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Abstract

Domain adaptation is widely employed in cross-
domain sentiment analysis, enabling the trans-
fer of models from label-rich source domains
to target domains with fewer or no labels. How-
ever, concerns have been raised about their ro-
bustness and sensitivity to distribution shifts,
particularly when significant disparities exist
between domains. To address this problem,
we propose CDA?, a framework for cross-
domain adaptation in low-resource sentiment
analysis that leverages counterfactual diffusion
augmentation. Specifically, it employs sam-
ples derived from domain-relevant word sub-
stitutions in source domain samples to guide
the diffusion model for generating high-quality
counterfactual target domain samples. During
the training stage, we employ a soft absorbing
state and MMD loss, while using an advanced
ODE solver to accelerate the sampling process.
Our experiments demonstrate that CDA? gen-
erates high-quality target samples and achieves
state-of-the-art performance in cross-domain
sentiment analysis.

1 Introduction

Sentiment analysis is a crucial task in Natural Lan-
guage Processing (NLP), primarily focuses on ex-
tracting the underlying emotion or sentiment ex-
pressed within textual data. It has surged in popu-
larity in recent years, due to its wide-ranging ap-
plications in the real-world(Kertkeidkachorn and
Shirai, 2023; Nzeyimana, 2023). In recent years,
deep learning technology has experienced signif-
icant growth and achieved remarkable success in
sentiment analysis(Zhang et al., 2015; Yadav and
Vishwakarma, 2020). However, when operating un-
der low-resource conditions or encountering a data
distribution shift between the training domain and
the target domain, traditional sentiment analysis
methods that rely on labeled data to train models in
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Training Data Source Domain: Books

o The journey through the book leaves readers filled with
joy and anticipation. Sentiment: Positive

Augmented Target Training Data Domain: Kitchen

a) The journey through the fridge leaves users filled
with joy and anticipation.

b) Exploring this fridge’s features leaves users filled
with joy and looking forward to meal prep.

Sentiment: Positive
Test Data Target Domain: Kitchen

o This fridge’s features make every meal preparation a
joyous and exciting experience.

Training data | 9P

Sentiment: Positive

Figure 1: An Illustration of the Cross-Domain SA Task.
If the augmented training data exhibit semantic disrup-
tions and spurious associations with the source domain,
the model will become confused due to the failure of
semantic transfer.

the target domain experience a significant decline
in performance(Ben-David et al., 2020).

To alleviate the reliance on labeled data, cross-
domain sentiment analysis(SA) has garnered the at-
tention from researchers. Many previous works re-
sort to unsupervised domain adaptation techniques,
which aim to transfer knowledge from a resource-
rich source domain to a target domain with unla-
beled data(Blitzer et al., 2007; Pan et al., 2010;
Zhuang et al., 2015). In cross-domain sentiment
analysis tasks, most existing domain adaptation
methods employ adversarial training to prevent
models from distinguishing samples from specific
domains, thereby transferring knowledge from the
source domain to the target domain(Liu et al., 2018;
Wang et al., 2019) and some attempts to learn
domain-specific knowledge(Du et al., 2020; Qu
et al., 2019; Yang et al., 2022). Although these
methods achieve promising results, their models
are trained only on in-domain labeled data from
the source domain, thereby limiting their ability to
handle out-of-domain data.
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To address the aforementioned limitations, re-
searchers have attempted to design cross-domain
data augmentation methods. The key objective
is to generate a large number of labeled target
domain samples based on the labeled source do-
main samples, thereby achieving knowledge trans-
fer. The research within this framework primar-
ily includes two approaches: masked language
models (MLM)(Yang et al., 2022) and sequence-
to-sequence (Seq2Seq)(Li et al., 2022a) models.
While word substitution-based data augmentation
methods have demonstrated advancement over fea-
ture adaptation methods, they still have some draw-
backs: (i) semantic disruptions, (i7) the fixed syn-
tactic structure from the source domain, (7i7) the
lack of diversity in generated samples.

Taking the cross-domain sentiment analysis(SA)
task in Figure 1 as an example, Training models
with logically inconsistent augmented data can lead
to confusion, especially in context-aware language
models. Conversely, incorporating the augmented
target domain data can enhance the reliability of
the predictive model.

