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Abstract

N-ary Knowledge Graphs (NKGs), where a fact
can involve more than two entities, have gained
increasing attention. Link Prediction in NKGs
(LPN) aims to predict missing elements in facts
to facilitate the completion of NKGs. Current
LPN methods implicitly operate under a closed-
world assumption, meaning that the sets of enti-
ties and roles are fixed. These methods focus on
predicting missing elements within facts com-
posed of entities and roles seen during train-
ing. However, in reality, new facts involving
unseen entities and roles frequently emerge,
requiring completing these facts. Thus, this
paper proposes a new task, Inductive Link Pre-
diction in NKGs (ILPN), which aims to predict
missing elements in facts involving unseen en-
tities and roles in emerging NKGs. To address
this task, we propose a Meta-learning-based N-
ary knowledge Inductive Reasoner (MetaNIR),
which employs a graph neural network with
meta-learning mechanisms to embed unseen
entities and roles adaptively. The obtained em-
beddings are used to predict missing elements
in facts involving unseen elements. Since no ex-
isting dataset supports this task, three datasets
are constructed to evaluate the effectiveness
of MetaNIR. Extensive experimental results
demonstrate that MetaNIR consistently outper-
forms representative models across all datasets.

1 Introduction

Link prediction in KGs aims to predict missing
links in KGs. It enriches KGs and enhances the
performance of downstream applications such as
recommendation systems (Kim et al., 2024), Web
search (Peng et al., 2023), and question answer-
ing (Li and Ji, 2022; Qiao et al., 2022). Previous
research has mainly focused on binary KGs, where
facts are represented as (subject entity, relationship,
object entity). However, real-world KGs are often
N-ary KGs (NKGs), where a fact can involve more
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than two entities. N-ary facts, typically formal-
ized as multiple role-entity pairs, are prevalent in
real-world KGs. For example, in the well-known
KG Freebase, over 1/3 of the entities involve n-ary
facts (Wen et al., 2016), and more than 61% fact
types are n-ary (Fatemi et al., 2021).

Link Prediction in NKGs (LPN) aims to pre-
dict missing elements in facts in NKGs. Cur-
rent LPN methods can be divided into three cat-
egories: translation-based, tensor-based, and neu-
ral network-based approaches. Translation-based
approaches encode n-ary facts using translation dis-
tances between entities (Wen et al., 2016; Zhang
et al., 2018). Tensor-based approaches represent
n-ary facts as a high-order tensor, where each el-
ement represents the validity of a fact (Liu et al.,
2020; Di et al., 2021). Neural network-based ap-
proaches use various neural architectures to encode
n-ary facts (Galkin et al., 2020; Luo et al., 2023).
These approaches typically assume that NKGs are
static, meaning that the sets of entities and roles are
fixed. Specifically, they focus on predicting miss-
ing elements in facts composed of elements seen
during training, known as the transductive setting.

However, real-world NKGs frequently emerge
new facts involving unseen entities and roles. This
requires methods that can complete facts contain-
ing unseen elements using some support facts, re-
ferred to as the inductive setting (see Figure 1).
To the best of our knowledge, there is only one
work (Ali et al., 2021) that completes n-ary facts
involving unseen elements. However, in their set-
ting, unseen elements can only be subject or object
entities, and additional textual descriptions of en-
tities are required. Therefore, we propose a more
practical task, Inductive Link Prediction in NKGs
(ILPN), which aims to predict missing elements
in facts containing unseen entities and roles using
some support facts in emerging NKGs.

The primary challenge of ILPN lies in generating
accurate embeddings for unseen entities and roles.
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Figure 1: An example of NKGs in the inductive setting.
Unseen entities and roles emerge during testing.

To address it, we design a Meta-learning-based
N-ary knowledge Inductive Reasoner (MetaNIR),
which leverages a Graph Neural Network (GNN)
to adaptively generate embeddings for unseen el-
ements. Drawing inspiration from the recent suc-
cessful applications of meta-learning models (Finn
et al., 2017; Wei et al., 2024), we sample multiple
tasks comprising support facts and query facts from
the existing NKG to simulate the inductive setting
and let MetaNIR learn the ability to generate em-
beddings for unseen elements in each task. Since
no existing benchmark supports ILPN, three new
datasets are created to evaluate the performance of
MetaNIR.

In summary, this paper makes the following con-
tributions:

• We propose a new task, Inductive Link Predic-
tion in NKGs (ILPN), which aims to predict
missing elements in facts involving unseen
entities and roles using some support facts in
emerging NKGs.

• We propose a Meta-learning-based N-ary
knowledge Inductive Reasoner (MetaNIR),
which adaptively generates embeddings for
unseen entities and roles.

