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Abstract

Implicit hate speech presents a significant chal-
lenge for automatic detection systems due to
its subtlety and ambiguity. Traditional mod-
els trained using empirical risk minimization
(ERM) often rely on correlations between class
labels and spurious attributes, which leads to
poor performance on data lacking these cor-
relations. In this paper, we propose a novel
approach using causality-guided contrastive
learning (CCL) to enhance the generalizabil-
ity of implicit hate speech detection. Since
ERM tends to identify spurious attributes, CCL
works by aligning the representations of sam-
ples with the same class but opposite spurious
attributes, identified through ERM’s inference
failure. This method reduces the model’s re-
liance on spurious correlations, allowing it to
learn more robust features and handle diverse,
nuanced contexts better. Our extensive experi-
ments on multiple implicit hate speech datasets
show that our approach outperforms current
state-of-the-art methods in cross-domain gener-
alization.

1 Introduction

With the proliferation of social media platforms,
tremendous hate speeches are created and spread
(Fortuna and Nunes, 2018). Hate speech target-
ing individuals based on religion, gender, or other
characteristics not only causes mental distress to
its victims but also leads to real-world violence
(Arviv et al., 2021). Due to the insufficient effi-
ciency of manual content review, deep learning-
based methods have been used to construct auto-
matic hate speech detection models (Gandhi et al.,
2024). However, these approaches often struggle to
detect implicit hate speech which lacks of explicit
lexical signals (Kim et al., 2022, 2024).

Recently, contrastive learning has emerged as
an effective approach for detecting implicit hate
speech. For instance, Kim et al. (2022) used the

(a) False negative as hard positive.

(b) False positive as hard positive.

Figure 1: Our research motivations. Hard positives have
same ground truth label but opposite predicted label
with the anchor, including (a) false negatives and (b)
false positives.

implications of anchor sentences as positive sam-
ples, applying contrastive loss to improve detection.
Similarly, ConPrompt (Kim et al., 2023) leveraged
machine-generated statements to enhance perfor-
mance, using example sentences from the original
prompt as positive samples. To reduce the need
for additional data construction, Ahn et al. (2024)
clustered training data and used shared semantics
as anchor for contrast learning. Additionally, label-
aware hard negative sampling was introduced to
optimize the learning of hard negatives by fully
utilizing label information (Kim et al., 2024). How-
ever, most of these methods use only one positive
sample per anchor and fail to address spurious cor-
relations, limiting their effectiveness.

Spurious correlations refer to misleading associ-
ations between features and labels that frequently
appear in training data but are incorrectly gener-
alized as patterns, leading to diminished model
performance. In the context of implicit hate speech
detection, the subtle nature of implicit language ex-
acerbates these spurious correlations. As illustrated
in Figure 1, case (2) demonstrates how semantic
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Figure 2: Illustration of the positives sampling strategy
within three contrastive learning methods in a situation
where the class of the anchor is hate speech while pre-
dicted correctly. (a) Supervised contrastive learning
(SCL) selects all the same ground truth labels with the
anchor as positive samples. (b) ImpCon only uses an
implication of the anchor as a positive sample. (c) CCL
selects posts with same ground truth labels while oppo-
site predicted labels with the anchor as positive samples
(i.e., false negatives in this case).

subtlety can result in false negatives, while case
(4) shows how term bias can lead to false positives.
These insights inspire our approach to identifying
hard positive samples with the same ground truth
label as the anchor but opposite predicted labels,
including both false negatives and false positives.

We introduce a novel approach called Causal
Contrastive Learning (CCL) for implicit hate
speech detection, grounded in causal reasoning.
Drawing from the observation that Empirical Risk
Minimization (ERM) is effective at predicting spu-
rious correlations, we use prediction errors to guide
the selection of hard positives in contrastive learn-
ing. The core idea is to align representations of
samples from the same class but with opposite spu-
rious attributes (Figure 2), using contrastive learn-
ing to bring these representations closer together.
Specifically, we leverage both false positives and
false negatives as hard positive pairs. The strength
of CCL lies in its ability to incorporate multiple
positives while utilizing label information, effec-
tively addressing two challenges at once. First,
causality-guided hard positives fully exploit both
ground truth labels and the spurious correlations
predicted by ERM. Second, this approach allows
for multiple positives per anchor, alleviating the is-

sues posed by coarse-grained labels in binary hate
speech detection (Suresh and Ong, 2021a; Kim
et al., 2022).