To generate high-quality labeled target domain
data for cross-domain sentiment analysis, we
propose a framework called CDA? for Cross-
Domain Adaptation in low-resource sentiment
analysis, which utilizes Counterfactual Diffusion
Augmentation. CDA? is designed to mitigate
semantic disruptions and spurious associations
caused by fixed syntactic structures from the source
domain. Firstly, we provide the diffusion generator
with high-quality raw target samples through do-
main corruption and domain reconstruction. Next,
we design a learnable soft absorbing state by intro-
ducing additional discrete noise into the continuous
diffusion process to better fit the inherently discrete
nature of text. Additionally, we incorporate Maxi-
mum Mean Discrepancy loss, utilizing real target
domain unlabeled samples to supervise the genera-
tion process, thereby facilitating better data distri-
bution shift. During the sampling phase, we employ
an advanced Ordinary Differential Equation solver
to accelerate sampling while minimizing the sacri-
fice of sample quality, resulting in the generation
of high-quality counterfactual target samples.

The main contributions of this study can be sum-
marized as follows:

* We propose a novel diffusion-based cross-
domain data augmentation framework, CDAZ,
which can generate a large amount of labeled
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target domain data for cross-domain sentiment
analysis tasks.

* Within this framework, we conditionally
guide the diffusion model to generate high-
quality counterfactual target samples from
source samples and raw target samples.

* We conduct experiments on various senti-
ment analysis datasets , demonstrating that our
model achieves state-of-the-art performance.

2 Related Work

Cross-Domain Sentiment Analysis Cross-domain
sentiment analysis aims to generalize models
trained on a source domain to a target domain. Typ-
ically, the source domain has abundant labeled data,
while the target domain has scarce or no labeled
data(Du et al., 2020). Researchers address this
by bridging data distribution differences through
shared feature representations(Ziser and Reichart,
2017; Ben-David et al., 2020; Peng et al., 2018)
and learning invariant features via adversarial train-
ing(Ganin et al., 2017; Du et al., 2020; Li et al.,
2017) and contrastive learning(Long et al., 2022).
Influenced by masked generation methods, recent
works have explored data augmentation(Calderon
et al., 2022; Wang and Wan, 2023) and prompt
tuning(Wu and Shi, 2022).

Domain Adaptation Unsupervised adaptation is
a practical setup that assumes access to unlabeled
data from both domains and labeled data from the
source domain(Blitzer et al., 2007). A more chal-
lenging setup, Any Domain Adaptation(Ben-David
et al., 2020), assumes the target domain is unseen
during training. Methods include representation
learning(Ziser and Reichart, 2017), instance re-
weighting, and self-training(Rotman and Reichart,
2019). Deep neural networks have focused on the
two approaches mentioned in cross-domain senti-
ment analysis.

Data Augmentation Data augmentation aims to
improve model generalization by generating more
training data. Synonym-based augmentation meth-
ods replace words with synonyms, hypernyms, or
hyponyms(Xu et al., 2019; Kobayashi, 2018), but
these methods can create spurious associations. To
address this, Kaushik et al. (2020) introduced mini-
mal modifications using human annotators for la-
bel inversion, though costly and time-consuming.
Chen et al. (2021) used automated antonym re-
placement. Recently, diffusion models have been



(a) The process of raw target sample generation via filling masked words.
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Figure 2:

applied for controlled text generation(Li et al.,
2022b; Gong et al., 2023a,b), offering stable train-
ing and diverse content generation compared to
GANs(Goodfellow et al., 2014). Our goal is to use
diffusion models to generate high-quality target
samples guided by raw target samples, rather than
through manual or rule-based efforts.

3 Methodology

In this section, we first define the task of cross-
domain sentiment analysis. Subsequently, we
present the proposed counterfactual diffusion aug-
mentation framework for cross-domain adaptation
(CDA? for short). The overall structure of CDA?
is shown in Figure 2, which comprises three parts:
() generation of raw target samples, (i) diffusion-
based generator (including training stage and sam-
ple stage), and (7i7) data filtering mechanism.

