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Abstract

Enabling LLMs to handle lengthy context is
currently a research hotspot. Most LLMs are
built upon rotary position embedding (RoPE), a
popular position encoding method. Therefore,
a prominent path is to extrapolate the RoPE
trained on comparably short texts to far longer
texts. A heavy bunch of efforts have been
dedicated to boosting the extrapolation via ex-
tending the formulations of the RoPE, however,
few of them have attempted to showcase their
inner workings comprehensively. In this paper,
we are driven to offer a straightforward yet
in-depth understanding of RoPE extensions
from an attention perspective and on two
benchmarking tasks. A broad array of
experiments reveals several valuable findings:
1) Maintaining attention patterns to those at
the pretrained length improves extrapolation;
2) Large attention uncertainty leads to retrieval
errors; 3) Using longer continual pretraining
lengths for RoPE extensions could reduce
attention uncertainty and significantly enhance
extrapolation.

1 Introduction

Large language models (LLMs) (Radford et al.,
2018; Touvron et al., 2023; Zhang et al., 2023;
Li et al.,, 2024; Zhang et al., 2024a,b) have
accommodated a wide range of natural language
processing applications, such as code completion
(Roziere et al., 2023) and question answering
(Kamalloo et al., 2023; Jiang et al., 2021; Su et al.,
2019). However, a notable challenge limiting
further customization is possibly the inability of
LLMs to utilize context beyond the pretrained
length (Minaee et al., 2024; Chen et al., 2023a) due
to the inherent flaw of rotary position embedding
(RoPE) being used. Fortunately, RoPE extensions
emerge as key ingredients to enabling LLMs to
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leverage extended context that exceeds pretrained
scope (Chen et al., 2023a; Peng et al., 2023; Liu
et al.,, 2023; Han et al., 2023; Roziére et al.,
2023). These RoPE extensions focus on improving
performance on long texts, yet frustratingly, only
a few of them (Liu et al., 2023; Han et al., 2023;
Men et al., 2024) have explored the underlying
mechanisms in depth.

Thus, we systematically analyze common
ROPE extensions more straightforwardly, from the
perspective of attention (Vaswani et al., 2017).
We include three widely-used RoPE extensions,
i.e., position interpolation (Chen et al., 2023a),
YaRN (Peng et al.,, 2023), and NTK-Aware
interpolation (Roziere et al., 2023). To our
best knowledge, there is simply no research in
understanding RoPE extensions for long-context
models thoroughly from an attention perspective.

As a start, we strive to primarily study these
methods on a long-context perplexity test (PPL)
and empirically compare their corresponding
attention patterns. We found that finetuning
LLMs with these RoPE-extension methods which
match the original pretraining length improves
extrapolation performance. Particularly with
the NTK-Aware interpolation method, one can
extrapolate up to 32x beyond the pretrained
length. To unleash the reasons behind the
successes of these methods, we collect the attention
scores respectively distributed in 2K and 8K
lengths during inference. The results demonstrate
that these methods maintain attention patterns
consistent with those observed at the pretrained
length. In contrast, the attention patterns of the
RoPE are substantially deviated.

Afterward, following literature (Fu et al., 2024),
we examine these RoPE extensions on a more
challenging long-context test called Needle-in-a-
Haystack (Needle) (Kamradt, 2023). We find
that the RoPE extensions could pass more tests
than the RoPE does. Nonetheless, as the context
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length increased, the RoPE extensions could hardly
locate the needles. We associate the observation
with attention uncertainty. We uncover that large
uncertainty leads to retrieval errors: the positions
that incur large attention uncertainty are exactly
where the incorrect answers are borrowed from.

We further hypothesize that this large attention
uncertainty stems from a mismatch between
the context lengths in training and inference.
Inspired by the conjecture, a natural way to
ease the mismatch is to directly train on longer
texts. Experimental results exhibit that, with the
same amount of training tokens consumed, using
examples with longer contexts largely alleviates
uncertainty. Thereby, the ability to digest long
texts is promoted.

Our key contributions can be summarized as
follows:

* We study various RoPE extensions for length
extrapolation in perplexity testing and find
that the effectiveness could be yielded from
maintaining the original attention patterns.