• We construct three new datasets based on pop-
ular LPN benchmarks, offering valuable re-
sources for this task and further research.

• Extensive experimental results on these
datasets show that MetaNIR consistently out-
performs existing representative models, vali-
dating its effectiveness.

2 Problem Definition

In this section, we provide the definitions of n-ary
fact, NKG, and ILPN in turn.

N-ary fact is a fact involving two or more en-
tities. In this paper, facts are formalized as ((rs :
es), (ro : eo), {(ri : ei)}n−2

i=1 ) following (Hou et al.,
2023), where es and eo denote its subject and ob-
ject entities, respectively, and rs and ro denote the
roles they play in the fact; ei and ri are its other
entity (i.e., non-subject and non-object entity) and
the corresponding role; n is the number of entities.

For example, the 4-ary fact “Christopher
Nolan won the MTV Movie Award for Me-
mento in 2002” is represented as ((winner :
Christopher Nolan), (award : the MTV
Movie Award), {(work : Memento), (time :
2002)}).

NKG is a set of n-ary facts, where each can
involve more than two entities.

ILPN aims to predict a missing element in facts
involving entities and roles not seen during training
in NKGs. The prediction is supported by some
related facts within the emerging NKG, which are
called support facts.

3 Related Work

The closest related research directions to this paper
are LPN and Inductive Link Prediction in KGs
(ILP).

3.1 Related Work of LPN

Existing LPN methods can be divided into three cat-
egories: translation-based methods, tensor-based
methods, and neural network-based methods.

Translation-based methods learn relationships
between entities based on the transfer distance be-
tween them. For example, m-TransH (Wen et al.,
2016) projects entities into role spaces and evalu-
ates the validity of facts based on the distance be-
tween projected entities. RAE (Zhang et al., 2018)
enhances the performance of m-TransH by restrict-
ing the similarity of entities within the same facts
to be higher.

Tensor-based methods represent the NKG as a
high-order tensor, where each element indicates
the validity of a fact. For example, GETD (Liu
et al., 2020) extends Tucker (Balažević et al., 2019)
to learn embeddings of entities and roles in n-ary
facts by decomposing the tensor. However, this
method is computationally intensive and cannot
handle facts with varying numbers of entities si-
multaneously. Thus, S2S (Di et al., 2021) splits the
embedding representation into multiple parts and
uses different parts to encode facts with different
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numbers of entities.
Neural network-based methods employ various

neural networks to encode n-ary facts. For example,
NaLP (Guan et al., 2019) uses a fully connected
layer to embed role-entity pairs, but it overlooks
the differing importance of entities within a fact.
Therefore, HINGE (Rosso et al., 2020) and NeuIn-
fer (Guan et al., 2020) represent facts as a primary
triple alongside auxiliary role-entity pairs, captur-
ing entity importance more effectively. HINGE
uses convolutional neural networks to encode the
two components, while NeuInfer relies on fully
connected layers. StarE (Galkin et al., 2020) ap-
plies GNNs to propagate information between aux-
iliary role-entity pairs and the primary triples, en-
hancing capturing the relationship between entities.
GRAN (Wang et al., 2021) models an n-ary fact as
a fully connected graph, capturing the various rela-
tionships between entities and roles within the fact.
However, these methods only focus on the global or
local structures of NKGs. HAHE (Luo et al., 2023)
proposes to learn the embeddings of entities and
roles from both global and local aspects with a two-
stage GNN. Additionally, the above models over-
look rich pattern features in NKGs, ShrinkE (Xiong
et al., 2023) extends BoxE (Abboud et al., 2020) to
capture these patterns. Recently, HyConvE (Wang
et al., 2023) leverages 3D convolution to capture
complex interactions of elements in n-ary facts.
However, the above methods focus on the transduc-
tive setting and overlook unseen entities and roles
that appear in emerging NKGs.

3.2 Related Work of ILP
ILP aims to predict missing elements in facts in-
volving unseen elements in KGs. Existing ILP
methods can be divided into two categories: GNN-
based methods and text-based methods. GNN-
based methods, like GraIL (Teru et al., 2020), IN-
DIGO (Liu et al., 2021), and RMPI (Geng et al.,
2023), use GNNs to encode nonlinear structures
and generate representations for unseen elements
from their neighbors. Text-based methods, such as
KG-BERT (Yao et al., 2019) and SimKGC (Wang
et al., 2022), encode textual descriptions to repre-
sent unseen elements. More recent approaches like
MarKE (Chen et al., 2022) and INGRAM (Lee
et al., 2023) employ GNNs with meta-learning
mechanisms to produce embeddings for unseen
elements and predict missing elements in facts in-
volving them.