3.1 Problem Formulation

In this paper, we focus on cross-domain senti-
ment classification in low-resource scenarios. Fol-
lowing previous studies(Zhang et al., 2019; Li
et al., 2018), we consider two domains: Source
and Target. The source domain D° contains la-
beled data D} = {(w?, yf)}ﬁvjl and unlabeled data
DS {(wg)}ﬁ,vlm, where D* = D5 |J Ds. Ad-
ditionally, N < N§. The target domain D' in-

()

where D! = D! . The goal of cross-domain senti-
ment classification is to utilize D* and D* to predict

cludes a set of unlabeled data DY,
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The architecture of counterfactual diffusion augmentation (CDA?) framework for cross-domain adaptation.

the labels of test samples from the target domain.

3.2 Generation of Raw Target Samples

To meet the requirements for conditional guidance
of the diffusion model, we aim to generate raw
target samples that are contextually relevant and
sentimentally aligned. We adopt a strategy of cor-
ruption and reconstruction on given source domain
samples through a masking generation approach,
as illustrated in Figure 2a.
Domain Corruption The first step in generating
raw target samples w" is to mask specific domain-
relevant terms from the source domain D?®. Let
w = {w1,wa, ..., wy,} represent a sample, with
m denoting the sample length. We mask all uni-
grams w for which M(w,D*, D*) > 7, with 7
being a masking threshold parameter and M repre-
senting a function that returns the masking score of
a the uni-gram. For bi-grams, we mask those terms
that have an overall score exceeding 7, provided
that none of their constituent uni-grams have been
masked. Similarly, this strategy can be extended
to tri-grams. For example, “paper” and “towel”
as uni-grams have weak relevance to the Kitchen
domain and are not masked. However, the bi-gram
“paper towel” has high relevance to the Kitchen
domain as a combined term and a score above the
7 threshold, so it is masked. This method provides
more contextual information and proves our strat-
egy effective in identifying domain-specific terms.
The rationale behind this higher-order n-gram
masking approach is to capture the context more ac-
curately. Higher-order terms like bi-grams and tri-



grams provide richer contextual information com-
pared to uni-grams. By masking bi-grams and tri-
grams, we ensure that domain-specific phrases are
identified, while still allowing the individual words
to be used in other contexts where they may not
be as relevant. This approach prevents the loss of
useful words that might be masked unnecessarily
if only higher-dimensional terms were considered.

To clarify the masking score M(-), we assume
equal prior probabilities for each domain and utiliz-
ing the Bayes’ rule, the probability that an n-gram
term w belongs to a domain D with n” unlabeled
samples is estimated by:

ng—i—a

P(D=D|W =w) x —“ "%
( W=w) < s e v

ey

where n” represents the number of samples in D
that include the term w, « is a smoothing hyper-
parameter and V represents the total number of
unique terms. To effectively identify domain-
specific terms, we need a measure that captures
both the likelihood of a term belonging to a domain
and its specificity to that domain. Therefore, we
define the association between w and D as:

> 2

where N is the number of unlabeled domains, and
log N is the upper bound of the entropy H (D|w).
Higher entropy values indicate that the term w
is not particularly related to any specific domain.
Based on the above, we derive the masking scores
for n-gram terms under the source domain D?® and
the target domain D?.

plw.D) = PO w)- (1- H 2L

M (w,D*,D") = p(w,D*) — p (w,D")  (3)
where the masking scores M(+) range from -1 to 1.
M(-) can take negative values to prevent the inad-
vertent masking of n-grams that should be included
in the raw target samples.

Domain Reconstruction The second step in gener-
ating raw target samples w” involves predicting the
masked source domain data using information from
the target domain. To incorporate target domain
information, we introduce an orientation vector v?
that encodes the target domain’s features. We uti-
lize a T5 (Raffel et al., 2020) generation model
based on an encoder-decoder architecture. Given
a masked sample of w", denoted as M(w"), and
a target domain D!, we concatenate the domain
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orientation vector v’ representing D with the em-
bedding vector v of M(w") along the feature di-
mension. Then, this concatenated matrix is fed into
T5 to generate w".