To sum up, we make the following three contri-
butions:

• We introduce a novel causality-guided con-
trastive learning method, namely CCL, to en-
hance representation learning by focusing on
hard positives samples.

• CCL is implemented by leveraging the infer-
ence failures of ERM, which serve as a indi-
cators of spurious correlation, without relying
on external knowledge or incurring addition
costs.

• We demonstrate the effectiveness of CCL
through cross-dataset evaluation, achieving
state-of-the-art performance on three widely-
used benchmark datasets for implicit hate
speech detection.

The remainder of this paper is organized as fol-
lows. Section 2 summarizes the related work. Sec-
tion 3 presents the proposed approach. The experi-
mental results are presented in Section 4, followed
by conclusion in Section 5.

2 Related Work

2.1 Implicit Hate Speech Detection
Current models perform well in detecting explicit
hate speech but struggle with implicit content with
semantic subtlety (Ocampo et al., 2023). A signif-
icant challenge in implicit hate speech detection
is the lack of high-quality datasets. To avoid the
over-reliance on spurious correlations of term bias
and topic bias, ElSherief et al. (2021) developed a
theoretically-justified six-class taxonomy and built
a large-scale implicit hate speech dataset based on
random samples 22K Twitter messages. In con-
trast to manual annotation, Hartvigsen et al. (2022)
used large language models (LLMs) to create a
large-scale, machine-generated, balanced dataset
for implicit toxic language, which led to improved
model performance.

In addition to building large-scale implicit hate
speech datasets, researchers have developed dedi-
cated methods for implicit hate speech detection.
Considering the coded or indirect characteristic
of implicit hate speech, Lin (2022) incorporated
knowledge graphs to integrate real world knowl-
edge into the detection process. Building on the
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observation that many implicit hate posts share a
common underlying implication, Kim et al. (2022)
augmented hate posts with their corresponding im-
plication. Then they applied contrastive learning to
align these posts with their implications in represen-
tation space. To better capture user and conversa-
tional context in online interactions, CoSyn (Ghosh
et al., 2023) introduced a context synergized neural
network for implicit hate speech detection.

With the growing prominence of LLMs, recent
work has investigated their ability to detect implicit
hate speech. For example, Huang et al. (2023)
utilized ChatGPT to detect implicit hateful tweets
in zero-shot setting and showed it could correctly
identify implicit hateful tweets. To further ex-
ploit the capability of LLMs, Yun (2023) incor-
porated chain-of-thought (CoT) explanations into
LLM training. Despite these advancements, LLMs
still encounter challenges in both accuracy and effi-
ciency of nuanced tasks like hate speech detection
(Sheth et al., 2024). In many cases, they remain
less efficient compared to fine-tuned language mod-
els that have been specifically trained on specific
datasets (Kim et al., 2024).

2.2 Methods to Enhance Hate Speech
Generalization

Traditional models often fail to generalize across
different contexts or evolving forms of hate speech.
By focusing on the subtle differences between hate-
ful and non-hateful content, contrastive learning
has emerged as an effective method for improv-
ing generalization in implicit hate speech detection.
For instance, ImpCon (Kim et al., 2022) leveraged
external knowledge of implications as positive sam-
ples to train models using contrastive loss, enhanc-
ing model sensitivity to context-dependent expres-
sions of hate. Similarly, ConPrompt (Kim et al.,
2023) applied contrastive learning to machine-
generated statements, further improving their abil-
ity to detect implicit hate speech. However, these
previous methods still have limitations due to their
reliance on predefined external knowledge or the
high costs of text generation. To mitigate addi-
tional data construction, Ahn et al. (2024) clustered
the training data and leveraging shared semantics
as anchor for contrast learning. To fully utilize
label information and semantic information, Kim
et al. (2024) proposed Label-aware Hard negative
sampling strategies (LAHN) to mine hard nega-
tives that are semantically similar to the anchor but
have opposite labels. In contrast to naive negative

Figure 3: The overview of our CCL. (a) shows the en-
coder transforming sentences to features, followed by a
classifier inferring predicted labels. (b) is the causality-
guided hard positives sampling, which mines hard pos-
itives based on both ground truth labels and predicted
labels achieved by (a). (c) is the overall training objec-
tive, including a cross-entropy loss and a contrastive
loss.

samples in random batch, LAHN focuses more on
distinguishing between the anchor and hard nega-
tives, mitigating over-fitting to the context of the
text or specific words.