However, the above methods focus on triple facts

and overlook n-ary facts. To our knowledge, only
one work predicts missing elements in n-ary facts
involving unseen elements (Ali et al., 2021). It uti-
lizes neighbor information and additional textual
descriptions of entities to generate embeddings for
unseen elements. However, it restricts that unseen
elements can only be subject or object entities, and
it relies on external textual descriptions, which are
often unavailable. Consequently, predicting miss-
ing elements in facts involving unseen roles and
entities in NKGs remains a significant challenge.

4 Methodology

This section presents the proposed MetaNIR model.
Before detailing its architecture, we first introduce
the meta-learning process underlying MetaNIR.

4.1 Meta-learning Setting

Inspired by the concept of “learning to learn” in
meta-learning (Santoro et al., 2016), we formulate
a set of tasks comprising support facts and query
facts on the training NKG with simulated unseen
entities and roles to mimic the inductive setting.
In this way, we can learn a model on these tasks
to achieve “learning to generate unseen entity and
role embeddings”.

Each task Si = (E i,Ri, T i
sup, T i

que) corresponds
to a sub-NKG sampled from the training NKG Gtr,
where E i, Ri, T i

sup, and T i
que represent the entity

set, role set, support facts and query facts for that
task, respectively. Although E i,Ri are sampled
from E tr,Rtr, we relabel some entities and roles
and treat them as unseen to simulate the inductive
setting. Here, E tr and Rtr denote the entity set
and role set in Gtr, respectively. Each task Si is
formally defined as follows:

Si = (E i = (Ê i, Ẽ i),Ri = (R̂i, R̃i), T i
sup, T i

que),
(1)

where Ê i ∈ E tr are seen entities, and Ẽ i ̸∈ E tr

are unseen entities; R̂i ∈ Rtr are seen roles, and
R̃i ̸∈ Rtr are unseen roles. The meta-training goal
is learning to embed both seen and unseen enti-
ties and roles using supporting facts to maximize
the plausibility scores of query facts within meta-
learning tasks S sampled from Gtr as follows:

max
θ

ESi∼p(S)

 ∑
t∈T i

que

1∣∣T i
que

∣∣Mθ

(
t | T i

sup
) ,

(2)



8888

Figure 2: The overview of the proposed MetaNIR model.

where t denotes a query fact in T i
que; M is a model

that calculates the plausibility score of the query
fact based on the support facts.

4.2 The Architecture of MetaNIR
Since no existing model M is suitable for Equa-
tion 2, the MetaNIR model is proposed to embed
unseen entities and roles using support facts from
each sampled task.

MetaNIR is a GNN-based framework that uti-
lizes neighbor information in support facts to gen-
erate representations for unseen elements. It com-
prises three modules: the role graph export module,
the feature representation module, and the repre-
sentation update module, as illustrated in Figure 2.
The role graph export module exports a role graph,
which expresses the patterns between roles. Then,
the feature representation module leverages these
patterns to generate feature representations for un-
seen roles and entities. Next, the representation
update module employs a role-aware hierarchical
GNN to update representations for both unseen and
seen elements. These updated representations are
subsequently used to predict missing elements in
query facts. For clarity, in the following, we illus-
trate the entire process through a single task Si, as
defined in the Subsection 4.1.

4.2.1 Role Graph Export Module
Inspired by the transferability of features such as
node degree and subgraph structures in graph the-
ory, we observe that there are relative position
patterns between roles in NKGs. These position
patterns can be represented by the set M={mj

k},
where j ∈ {z, w}, k ∈{s − s, s − o, s − v,...},
as illustrated in Figure 2. The superscripts z or w
indicate whether roles appear in the same fact or
different facts, while the subscripts s, o, v represent
the subject, object, and other entities, respectively;

s, o, v are connected by −, representing the pattern
between the two roles.

For instance, as the fact example in Section 2,
roles ‘time’ and ‘winner’ link an other entity and
the subject entity in the same fact, respectively.
Thus, there is a position pattern mz

v−s between
them. More examples of position patterns are
provided in Appendix A. These position patterns
are universal, independent of specific entities, and
transferable across different meta-learning tasks.
To utilize them, we export a role graph from the
original NKG. In this role graph, each role is rep-
resented as a node, and edges denote the position
patterns between roles.

4.2.2 Feature Representation Module
This module initializes the feature representations
of unseen roles and entities using the obtained po-
sition patterns. Specifically, unseen roles are ini-
tialized based on their adjacent position patterns as
follows:

r =
1

|Np(r)|
∑

m∈Np(r)

m, (3)

Where r represents the feature representation of the
unseen role r; Np(r) is the set of in-going position
patterns of r in the role graph; m is the embedding
of position pattern m, which is randomly initialized
and updated during the meta-learning process.