Specifically, we equip the model with a learnable
embedding matrix that contains K - N orientation
vectors, allowing each domain to be represented by
a K different vectors. We initialize the orientation
vectors using the embedding vectors of the domain
names and the top K — 1 representative words. For
each domain D, representative words are selected
based on log(n> +1)p(w, D). Based on the above,
we obtain multiple raw target samples w" for the
specified target domain D!, each corresponding to
a single source domain sample w*® and sharing the
same label. These samples are used to condition-
ally guide the diffusion model. It is noteworthy that
these initialized orientation vectors gradually con-
verge to different effective values over the course
of training, according to the requirements of this
work.

3.3 Diffusion based Generator

To address the semantic disruptions and spurious
associations that arise from the fixed syntactic struc-
ture of the source domain. We train a diffusion gen-
erator using the raw target sample w’ generated
in Section 3.2. to produce additional high-quality
counterfactual target samples w® € D¢. Inspired
by Gong et al.(Gong et al., 2023a) and Lu et al.(Lu
et al., 2022, 2023), we will detail the diffusion gen-
eration process used in this study in the following
discussion.

Preliminaries Diffusion models(Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2021; Li
et al., 2022b; Gong et al., 2023a) are a type of latent
variable model initially designed for continuous do-
mains. These models comprise two processes: a
forward diffusion process and a reverse diffusion
process. In the forward process, given a sample
x( drawn from ¢(xg), a Markov chain of latent
variables x; ...xT is generated by progressively
adding Gaussian noise:

q (% ’ Xt—l) =N <Xt; v1- BtXt—1,5t1> 4

where [; is a noise schedule controlling the noise
addition step size. Eventually, x7 approximates
an isotropic Gaussian distribution. If 3; is suffi-
ciently small, the reverse process q (x;—1 | x;) also
follows a Gaussian distribution and can be modeled



by:
= N (xt—15 o (X, 1) , X (xt, 1))
®)
where 19(+) and Xgy(-) can be implemented using
a U-Net or a Transformer. By conditioning on
X0, q (X¢—1 | X¢,X0) has a closed form, allowing
the variational lower bound to be minimized to
optimize logpy(xg).

When compared to traditional generative mod-

els, such as Generative Adversarial Networks
(GANSs)(Goodfellow et al., 2014), diffusion mod-
els have emerged as a novel paradigm for gener-
ative models. They come with several potential
advantages, particularly in the generation of high-
quality text and images. However, most current
diffusion works face challenges during training con-
vergence and generation speed, particularly given
that these models require the use of a Minimum
Bayes Risk(MBR) strategy(Koehn, 2004) for de-
coding and generation, resulting in significant com-
putational overhead during training. Additionally,
in domain adaptation, there are concerns about the
quality of generated target domain samples in low-
resource settings, especially due to failures in data
distribution shift.
Training Stage To ensure the quality of the
generated samples, we introduce a Soft Absorb-
ing State(SAS) and Maximum Mean Discrep-
ancy(MMD) loss during the training stage, which
facilitates the diffusion model’s ability to learn to
reconstruct discrete mutations based on the underly-
ing Gaussian space, thereby enhancing its capacity
to recover conditional signals. At the same time,
under the supervision of real target domain data
D!, the MMD loss can promote the transition of
generated samples w* from the source domain D*
to the target domain D!, as shown in Figure 2(b).

Let x represent the latent representations of the
data from the source domain (w?). At the initial
step of the forward noise-adding process, we follow
the Diffusion-LM proposed by Li et al. (2022b) to
map the discrete sample w* into a continuous space.
Specifically, we concatenate the source domain
sample w* and raw target sample w" to embed
them into a continuous feature space, denoted as
Emb (w5®").

Po (X¢—1 | X¢, 1)

s (x0 | w*9") = N (Emb (W), BoI) (6)

where I is an identity matrix. As shown in Eq. (4),
the structure of the perturbed data x¢ during the
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forward noising process is detailed. From this, we
can derive the latent variable x; as follow:

X = Vauxg + V1 — que (7

where € is defined at each time step with a; =
1 — B,aq = II'_, ;. Additionally, x, = w; & w},
with w; and w; representing the latent states of
w* and w", respectively. During this process, we
replace the ¢-th token in x; with the the soft absorb-
ing state n with a certain probability. The SAS n
has the same dimension as the word embeddings
and is learnable during the diffusion process.