* We analyze these methods using advanced
Needle testing and observe that they may fail
to extrapolate to regions where large attention
uncertainty persists.

* We hypothesize that large attention uncer-
tainty stems from a context length mismatch
between training and inference. It is possible
to reduce this large uncertainty by minimizing
the mismatch through continual training with
lengths closer to those in inference.

2 Backgroud
2.1 Target LLMs

We consider LLaMa series at different sizes to
conduct experiments, including MiniMA-2-3B
(Zhang et al., 2023), LLaMa-2-7B, and LLaMa-
2-13B (Touvron et al., 2023). All these mentioned
LLMs consistently use rotary position embeddings
to take position information into consideration.
Owing to space limitation, we only present the
experimental results for LLaMa-2-7B, and the
results for MiniMA-2-3B and LLaMa-2-13B, share
similar trends with those for LLaMa-2-7B, as
shown in Appendix A and B.

2.2 RoPE and Its Extensions
Rotary Position Embedding (RoPE).

Before diving into RoPE extensions, we first
briefly describe RoPE itself. The use of RoPE (Su
et al., 2021) has become pervasive in contemporary
LLMs (Touvron et al., 2023; Bai et al., 2023;
Bi et al.,, 2024). RoPE encodes the position
information of tokens with a rotation tensor that
naturally incorporates explicit relative position
dependency. To illustrate, given a hidden vector
h = [ho,hi,...,h4_1], where d is the hidden
dimension, and a position index m, RoPE operates
as follows:

ho cosmby —hy sinm#by
hy cosmby ho sin mbp
ho cos mb —hs sinmb;
fhym)=| b3 | cosmb + ha ® sinmé (1)
ha—2 cosmbg a1 —hg—1 sinmby sy
ha-1 cosmbg/p 1 ha—2 sinmby o1

where 0; = b=2/4 j € {0,1,...,d/2 — 1}, and b
represents the base frequency for RoPE.

Position Interpolation (PI). As described in
Chen et al. (2023b) and Kaiokendev (2023), PI
involves proportionally downscaling the position
index m to m/« in Equation 1.

NTK-Aware Interpolation (NTK). NTK (Roz-
iere et al., 2023) assumes that interpolating all
dimensions equally, as done by PI, may result in
the loss of high-frequency information. Therefore,
NTK introduces a nonlinear interpolation strategy
by adjusting the base frequency b.

Yet another RoPE extensioN (YaRN). Unlike
PI and NTK, which treat each dimension of RoPE
uniformly, YaRN (Peng et al., 2023) employs
a ramp function to combine PI and NTK at
varying proportions across different dimensions.
Additionally, it introduces a temperature factor
to mitigate the distribution shift of the attention
caused by long inputs.

Following the default settings of the original
papers (Chen et al., 2023a; Peng et al., 2023; Liu
et al., 2023), we adjust « from 1 to 16 in m/« for
PI and YaRN, while adjusting b from 10,000 to
1,000,000 for NTK in our experiments.

2.3 Long-Context Evaluations

Following existing works (Chen et al., 2023a; Peng
et al., 2023; Fu et al., 2024), we use the perplexity
test (dubbed PPL) as the primary evaluation and the
Needle-in-a-Haystack test as a more challenging
evaluation. The perplexity is a primary measure
that reflects a model’s ability to handle long texts.
The Needle-in-a-Haystack test (dubbed Needle)
(Kamradt, 2023) requires LLMs to accurately recall
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\ PI YaRN NTK RoPE
LLaMa-2 | 1.29 0.05 0.06 0.00
LLaMa-3 | 229 1.72 1.68 257

Table 1: Jensen—Shannon (JS) divergence of mean
attention distributions between different models at
lengths of 2048 (top row) and 8192 (bottom row). A
lower JS divergence indicates that the two attention
distributions are similar.

a specific sentence (the Needle) embedded at an
arbitrary location within a long document (the
haystack). We obtain the perplexity on the Proof-
pile (Azerbayev et al., 2022) dataset. We follow
the standard described in Fu et al. (2024) for the
Needle-in-a-Haystack accuracy.