After obtaining the feature representations of un-
seen roles, the feature representations of unseen
entities are initialized in a similar manner. Specif-
ically, we generate the feature representations of
unseen entities using their corresponding roles in
T i

sup as follows:

e =
1

|Nr(e)|
∑

r∈Nr(e)

r, (4)
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where e represents the feature representation of the
unseen entity e; Nr(e) denotes the set of roles that
e plays in the associated facts in T i

sup .
In this process, the transferred position patterns

enrich unseen role feature representations and un-
seen entity feature representations with reasonable
semantic information.

4.2.3 Representation Update Module
After obtaining the feature representations of un-
seen entities and roles, a role-aware hierarchical
GNN is proposed to update representations of both
seen and unseen elements. This GNN operates in
two steps: fact representation generation and entity
representation update.

In the fact representation generation step, fact
representations are generated by aggregating the
representations of the entities involved as follows:

hl = σ(
1

|E(t)|
∑

{r,e}∈E(h)

Wl
hϕ(r

l, el)), (5)

where hl is the representation of fact h in the l-th
layer of the GNN; E(h) is the set of role-entity
pairs in fact h; Wl

h is a weight matrix; ϕ is a sub-
traction function that combines the representations
of entity el and role rl in the l-th layer; σ is a
non-linear activation function.

In the entity representation update step, entity
representations are updated by aggregating the rep-
resentations of the corresponding facts as follows:

el+1 = σ(
1

|F(e)|
∑

{h,r}∈F(e)

Wl
eϕ(h

l, rl)+Wl
selfe

l),

(6)
where el+1 is the representation of entity e in the
(l + 1)-th layer; F(e) is the set of fact-role pairs
connected to entity e in T i

sup ; Wl
e and Wl

self are
weight matrixes. Role representations are updated
at each layer as follows:

rl+1 = σ(Wl
rr

l), (7)

where rl+1 is the representation of role r at the
(l + 1)-th layer; Wl

r is a learnable parameter.

4.3 Model Training
For each task Si, after generating entity and role
representations from T i

sup, a fact scorer is required
to evaluate these representations and calculate the
loss of T i

que. Various LPN models can serve as
the fact scorer. Here, GRAN (Wang et al., 2021)
is selected due to its demonstrated effectiveness

Algorithm 1 The training process of MetaNIR.
Input: Training NKG; initial parameters.

1: repeat
2: Sample mini-batch tasks S from the training

NKG.
3: for each task Si in S do
4: Export a role graph from T i

sup.
5: Initial feature representations for unseen

roles (Equation 3).
6: Initial feature representations for unseen

entities (Equation 4).
7: Update role and entity representations us-

ing a role-aware hierarchical GNN (Equa-
tion 5∼Equation 7).

8: Calculate the loss of T i
que (Equa-

tion 8∼Equation 10).
9: end for

10: Update model parameters.
11: until convergence or maximum iterations

reached.

in LPN. The scorer randomly masks one element
in the query fact and predicts the missing element
based on the remaining components as follows:

X̂p = f(tque), (8)

P = Softmax(X̂pC
T ), (9)

where f denotes the fact scorer; tque represents
a masked fact in T i

que; X̂p is the predicted rep-
resentation of the missing element in tque; C is
embeddings of the set of candidate entities or roles;
P is the similarity probability of X̂p with each can-
didate.

The final loss is calculated using the similarity
between the target of prediction and all candidates
as follows:

L =

|C|∑
c=1

yc logPc, (10)

where yc is the truth label of candidate c; C is the
set of candidate entities or roles; Pc is the similarity
probability of candidate c.

The model parameters are then updated to ensure
that the ground-truth query facts receive higher
scores than negative facts. The full training process
of MetaNIR is summarized in Algorithm 1.

5 Data Construction

To evaluate ILPN, three datasets are con-
structed based on widely used LPN benchmarks:
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Dataset Training NKG Test NKG Valid NKG
Etr Rtr Ftr Ntr Ete Rte Fte

sup Nte
sup Fte

que Nte
que Eva Rva Fva

sup Nva
sup Fva

que Nva
que

JF-Ext 618 92 3305 54.0% 1854(1752) 359(296) 2708 29.0% 1283 21.0% 1791(1705) 305(257) 2304 27.0% 1061 30.0%
WIKI-Ext 835 91 3905 2.1% 1576(1489) 146(75) 2974 6.2% 4733 2.9% 1573(1460) 132(59) 1906 7.2% 6480 2.5%
WD-Ext 1042 178 5112 1.0% 1183(1100) 340(192) 1802 4.8% 3053 2.0% 1191(1076) 315(156) 1580 7.6% 2610 3.6%

Table 1: Statistics of the constructed datasets. The number in the bracket denotes the number of entities or roles that
do not appear in corresponding training NKG (i.e., unseen entities or roles).