{

where 77 = Bernoulli(3; ), and 7 is the [MASK]
ratio when ¢ = T'. The introduction of the SAS
enhances the model’s ability to handle discrete data
during continuous diffusion. Simultaneously, it
provides a soft constraint in the high-dimensional
feature space, which enhances the stability and
reliability of the model. Also, in contrast to con-
ventional diffusion models, which perturb x; in its
entirety, we introduce partial noise solely to wy, by
replacing w; with w{. This is a crucial aspect for
enabling the diffusion model to conduct conditional
language modeling.

In the reverse process, the objective is to recover
the initial x( from the partially Gaussian-noised X
by jointly denoising both continuous and discrete
noise, as shown in Eq. (5). Thereby, we compute
the variational lower bound following the diffusion
process:

n ifn=1

xt ifn=0

X = ®)

Lo = Eq [Dxw (g (X7 | X0) [|pe (X7))

T
+ > D (g (%1 | %, %0) [Ipo (xe-1 | %4,1))
t=2

) lpo (%0 | %1))

+ Dkt (g¢ (%0 | W
~logpo (W | x0)]

©)

To ensure the transition of the data distribution

from counterfactual target samples w® in D¢ to

real target domain samples w' in D*, we propose a

sentence-level MMD loss as follows:

NC
1
£mmd = dz (Dcapt) = (Nc)2 Zk (WZC’WJC) +
2%
1 Nt 9 N¢ Nt

(10)



where N¢ and N* represent the number of samples
in each domain, respectively, and k(-) denotes a
Gaussian kernel function. When the MMD loss
is minimized, the distribution of D¢ approaches
that of D!, thereby improving the quality of the
generated samples.

In conclusion, we derive the overall objective
function by summing up the two components:

L= Evlb + So‘cmmd (11)

where ¢ is a weight parameter that starts at zero
and gradually increases during model training to
ensure a balance between reconstruction ability and
distribution shift capability throughout the training
process.

Sample Stage Previously, diffusion models em-
ployed clamping operations during the sampling
phase to predict vectors and reduce rounding er-
rors. However, the discrepancy between training
and sampling(Tang et al., 2023) can lead to the ac-
cumulation of prediction errors and a reduction in
sampling speed.

To improve the sampling speed of the dif-
fusion model, we employ the advanced DPM-
Solver++(Lu et al., 2023) as a sampling accelerator
in the continuous space during the sample stage.
This accelerator does not require MBR decoding
during the sampling process, thereby saving a sub-
stantial amount of time. Importantly, it enhances
the sampling speed while also ensuring the quality
of the generated samples.

Specifically, as described in Eq. (8), discrete
noise is added to the continuous Gaussian noise,
which bridges training and inference in the discrete
space. Utilizing the precise solution of the diffusion
ODE:s proposed by DPM-Solver++, given an initial
value x, at time s > 0, the solution x; at time
t €0, s]:

Ot
X = —Xg+ 0t
Os

At
/ Mo (R, A)dh (12)

where the ); is a strictly decreasing function of
t with an inverse function ¢)(-). The term oy is
monotonic with respect to 3¢, and fy serves as the
data prediction model that recover the corrupt data
X; to Xo.

Furthermore, Eq. (12) requires an approximation
of [ e fad\. The integral can be analytically com-
puted by repeatedly applying integration by parts
n times, and we can approximate only the first few
terms while discarding higher-order error terms. In
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our experiments, we use the second order. After
discrete denoising in our method, this algorithm
remains applicable since our fy(Xy, A) aligns with
the training objectives. Based on the above, we
train a classifier using the source domain dataset
D% and the corresponding generated counterfactual
target domain dataset D¢, where the sample labels
in D€ are consistent with those in D® and D" due
to the paired correspondence, to predict the labels
of test samples from the target domain.