Another major challenge in hate speech detec-
tion is spurious correlation, where models incor-
rectly classify content based on superficial cues,
such as identity terms (e.g., “Black” or “Asian”).
Inspired by the invariance of causal relationships
(Lv et al., 2022), some causality-based methods
have been proposed to alleviate spurious correla-
tions of hate speech detection. For example, (Sheth
et al., 2023) summarized two causal clues, i.e., the
overall sentiment and the aggression, that are com-
monly present in hate speech to learn generalizable
representations. Furthermore, to explicitly cutoff
the spurious correlations between target object and
hate speech, (Sheth et al., 2024) leveraged multi-
task learning to disentangle the input representa-
tions into invariant and target-dependent features.
From the perspective of inherent forms of spurious
correlations, (Zhang et al., 2023) recognized spu-
rious correlated features automatically via mutual
information measurement.

In summary, contrastive learning methods and
causality-based methods have shown promise in
enhancing the generalizability of hate speech de-
tection models. In this work, we introduce a novel
approach that integrates causality in contrastive
learning to enhance the generalization performance
of hate speech detection.

3 Approach

We now present CCL, a causality-guided con-
trastive learning method designed to enhance the
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generalization and robustness for implicit hate
speech detection. As illustrated in Figure 3, CCL
consists of three key components: (a) It first pre-
dicts labels based on features generated by pre-
trained language models such as BERT. (b) Next, it
employs causality-guided hard positives sampling,
which identifies challenging positive samples us-
ing both ground truth and predicted labels. (c)
Finally, the overall training objective combines
cross-entropy loss with contrastive loss to optimize
performance. In the following sections, we will
provide a detailed explanation of each component.

3.1 Inferring predicted labels
We utilize a pre-trained language model as the en-
coder to transform a sentence x into a representa-
tion r = Encoder(x), where r is a vector in RDE .
Then, a classification head is applied to the normal-
ized representation r, mapping it to a binary label
y = Classifier(r), where y ∈ {0, 1}, indicates
whether the sample is classified as hate or non-hate.
During training, both the encoder and classifier are
updated to dynamically infer the predicted labels.

3.2 Causality-guided hard positives sampling
Next, we train a robust model using supervised con-
trastive learning, leveraging the prediction errors
from the ERM model. While our approach follows
standard supervised contrastive learning, we intro-
duce new strategies for sampling hard positives and
capping to enhance generalizability.

As previously discussed, two major challenges
in detecting implicit hate speech detection are spu-
rious correlations and semantic subtlety. Specif-
ically, spurious correlations often result in false
positives, while the nuanced nature of implicit lan-
guage increases the likelihood of false negatives.
To address both types of prediction errors, our hard
positives sampling selects samples that share the
same ground truth label as the anchor but have an
opposite prediction from the ERM model (Figure
2-(c)).

We also limit the number of positive samples, as
binary classification with coarse-grained labels can
produce too many positives, potentially hindering
contrastive learning (Suresh and Ong, 2021b). We
calculate the cosine similarity between each posi-
tive and the anchor, rank them, and select the top k
positives with the lowest similarity. The rationale
behind this is that hard positives are semantically
distinct from the anchor but share the same label,
making them challenging for the model to represent

effectively.

3.3 Overall Training objective

Generally, hate speech detection models are fine-
tuned using supervised learning with the cross-
entropy loss, which is calculated as following:

Lce = − 1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)]

(1)
where N is the number of input posts in a batch,
yi and ŷi are the ground truth label and predicted
label of input xi, respectively.

To improve robustness against spurious corre-
lations, our approach focuses on learning aligned
representations. Specifically, we jointly train the
encoder with a supervised contrastive learning loss.
Following the approach of Khosla et al. (2020),
within in a batch I , all samples except for the an-
chor itself, i.e., A(i) ≡ I \ {i}, are treated as
negative samples. The final supervised contrastive
learning loss is computed as following:

Lcl =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(2)

where zi, zp and za are the representations from the
encoder for the inputs xi, xp and xa, respectively.
Pi is the set of indices of positive samples obtained
in Section 3.2 and τ is a temperature parameter
specified in Section 4.3.

Using the available class labels, we update the
model’s encoder with contrastive learning loss and
train the full model, including both encoder and
classifier, with cross-entropy loss. The overall train-
ing objective is a weighted sum of cross-entropy
loss and contrastive learning loss, calculated as
following:

Ltotal = λLce + (1− λ)Lcl (3)

where λ is pre-defined weighting hyperparameter
that controls the balance between the cross-entropy
loss and the contrastive learning loss.