JF17K (Wen et al., 2016), WikiPeople (Guan et al.,
2019), and WD50K (Galkin et al., 2020), naming
them JF-Ext, WIKI-Ext, and WD-Ext, respectively.
In these datasets, the unseen elements can be any
entity (subject, object, or other entities of the fact)
or role, and in some cases, unseen entities and roles
may appear simultaneously.

For each dataset, a training NKG Gtr, a test NKG
Gte, and a valid NKG Gva are created, all sam-
pled from the original benchmark G = {E ,R,F},
where E ,R,F represent the sets of entities, roles,
and facts therein, respectively. A part of entities
and roles in Gts and Gva are intentionally unseen in
Gtr. New ILPN datasets are constructed as follows:

• Sample a set of entities E1 from E , and per-
form a random walk of length l1 on G to obtain
an extended entity set E ′

1.

• Extract facts consisting entities ∈ E ′
1 from F

to form Gte, and remove these facts from F .

• Delete a subset of entities and roles from E
and R, respectively, based on a ratio of α to
ensure that some elements are unseen in Gtr.

• Repeat the above process to create Gva similar
to Gte.

• Sample a set of entities E2 from the remaining
E , and perform a random walk of length l2 on
G to obtain an extended entity set E ′

2.

• Extract facts consisting entity ∈ E ′
2 from F to

form Gtr.

Table ?? summarizes the statistics for the con-
structed datasets, with detailed sampling param-
eters provided in Appendix B. In Table ??, F tr

represents the number of facts in Gtr, while N tr

indicates the proportion of n-ary facts. For the test
NKG, F te

sup and N te
sup denote the number of support

facts and the proportion of n-ary facts within those
support facts, respectively, whereas F te

que and N te
que

denote the number of query facts and the propor-
tion of n-ary facts within those query facts. The
valid NKG has similar statistics to the test NKG.

6 Experiments

6.1 Experimental Settings

Baselines. Since no existing model is specifically
designed for ILPN, MetaNIR is primarily com-
pared with LPN and ILP models:

1) LPN models: Several representative or well-
performing LPN models are selected, includ-
ing NeuInfer (Guan et al., 2020), StarE (Galkin
et al., 2020), GRAN (Wang et al., 2021),
ShrinkE (Shomer et al., 2023), HyConvE (Wang
et al., 2023), and HAHE (Luo et al., 2023). Since
these models are designed for the transductive set-
ting, we adapt them by using our feature represen-
tation module to generate embeddings for unseen
entities and roles.

2) ILP models: Since textual descriptions are of-
ten unavailable, and for fairness, text-based models
are not used as baselines. Instead, we compare with
the latest GNN-based models, MarKE (Chen et al.,
2022) and INGRAM (Lee et al., 2023), which can
predict missing elements in facts involving unseen
entities and roles simultaneously. To adapt these
models to NKGs, virtual entities are introduced to
convert n-ary facts into multiple binary facts. The
embeddings for virtual entities are generated by
projecting the embeddings of the original entities
and roles through a fully connected layer.

Implementation Details. Hyper-parameters
of MetaNIR are selected within the follow-
ing ranges: The dimension of element embed-
dings ∈ {128, 256, 512, 1024}, learning rate ∈
{5e − 3, 1e − 3, 5e − 4, 1e − 4}, batch size
∈ {128, 256, 512, 1024}, number of GNN layers
∈ {1, 2, 3, 4}. The ratio of the unseen elements
during training is 30%∼80%. To ensure a fair
comparison, the hyper-parameters of all baselines
are finetuned on each experimental dataset. Be-
fore meta-training our model, we sampled 10,000
tasks on the training NKG for each dataset. De-
tails on task sampling are provided in Appendix C.
The datasets and source code are available at
https://github.com/JiyaoWei/MetaNIR.

Evaluation Metrics. We evaluate model perfor-
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Model JF-Ext WIKI-Ext WD-Ext
MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1

NeuInfer 0.088 19.7 9.6 1.8 0.182 22.9 20.1 12.3 0.072 17.3 6.3 0.3
HINGE 0.193 31.6 21.2 12.2 0.071 15.8 6.3 1.1 0.076 15.9 6.7 0.8
StarE 0.181 26.0 19.8 11.4 0.204 27.5 21.4 12.6 0.079 13.1 8.2 2.1

GRAN 0.215 33.6 27.2 12.7 0.177 22.2 18.6 12.4 0.066 12.7 4.6 0.6
HAHE 0.238 34.1 26.2 16.7 0.197 30.4 20.9 12.7 0.087 21.7 8.9 1.3