3.4 Data Filtering Mechanism

Since the counterfactual target samples are gener-
ated based on the raw target samples’ correspond-
ing labels and domains, the generation process may
introduce uncertainties and inconsistencies. To bet-
ter utilize the counterfactual target domain data w*
in cross-domain SA tasks, we introduce a data filter-
ing mechanism that eliminates noisy data. Specifi-
cally, our filtering mechanism consists of two parts:
sentiment label filtering and domain adaptability
assessment. (i) For sentiment label filtering, we
use the sentiment from w* as supervisory informa-
tion to ensure consistency with the corresponding
sentiment labels of w¢. This step helps us elim-
inate samples with mismatched sentiment labels,
thus ensuring the accuracy and reliability of sen-
timent analysis. (i7) Additionally, we train an ex-
tra classifier to assess the domain adaptability of
the generated counterfactual target domain sam-
ples w€, benefiting from the access to unlabeled
target domain data. This ensures that w° is not
only consistent in sentiment with the target domain
but also closer in semantics and style. We name
this enhanced version with the filtering mechanism
CDAZ-F.

4 Experiments

In this section, we conduct experiments to explore
the following research questions: (i) Does our pro-
posed data augmentation approach have the capa-
bility to substantially improve the cross-domain
SA performance of the model? If so, how does the
enhancement achieved by our approach compare
to other baseline methods? (i) Do the individual
components of our framework contribute positively
to the overall effectiveness of the model? (ii7)
Is the proposed CDA? framework effective in ad-
dressing the problem of semantic disruptions and
spurious associations with the source domain while
generating high-quality samples?



4.1 Datasets

We follow prior domain adaptation research, con-
centrating on binary cross-domain sentiment classi-
fication. Our experiments utilize the multi-domain
Amazon reviews dataset(Blitzer et al., 2007), con-
taining reviews from four domains: Books (B),
DVD (D), Electronics (E), and Kitchen appliances
(K). A five-fold cross-validation protocol is used,
with 20% of samples randomly selected as the de-
velopment set, and the best model on this set is used
for target domain generalization testing. Since we
focus on cross-domain generation in low-resource
settings where the target domain lacks labeled data,
we only utilize unlabeled reviews during the train-
ing stage. We initially train on a labeled source
domain dataset and an unlabeled target domain
dataset, and then evaluate the models on the remain-
ing three datasets, resulting in a total of 12 tasks.
Furthermore, to create a more challenging setting,
we select labeled reviews along with corresponding
unlabeled reviews from various platforms, includ-
ing the products domain from Amazon reviews the
airline domain and the blog domain.

4.2 Experimental Settings

In the generation process of raw target samples, we
truncate each example to 100 tokens. The hyper-
parameter was chosen based on the length of la-
beled samples and computational requirements. We
apply the NLTK Snowball stemmer to each word
in the n-grams. The smoothing hyper-parameters
for calculating P(D|w) are set to 1, 5, and 7 for
uni-grams, bi-grams, and tri-grams, respectively.
A threshold of 7 = 0.08 is used. We use K =4
orientation vectors for each unlabeled domain. The
controllable model is built upon a T5-base model
and trained on the unlabeled data for 60 epochs
with a learning rate of Se-5 and a weight decay
of 1e-5. In the generation process of the diffusion
model, we set the embedding dimension d to 300.
We set v to 0.5. We train using NVIDIA A100 80G
Tensor Core GPUs with a batch size of 425 and a
sampling batch size of 100. All parameters within
our experiments are optimized using the AdamW
optimizer(Loshchilov and Hutter, 2019).

4.3 Baselines

We compare our model with the several state-of-
the-art baselines, including R-PERL(Ben-David
et al., 2020) enhances Bert by incorporating a pivot-
based adaptation, SAIM?(Rostami et al., 2023) em-
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ploys domain adaptation to bridge the domain gap
in sentiment analysis by creating large margins be-
tween class representations in an embedding space,
HATN . ger¢(Li et al., 2018) proposes a transfer net-
work that effectively captures both domain-specific
and domain-shared sentiment words, DAAT(Du
et al., 2020) utilizes domain-adversarial training
to prompt Bert to identify features that are invari-
ant across domains, COBE(Luo et al., 2022) re-
fines the contrastive learning loss for negative sam-
ples in batches, separating class representations
further in potential space, CFd(Ye et al., 2020)
implements class-aware feature self-distillation by
integrating PLM’s features into a feature adapta-
tion module, TACIT(Song et al., 2024) use VAE
to disentangle robust and unrobust features us-
ing VAE, UDALM(Karouzos et al., 2021) ex-
tends Bert’s pretraining on unlabeled target domain
data via the MLM task. In addition, we explore
three specific Bert variants for baseline compar-
isons: Vanilla_ger¢, fine-tuned on the fundamental
Bert(Devlin et al., 2019) and RoBERTa(Liu et al.,
2019) models; AT gert, Which incorporates adver-
sarial training to enhance robustness against at-
tacks; and DA _gert, leveraging domain-aware train-
ing with source domain labeled data.