4 Experimental Results

4.1 Datasets

We conduct a binary classification task aimed at
detecting hateful language on implicit hate datasets.
For evaluation, we use three implicit hate speech
datasets, as Kim et al. (2022) and Kim et al. (2024).
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Pre-trained
Objective DA

IHC DynaHate SBIC
Language Model (Cross-dataset) (Cross-dataset) (In-dataset)

BERT

Cross-Entropy Loss (CE) ✗ 61.5 58.2 78.6
SCL (Gunel et al., 2021) ✗ 63.1 58.3 77.3

ImpCon (Kim et al., 2022) ✓ 63.6 59.9 77.6
LAHN (Kim et al., 2024) ✓ 64.0 60.0 78.9

CCL w/o DA (ours) ✗ 63.3 60.5 77.4
CCL w/ DA (ours) ✓ 65.3 62.7 78.4

HateBERT

Cross-Entropy Loss (CE) ✗ 60.8 57.6 76.4
SCL (Gunel et al., 2021) ✗ 63.6 60.5 77.3

ImpCon (Kim et al., 2022) ✓ 64.9 61.8 77.5
LAHN (Kim et al., 2024) ✓ 64.4 62.2 77.9

CCL w/o DA (ours) ✗ 65.1 61.5 76.7
CCL w/ DA (ours) ✓ 66.4 63.1 77.6

Table 2: Cross-dataset and in-dataset evaluation results for different training objectives trained on IHC dataset.
Boldfaced values denote the best performance and the underline denotes the second-best performance among
different training objectives. (DA: Data Augmentation.)

• Implicit Hate Speech Corpus (IHC) (ElSh-
erief et al., 2021): This dataset consists of
18,666 tweets collected from Twitter (i.e., X).
Of these, 5,450 tweets are labeled as implicit
hate speech and their targets and implications
are also given.

• Social Bias Inference Corpus (SBIC) (Sap
et al., 2020): The dataset features hierarchi-
cal annotations of stereotypes and social bias,
including target and implied statement.

• Dynamically Generated Hate Speech Dataset
(DynaHate) (Vidgen et al., 2021): The dataset
was created through a human-and-model-in-
the-loop process.

A summary of these datasets is presented in Ta-
ble 1. We use the macro F1-score measure for
validation to ensure a balanced evaluation across
classes.

Datasets No. of Posts Hateful Posts Hate %

IHC 18,666 5,460 29.3
SBIC 44,391 22,964 51.7
DynaHate 41,245 22,257 54.0

Table 1: Datasets statistics

4.2 Baselines
• Cross-Entropy (CE) loss: This method is a

widely used approach for general classifica-
tion tasks, including hate speech detection.

• Supervised Contrastive Learning (SCL) with
CE loss (Gunel et al., 2021): This method re-
fines CE loss by incorporating supervised con-
trastive learning, which enhances the model’s
ability to distinguish between subtle class
differences–crucial for tasks like hate speech
detection.

• Contrastive Learning using Implication (Im-
pCon) with CE loss (Kim et al., 2022): Im-
pCon further improves upon CE loss by in-
tegrating implication-based contrastive learn-
ing. It enhances the model’s understanding of
contextual relationships by introducing com-
mon implications associated with implicit hate
speech.

• Label-aware Hard Negative Sampling Strate-
gies with Momentum Contrastive Learning
(LAHN) (Kim et al., 2024): LAHN leverages
label information and semantic similarity for
hard negative sampling in momentum con-
trast learning, focusing on challenging nega-
tive samples. Unlike ImpCon, it avoids rely-
ing on external information, making it more
broadly applicable.

4.3 Implementation Details
For the convenience of comparison, as in Kim
et al. (2022), we employed the pre-trained language
model BERT-base-uncased and HateBERT as the
sentence encoder. For all the models, we utilized a
NVIDIA Tesla V100 GPU (32GB).
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Pre-trained
Objective DA

IHC DynaHate SBIC
Language Model (Cross-dataset) (Cross-dataset) (In-dataset)

BERT

Cross-Entropy Loss (CE) ✗ 59.9 60.6 84.1
SCL (Gunel et al., 2021) ✗ 59.4 61.0 83.9

ImpCon (Kim et al., 2022) ✓ 60.7 60.7 84.3
LAHN (Kim et al., 2024) ✓ 60.5 61.1 84.8