ShrinkE 0.210 32.8 22.7 13.8 0.249 41.0 28.8 15.8 0.146 28.9 19.2 9.6
HyConvE 0.282 48.8 38.1 16.5 0.156 34.2 20.0 5.9 0.088 21.3 9.0 1.5

MaKEr 0.168 29.2 24.6 7.9 0.170 25.1 20.3 10.5 0.097 27.2 10.3 2.5
INGRAM 0.474 74.0 63.2 33.5 0.354 52.0 43.0 26.1 0.265 50.8 32.8 16.3

MetaNIR 0.716 90.3 80.5 63.4 0.591 90.4 74.3 45.5 0.582 90.1 77.6 43.3

Table 2: The experimental results on all datasets in terms of MRR and Hits@k (%).

Model u_ent u_rel u_both
MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1

ShrinkE 0.162 32.1 21.8 5.8 0.144 22.0 20.0 6.0 0.094 18.9 11.3 1.8
HyConvE 0.092 23.3 10.8 1.4 0.066 30.0 0.0 0.0 0.092 24.5 11.4 1.27
INGRAM 0.270 50.0 32.5 17.3 0.167 32.6 13.0 8.7 0.264 55.9 34.9 14.2
MetaNIR 0.633 95.6 81.4 49.3 0.283 65.2 34.7 17.3 0.549 89.5 73.2 40.2

Table 3: The experimental Results on u_ent, u_rel, and u_both of WD-Ext in terms of MRR and Hits@k (%).

mance using Mean Reciprocal Rank (MRR) and
Hits@k, where k ∈ {1, 5, 10}, following Ali et al.
(2021). Hits@k is the proportion of correct an-
swers ranked within the top k, while MRR is the
average of the reciprocal rank of the correct an-
swers. Higher MRR and Hits@k values indicate
better performance. For a fair comparison with
baselines, following (Chen et al., 2022; Liu et al.,
2021), each query fact is ranked among 50 ran-
domly sampled negative candidates, and the results
are averaged over five runs. Since entity prediction
is more critical and challenging than role predic-
tion, our experiments primarily focus on entity pre-
diction. MetaNIR also excels in role prediction, as
detailed in Appendix D.

6.2 Experimental Results and Analysis

Table 2 displays the experimental results across
all datasets, illustrating that MetaNIR consistently
surpasses all existing baselines. For example,
MetaNIR shows improvements in MRR of 24.2%,
23.7%, and 31.7% over the best baseline on JF-Ext

(51.0% relative improvement), WIKI-Ext (93.3%),
and WD-Ext (119.6%), respectively. These results
highlight MetaNIR’s effectiveness in ILPN. Exist-
ing LPN methods often fall short because they ini-
tialize embeddings for unseen elements in a fixed,
simplistic manner and do not refine them through
training. ILP methods, which convert n-ary facts
into multiple binary facts using virtual entities,
suffer from sparsity in KGs, limiting their perfor-
mance. In contrast, MetaNIR uses meta-learning
mechanisms to adaptively generate embeddings for

Figure 3: Visualization for t-SNE embeddings (Van der
Maaten and Hinton, 2008) of MetaNIR and INGRAM.

unseen elements and directly encode n-ary facts
without relying on virtual entities, enhancing its
ability to handle ILPN.

Furthermore, MetaNIR is evaluated on different
query types: those involving only unseen entities
(u_ent), only unseen roles (u_rel), and both un-
seen entities and roles (u_both). Table ?? presents
the results for MetaNIR and the optimal baselines
on the largest dataset, WD-Ext. MetaNIR out-
performs all baselines across these query types,
demonstrating its robustness in diverse query sce-
narios.

6.3 Ablation Studies
The key components of MetaNIR include the meta-
learning mechanism, feature representation mod-
ule, and representation update module. The feature
representation module contains role feature rep-
resentation and entity feature representation. To
assess the effectiveness of each component, abla-
tion studies are conducted, with results shown in
Table 4. Each component contributes positively to
the performance of MetaNIR, highlighting its effec-
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Model JF-Ext WIKI-Ext WD-Ext
MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1

MetaNIR 0.716 90.3 80.5 63.4 0.591 90.4 74.3 45.5 0.582 90.1 77.6 43.3
-Meta-learning 0.556 74.8 64.8 45.51 0.433 73.0 57.1 30.7 0.449 74.2 58.1 32.5
-Role feature 0.545 74.4 66.2 43.2 0.514 82.3 65.5 38.5 0.456 76.1 57.7 33.7

-Entity feature 0.535 84.2 70.7 38.7 0.557 88.4 71.6 41.5 0.512 87.0 69.4 36.1
-Update 0.151 38.9 21.1 5.1 0.121 33.4 16.6 3.3 0.166 32.9 19.2 8.8

Table 4: The ablation experimental results on all datasets in terms of MRR and Hits@k (%).