3 RoPE Extensions on PPL

We study RoPE extensions by comparing perfor-
mance on long-context perplexity testing. From the
test, as illustrated in Figure 1, we identify that NTK
can extrapolate from 4K to 128K, whereas PI and
YaRN can extrapolate to 62K. We observe similar
results in both the smaller model MiniMA-2-3B
and the larger model LLaMa-2-13B, as illustrated
in Figures 1(b) and 1(c). To recognize why these
ROPE extensions enable train-short-and-test-long
properties in PPL, we collect the attention scores
on 10 sequences in 2K and 8K and visualize their
attention distributions. The followings are a few
key takeaways from the attention perspective:

RoPE extensions maintain the original atten-
tion patterns. As shown in Figure 2, similar to the
findings from Chen et al. (2023a), we observe that
the attention patterns fluctuate when the RoPE is
tested on 8K sequences (exceeding the training
length). However, with RoPE extensions, the
attention distributions, as illustrated in Figures 2(c-
e), revert to the original pattern seen in Figure 2(a)
when tested on 8K sequences. Similar observations
are seen in both LLaMa-2-13B and MiniMA-2-3B,
as illustrated in Figures 3 and 6.

RoPE extensions closely resemble the at-
tention patterns of models trained on longer
context. To further verify whether RoPE exten-
sions maintain the original attention patterns, we
aim to directly quantify the Jensen—Shannon (JS)
divergence between different attention distributions.
Using LLaMa-2 and LLaMa-3 as baselines, we
collected 10,240 samples of attention distributions

to calculate the JS divergence. As illustrated in
the bottom row of Table 1, the JS divergence
between the RoPE extensions and LLaMa-3 is
more minor than between the RoPE and LLaMa-
3. This indicates that the attention patterns of
ROPE extensions resemble those of models directly
trained on a longer context.

NTK and YaRN do not affect the attention
patterns within the pretrained length. Some
ROPE extensions can degrade performance within
the original pretrained length (Peng et al., 2023;
Zhang et al., 2024c). To verify whether RoPE
extensions alter the attention patterns within
the pretrained length, we also calculate the
JS divergence among these models’ attention
distributions at a 2K length. As illustrated on
the top row of Table 1, the JS divergence for
the NTK and YaRN is very low, almost zero,
indicating minimal impact on attention distribution.
On the contrary, the JS divergence for the PI is
significantly higher. Therefore, we conclude that
the NTK and YaRN methods do not affect attention
patterns within the pretrained length.

4 RoPE Extensions on Needle

To understand the performance and behavior of
the RoPE extensions on more challenging long-
context tasks, we conduct Needle testing (Fu et al.,
2024). As shown in Figure 4(a-d), LLaMa-2-
7B with RoPE extensions can pass more needle
tests than the RoPE. However, as the context
length increases, some tests fail, resulting in needle
retrieval errors. Eventually, almost all fail in
extremely long contexts. We also conduct Needle
testing on the MiniMA-2-3B and LLaMa-2-13B
models with RoPE and PI. Unlike the LLaMa-
2-7B, the PI method shows a more significant
improvement in the LLLaMa-2-13B, as depicted in
Figure 7. In contrast, on the MiniMA-2-3B, PI
passes only a few needle tests at longer lengths,
as illustrated in Figure 5. We attribute these
observations to the impact of model size. Below
are key takeaways from the attention perspective:
Attention uncertainty leads to more needle
retrieval errors. To find the reason behind the
needle retrieval errors, we calculate the entropy of
attention for each length and depth, as illustrated
in Figures 4. For details on the calculation of
attention entropy, please refer to Appendix C.
Our findings demonstrate that the locations of
needle retrieval errors often coincide with high
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Figure 2: Attention distributions of RoPE, PI, YaRN, and NTK methods on 2K and 8K sequences. The red line
represents the mean attention scores across all heads, layers, and examples. The other lines indicate the attention

scores for each head in each layer.
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Figure 3: Attention distributions of RoPE, PI, YaRN, and NTK methods on 2K and 8K sequences on MiniMA-2-3B.

attention entropy. For example, at the same
depth, the positions with errors are among the
top-k in entropy; similarly, at the same length,
the error positions also have high entropy. We
hypothesize that the increase in attention entropy
with longer test lengths is due to the train-short-and-
test-long setting. During inference, the number of

tokens handled by the self-attention mechanism far
exceeds that during training. More tokens lead to
more dispersed attention, i.e., higher uncertainty,
causing a mismatch between training and inference.