5 Results

5.1 Main Experimental Results

In Table 1, we compare our model CDA? using
Bert as text encoders with baseline methods on
12 cross-domain tasks, and we also compare their
average performances. As expected, CDA? demon-
strates a significant performance advantage over
the competitive baselines. Moreover, compared
to the current most advanced domain adaptation
method, UDALM, our approach achieves compet-
itive performance overall from the perspective of
generating reliable target domain data, and it has
achieved the best accuracy in multiple tasks.
Specifically, (7) compared to the most basic base-
line R-PEAL, our CDA? model has an average ac-
curacy improvement of 4.08%, and CDA?-F has
an improvement of 4.24%. Moreover, CDA? and
CDAZ-F have surpassed all baseline methods in 12
tasks, with the exception of TACIT and UDALM.
(i) CDA? outperforms the recent TACIT model
proposed by Song et al. (2024) in most of the
12 tasks, achieving an average accuracy improve-
ment of 0.26%, and has reached the state-of-the-art
from the Electronics to Books domain. CDA?-F
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CFd 87.65 91.30 92.45|91.50 91.55 92.45(88.65 88.20 93.60|89.75 87.80 92.60|90.63
TACIT  [91.42 91.68 92.73|91.33 91.83 91.55(89.62 89.25 94.18(89.70 89.20 93.40|91.32
UDALM |90.97 91.69 93.21|91.00 92.30 93.66|90.61 88.83 94.43|90.29 89.54 94.34 |91.74
CDA? 91.18 91.43 93.01]91.29 92.02 92.51[90.62 89.65 94.11|90.24 89.10 93.74|91.58
CDAZF |91.62 91.41 93.22|91.35 91.84 92.7890.35 90.02 94.13[90.65 89.42 94.04 |91.74

Table 1: Classification accuracy (%) for the cross-domain sentiment analysis tasks for the Amazon Reviews dataset.

Model B—-D B—E B—K Avg
CDA2-F 91.62 9141 93.22 92.08
CDA? 91.18 91.43 93.01 91.87
-w/oDS++ 91.34 91.45 93.18 91.99
-w/oMMD 8872 89.94 91.61 90.09
-w/oSAS  90.11 90.98 9243 91.17
-w/oDiff 8835 89.67 91.17 89.73

Table 2: Ablation experimental results using the Books
domain as an example for the cross-domain SA task.

shows even better performance relative to these out-
comes. (iii) CDA?-F, which incorporates a data
filtering mechanism, achieves performance compet-
itive with the current SOTA method, UDALM, in
this task. Moreover, it attains SOTA performance
in multiple tasks among the twelve evaluated. It
is worth considering that, compared to traditional
domain adaptation methods, we have explored a
new generative paradigm to more effectively match
the tasks. The results clearly demonstrate the con-
sistent superiority of our method across various do-
main adaptation tasks compared to baseline meth-
ods, highlighting its effectiveness in enhancing
cross-domain sentiment analysis performance.

5.2 Ablation Study

We conduct ablation studies, using Books as the
source domain, to validate the effectiveness of each
component in CDA?.

In Table 2, the “w/o DS++” indicates that we
do not utilize DPM-Solver++ for acceleration. The
performance demonstrates that our method effec-
tively balances the relationship between sampling
speed and quality maintenance.

Additionally, it further proves the effectiveness
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of our data filtering mechanism in enhancing the
quality of the generated samples. “w/o MMD”
means that we do not incorporate MMD loss. The
results show the effectiveness of the MMD strat-
egy in managing data distribution shift. “w/o SAS”
indicates that the model operates solely in contin-
uous diffusion. Experimental results indicate that
the flexible and learnable state enhances the qual-
ity of generated models to a certain extent. “w/o
Dift” scenario indicates that we do not utilize the
diffusion-based generator and instead generate sam-
ples directly using a word substitution strategy.
This omission leads to a comprehensive decline
in experimental results. Based on this analysis, it is
evident that the absence of any single component
leads to a decline in the performance of CDAZ.

