSTM: The main hyperparameters are
batch_size=64, epochs=50, learning_rate=0.005,
the optimizer is AdamW, and the loss function is
cross-entropy loss.

BERT+Ling (Cheng et al., 2020): The main
hyperparameters are batch_size=64, epochs=50,
learning_rate=0.0001, the optimizer is SGD, and
the loss function is cross-entropy loss.

BERT (Devlin et al., 2019) and LERT
(Cui et al., 2022): The main hyperparameters
are batch_size=16, epochs=5, learning_rate=8e-6,
max_length=512, the optimizer is AdamW, and the
loss function is cross-entropy loss.

ChatGPT: The prompt requires the text to be
classified into two granularities. The first granular-
ity divides the text into: Grade 1, Grade 2, Grade
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3, Grade 4, Grade 5, Grade 6, Middle, and High
School. The second granularity divides the text
into: First Stage, Second Stage, Third Stage, Mid-
dle, and High School. Only the final classification
results for the entire text in these two granularities
are needed.

VBCNN (Li and Wu, 2023): Each block con-
sists of two convolution layers with kernel sizes of
3, max pooling, and ReLU activation. The main
hyperparameters are batch_size=64, epochs=200,
learning_rate=0.0001, max_length=4500, the opti-
mizer is AdamW, and the loss function incorporates
label smoothing with cross-entropy loss.
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