Seen roles Unseen roles Similarities

cast member performer 0.417
tributary -0.164

country location 0.455
drug or therapy used for treatment -0.107

Table 5: Cosine similarities between representations of
seen and unseen roles generated by MetaNIR.

tiveness. Notably, performance drops significantly
when the representation update module is removed,
as it enables full interaction between unseen and
seen elements. The feature representation mod-
ule is also crucial, as position patterns play a key
role in initializing unseen elements. Furthermore,
omitting the meta-learning mechanism markedly
reduces performance, demonstrating its importance
in enabling the model to "learn to learn" and en-
hance overall performance.

6.4 Case Study

We analyze the embeddings of unseen entities and
roles generated by MetaNIR to demonstrate its ef-
fectiveness in ILPN.

For unseen entities, we visualized the embed-
dings generated by MetaNIR and the best baseline
INGRAM on WD-Ext in Figure 3. In this figure,
three types of entities are distinguished by differ-
ent colors, with ◦ representing seen entities and
× representing unseen entities. Compared to IN-
GRAM, the embeddings of MetaNIR align more
consistently with their respective type. INGRAM’s
embeddings for file and human entities are mixed,
while MetaNIR separates them into different clus-
ters more clearly. Additionally, MetaNIR clusters
the embeddings of unseen entities with the same
type of seen entities, indicating that MetaNIR cap-
tures meaningful semantics and knowledge in its
embeddings for unseen entities.

For unseen roles, we randomly selected two seen
roles from WD-Ext and used cosine similarity to
identify their most similar and dissimilar unseen
roles, highlighted in red and blue in Table ??, re-
spectively. The most similar unseen roles align

Figure 4: Impact of the dim of element representations
and number of GNN layers on WD-Ext.

semantically with the seen roles, and they can con-
nect to entities of the same type, while the most
dissimilar roles have no semantic relationship with
seen roles. These results confirm that MetaNIR’s
role embeddings are both semantically accurate
and reliable.

6.5 Analyses on Key Hyper-parameters

Figure 4 illustrates the impact of two key hyper-
parameters—element representation dimension and
GNN layer number—on MetaNIR’s performance.
The performance of the model first increases and
then decreases as the embedding dimension in-
creases, and the best performance is achieved un-
der 512-dimensional embeddings. This is because
when the dimension is too low, the model’s expres-
sive power is limited, and when the dimension is
too high, it may cause the model to overfit. For the
GNN layers, the best performance is achieved with
a 2-layer network, demonstrating that considering
interactions between closer neighbors effectively
generates accurate element representations.

7 Conclusion

In this paper, we proposed a new task, ILPN, which
aims to predict missing elements in facts involving
unseen entities and roles using some support facts
in emerging NKGs. To address this task, we pro-
posed the MetaNIR model, which adaptively gen-
erates embeddings for unseen elements with meta-
learning mechanisms. Since no dataset supports
ILPN, we carefully constructed three datasets for
evaluation. Extensive experimental results demon-
strated the effectiveness of MetaNIR for ILPN.
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8 Limitations

This paper focuses on NKGs that incorporate new
facts with unseen entities and roles. Real-world
NKGs not only emerge new facts but also remove
incorrect facts. Additionally, the proposed model
cannot utilize multi-modal information to enhance
model performance. Future work will address these
limitations.
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A Position Pattern Examples

Figure 5 shows some examples of mining position
patterns from the original NKG.

B Details of Dataset Construction

The detailed sampling parameters during the
dataset construction process are shown in Table 6.

Parameters JF-Ext WIKI-Ext WD-Ext

|E1| 200 100 100
|E2| 100 100 100
l1 15 20 15
l2 15 10 15
α 0.1 0.1 0.1

Table 6: Parameters of dataset sampling for three
datasets.

Additionally, we provide an example to illustrate
the dataset construction process. Consider an NKG
G with the following components:
- Entities (E): {Matt Damon, Best Actor, Good
Will Hunting, Gus V an Sant, Matt Damon,
Milk, SeanPenn}
- Roles (R): {winner, award, movie, nominee,
actor, director}
- Facts (F ): {Fact 1: ((nominee :Matt Damon),
(award : Best Actor), {(movie : Good Will
Hunting)}), Fact 2: ((movie : Good Will
Hunting),(actor : Matt Damon)), Fact 3:
((movie: Good Will Hunting),(director : Gus
V an Sant)), Fact 4: ((nominee : Sean Penn),
(award : Best Actor), {(movie : Milk)})}

To construct the test set Gte, we first randomly
sample a set of entities E1 = {Milk}, from E . A
random walk of length l1 = 1 on the graph G gen-
erates the expanded entity set E ′

1 = Best Actor,
Sean Penn, Milk. The corresponding facts from
F , consisting of entities ∈ E ′

1, are extracted to
form the test set Gte = {Fact 4: ((nominee :
Sean Penn), (award : Best Actor), {(movie :
Milk)})}. These facts are then removed from F .
To ensure some elements are unseen during train-
ing, we delete a subset of entities and roles from
E and R, respectively. In this example, the entity
Matt Damon and the role nominee are deleted.