A natural approach to lower attention
uncertainty for enhancing extrapolation. A
direct solution is to train on longer contexts,
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instance, a position of 50% signifies that the needle is placed in the middle of the document. A red cell indicates
that the model fails to recall the information in the needle, whereas a green cell indicates success. A white dashed
line denotes the model’s continual pretrain length. Each value in the cells signifies the mean attention entropy, with

higher values reflecting more dispersed attention.

thereby increasing the number of attention tokens
during training and reducing attention uncertainty.
To validate our hypothesis, we finetune models
on 4K and 32K training lengths with the same
tokens on NTK. As shown in Figures 4(e) and
4(f), compared to models trained in short contexts,
models trained in more extended contexts exhibited
significantly lower attention uncertainty. For
example, at length 63938, the attention entropy
is generally below 5. The Needle test pass rates
improved significantly, especially in longer testing
contexts. Conversely, models trained with the same
number of tokens but shorter context sizes showed
little to no change in attention entropy, remaining
similar to the original one (4(d)).

5 Conclusions

This paper provides the first thorough understand-
ing of RoPE extensions for long-context LLMs
from an attention perspective, evaluated on two
widely-used benchmarks: Perplexity and Needle-
in-a-Haystack. Extensive experiments demonstrate
some valuable findings: 1) Compared to direct
extrapolation, RoPE extensions can maintain the
original training length attention patterns. 2) Large
attention uncertainty leads to retrieval errors in
needle testing in RoPE extensions. 3) Using longer
continual pretraining lengths for RoPE extensions
can reduce attention uncertainty and significantly
enhance extrapolation in target LLMs.

8959



Limitations

This paper primarily analyzes the widely-used
decoder-only LM, LLaMa (Touvron et al., 2023).
It does not include a validation study of encoder-
decoder and encoder-only architectures.
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A Experimental Results on MiniMA-2-3B
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Figure 5: Performance comparison for the Needle-in-a-
Haystack Test of MiniMa-2-3B.

Similar to the analysis in § 4, the Needle-in-a-
Haystack Test for MiniMa-2-3B also indicates that
the locations of needle retrieval errors frequently
align with areas of high attention entropy.

B Experimental Results on LLaMa-2-13B

Consistent with the analysis in § 3, we observe
that the attention patterns fluctuate when RoPE is
applied to 8K sequences, which exceed the training
length. However, when using RoPE extensions,
the attention distributions return to their original
patterns for 8K sequences, as demonstrated in
Figures 6.
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Figure 7: Performance comparison for the Needle-in-a-
Haystack Test of LLaMa-2-13B.

Similar to the analysis in § 4, the Needle-in-a-
Haystack Test for LLaMa-2-13B also indicates that
the locations of needle retrieval errors frequently
align with areas of high attention entropy.

C Detailed Calculation of Attention
Entropy
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Figure 6: Attention distributions of RoPE, PI, YaRN, and NTK methods on 2K and 8K sequences on LLaMa-2-13B.

Algorithm 1 Calculation of Attention Entropy

1: Input: model, prompt

2: Output: average attention entropy score

3: procedure ATTENTIONENTROPY (model, prompt)

4: Initialize entropy_list « |]

5 output_tokens < [ ]

6 while not end of generation do

7 token, attention_distribution < GenerateTokenAndGetAttention(model, prompt +

output_tokens)

8: output_tokens.append(token)

9: entropy < CalculateEntropy (attention_distribution)
10: entropy_list.append(entropy)

11: end while

12: average_entropy <— Average(entropy_list)

13: return average_entropy

14: end procedure
15: function CALCULATEENTROPY (distribution)
16: entropy < 0

17: for all p in distribution do

18: if p > 0 then

19: entropy < entropy — plog(p)
20: end if

21: end for

22: return entropy

23: end function
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