5.3 Robustness Analysis

MMMMM
nnnnnnn

Blog Airiine Food Tools

aaaaaaa

Figure 3: Results on Bert-base and three generation
methods for homogeneous and heterogeneous datasets.

To further evaluate the robustness of CDAZ2, we
conduct comparative experiments on Amazon’s
homogeneous datasets as well as across-platform
datasets. Specifically, we train our model on four



domains and use unlabeled target domain data as
supervisory signals for domain adaptation, where
the test data remain unseen. Moreover, we compare
our method with Bert-base and other generative ap-
proaches such as Mixup and DoCoGen. Due to the
inconsistent performance of previous generative
methods, which lack competitiveness with SOTA,
we chose to conduct a separate analysis here. As
shown in Figure 3, our method outperforms other
generative approaches in the homogeneous Food
and Tools datasets, enhancing cross-domain SA
performance. In the heterogeneous datasets of Blog
and Airline, the large data distribution differences
across platforms pose greater challenges; exper-
imental results indicate that our CDA? achieves
more substantial improvements compared to other
methods.

5.4 Data Visualization

To further explore the effectiveness of our method
in addressing semantic disruptions and spurious as-
sociations with the source domain, we visualize the
intermediate representation vectors of text samples
using the t-SNE. Figure 4 displays the visualiza-
tion results for cross-domain pairs from DVD to
Kitchen. Although the data distribution produced
by DoCoGen exhibits some deviation, it largely
remains similar to the source domain because these
methods retain many source domain attributes, in-
cluding context and syntactic structure. In contrast,
CDA? shows a more similar distribution between
the generated data and the target domain data.

Figure 4: Visualization of discrepancy in distribution.

Additionally, we provide two distinct case studies
to analyze the diversity of the text, as shown in
Table 3. Specifically, there is a conflict between
the action “clean” and “the meal time”. While
they do include basic domain adaptation operations,
there are also instances of unclear and illogical ex-
pressions. Therefore, a further understanding of
data distribution transfer and mastery of contextual
logic are necessary. The analysis above proves that
our method not only captures relevant features of

D—K
Sadly, most of the debunking occurs
towards the end of the show, in brief
statements, before quickly moving on
to the next topic. Negative

Original Sample

Sadly, most of the cleaning occurs
towards the end of the meal, in brief
efforts, before quickly moving on to
the next course. Negative

Generated Sample
(word substitution)

Unfortunately, the real cleanup only
happens at the meal’s end, with quick
wipes before the next use. Negative

Generated Sample
(ours)

Table 3: Cross-domain sentences generated by word
substitution strategies and CDA? model.

domain migration but also exhibits superior expres-
sive capabilities.

6 Conclusion

In this article, we introduce a Counterfactual Diffu-
sion Augmentation framework for Cross-Domain
Adaptation, to address semantic disruptions and
spurious associations with the source domain in
cross-domain sentiment analysis. CDA? excels in
generating diverse and realistic counterfactual sam-
ples by employing domain-relevant word substitu-
tions from source domain samples to guide a diffu-
sion model. Experiments on benchmark datasets
demonstrated that CDA? achieves state-of-the-art
performance. Through qualitative analysis and vi-
sualization, we demonstrate that CDA? generates
high-quality counterfactual samples that improve
domain transfer, effectively alleviating semantic
disruptions as well as spurious associations with
the source domain.

Limitations

While our study has performed well in cross-
domain sentiment analysis, it still has the following
limitations.

Firstly, although CDA? can generate high-
quality text aligned with the target domain, it still
relies on unlabeled target-domain data. We should
explore how to eliminate this reliance, even when
labels are unknown, to generalize the method to
unforeseen test data.

Secondly, CDA? improves classification by ex-
panding the training set in the target domain but
doesn’t adjust the classifier’s sensitivity to do-
main knowledge transfer from a causal perspec-
tive. Designing causal classification models with
augmented data is a promising direction.
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