The validation set Gva is constructed similarly
to the test set.

For the training set Gtr, we randomly sample a
set of entities E2 = {Good Will Hunting}, from
the remaining E . A random walk of length l2 =
1 on the graph G results in the expanded entity

set E ′
2 = {Good Will Hunting, Gus V an Sant}.

Notably, Matt Damon cannot be included, as it
was deleted in the previous step, and Best Actor
cannot be included due to to the deletion of the
nominee role in Fact 1. Finally, the facts containing
entities in E ′

2 are extracted from F to form the
training set Gtr = {Fact 3: ((movie: Good Will
Hunting),(director : Gus V an Sant))}.

C Sampling Meta-Learning Tasks

The sampling process of the meta-learning task is
as follows: 1) First, a mini-batch of facts is ran-
domly selected from the training NKG as query
facts T i

que; 2) Then, we build the entity set and role
set of the query facts; 3) We sample d instances for
each entity and role from the training NKG as sup-
port facts T i

sup, where d ∈ {5, 10, 15, 30}. Note
that the query facts are not allowed to appear in the
support facts.

D Role Prediction Experiments

Table 7 presents the role prediction results on all
datasets. MetaNIR achieves the best results on
all datasets, demonstrating the effectiveness of
MetaNIR in role prediction. Additionally, base-
line methods are not stable in role prediction, while
MetaNIR performs well in all datasets. The abla-
tion results are shown in Table 8. These results
further demonstrate the effectiveness of each mod-
ule in MetaNIR.
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Figure 5: Examples of obtaining position patterns from the original NKG. To distinguish different entities, we use
red to mark the role corresponding to the subject entity, green to mark the role corresponding to the object entity,
and black to mark the role corresponding to other entities.

Model JF-Ext WIKI-Ext WD-Ext
MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1

NeuInfer 0.149 24.3 15.4 8.2 0.346 35.0 33.5 31.7 0.130 34.8 17.3 3.5
HINGE 0.180 38.0 29.0 7.0 0.123 25.4 16.4 5.0 0.116 33.8 19.0 1.9
StarE 0.274 63.3 41.7 13.0 0.096 24.5 11.7 2.4 0.191 43.5 25.5 8.6

GRAN 0.542 70.1 60.6 47.0 0.508 71.3 58.9 42.1 0.103 25.7 13.2 2.4
HAHE 0.140 33.1 17.0 4.7 0.502 70.1 61.6 39.8 0.082 20.6 10.5 1.2

ShrinkE 0.218 20.5 20.3 19.6 0.346 35.0 33.5 31.7 0.064 6.7 2.6 1.5
HyConvE 0.462 70.5 58.9 34.0 0.191 42.4 26.4 7.82 0.079 20.4 8.8 0.8

MaKEr 0.126 13.0 9.8 8.3 0.045 3.3 1.0 0.3 0.071 7.5 4.7 1.8
INGRAM 0.487 74.5 64.4 35.2 0.370 59.3 47.5 25.9 0.277 55.8 39.4 15.1

MetaNIR 0.597 89.0 70.4 49.5 0.857 97.3 94.7 78.0 0.650 86.8 73.9 55.9

Table 7: Role prediction results on all datasets in terms of MRR and Hits@k (%).

Model JF-Ext WIKI-Ext WD-Ext
MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1

MetaNIR 0.597 89.0 70.4 49.5 0.857 97.3 94.7 78.0 0.650 86.8 73.9 55.9
-Meta-learning 0.505 62.6 54.4 44.4 0.308 73.1 40.5 16.7 0.506 68.5 57.6 41.8
-Role feature 0.517 .62.9 55.6 45.6 0.777 87.6 85.2 70.1 0.507 62.4 55.0 44.1

-Entity feature 0.522 79.1 60.5 43.0 0.764 94.2 89.5 66.0 0.532 82.7 66.2 41.3
-Update 0.165 47.1 26.6 4.0 0.113 28.1 13.9 3.14 0.165 47.1 26.6 4.0

Table 8: The ablation role prediction results on all datasets in terms of MRR and Hits@k (%).
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