CCL w/o DA (ours) ✗ 60.3 61.0 83.3
CCL w/ DA (ours) ✓ 61.3 62.1 84.3

HateBERT

Cross-Entropy Loss (CE) ✗ 61.0 60.0 85.0
SCL (Gunel et al., 2021) ✗ 58.6 60.1 84.6

ImpCon (Kim et al., 2022) ✓ 61.0 61.0 85.1
LAHN (Kim et al., 2024) ✓ 61.3 61.2 84.9

CCL w/o DA (ours) ✗ 61.1 61.0 84.1
CCL w/ DA (ours) ✓ 61.5 61.9 84.8

Table 3: Cross-dataset and in-dataset evaluation results for different training objectives trained on SBIC dataset.
Boldfaced values denote the best performance and the underline denotes the second-best performance among
different training objectives. (DA: Data Augmentation.)

Using a 80-10-10 split for each task, we trained,
validated, and test all the models. For hyperparam-
eter, we used the Adam optimizer with a learning
rate 2e-5, and search the hyper-parameters temper-
ature τ from 0.1, 0.3, 0.5, weights λ from 0.25, 0.5,
0.75, batch size from 8, 16, 32, 64, capping size
from 1, 3, 5, 7, 9. We chose the best model score
with macro F1-score in the validation set and report
the macro F1-score on the test set.

4.4 Overall Performance

Table 2 and Table 3 present the evaluation results
for both cross-dataset setting and in-dataset setting
across three datasets for the training models on the
IHC and SBIC datasets respectively.

Compared to prior studies, our CCL consistently
outperforms in cross-dataset evaluations. Simply
adding augmented posts to the training set in Cross-
Entropy based method proves ineffective. Addi-
tionally, using label information in Supervised Con-
trastive Learning (SCL) is less effective than our
approaches, likely due to the task’s coarse-grained
labels (only two classes), consistent with earlier
research findings. CCL, by leveraging both ground
truth and predicted label information, produces
finer-gradient distinctions. While ImpCon, which
uses implication relationships, performs well and
LAHN effectively combines label information with
semantic similarity, CCL’s superior performance
may be attributed to its use of multiple positive
samples, whereas ImpCon and LAHN rely on a sin-
gle positive samples. CCL also mitigates spurious

correlations by incorporating predicted labels, lead-
ing to more invariant representations with stronger
generalization capabilities.

A key advantage of CCL is its effectiveness
without data augmentation, a trait it inherits from
SCL. To access the impact of data augmentation,
we tested CCL without data augmentation and ex-
plored three augmentation methods: implication
and synonym substitution (Kim et al., 2022), as
well as dropout noise applied to anchors (Kim et al.,
2024). While CCL performs competitively without
data augmentation, incorporating external knowl-
edge through augmentations further improves per-
formance. This highlights CCL’s versatility and
effectiveness across diverse learning conditions.

In terms of in-dataset evaluation, the differences
between the various methods are minimal, consis-
tent with the findings of Kim et al. (2022). How-
ever, it is important to recognize that in-dataset
performance may be inflated due to the presence
of spurious correlations. On the other hand, cross-
dataset evaluation offers a more accurate assess-
ment of a model’s true generalization capabilities.
In conclusion, CCL enhances cross-dataset gener-
alizability without compromising in-dataset perfor-
mance, demonstrating its robustness and adaptabil-
ity across different evaluation setting.

4.5 Qualitative Analysis

The ability to generalize largely depends on a
model’s capacity to learn invariant features. Our
hypothesis is that, since causal features remain con-
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Figure 4: Visualization of the representations from different models to verify invariance across datasets. (Red: IHC
as source dataset, Blue: SBIC as target dataset.)
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Figure 5: Visualization of implicit hate speech and non-hate sentences from the SBIC dataset in the zero-shot setting.
(Red: Implicit hate speech, Blue: Non-hate speech.)

sistent across datasets, a model capable of learning
these invariant features should exhibit significant
overlap in its representations of those features. To
test this, we trained CCL on the IHC dataset and
evaluated its generalization on SBIC. We used t-
SNE to visualize representations from 1,000 sam-
ples in each dataset to assess the model’s represen-
tation invariance. For a fair comparison, we extend
this experiment to three baseline models: SCL, Im-
pCon, and LAHN. The resulting visualizations are
shown in Figure 4.

As we can see, CCL’s representations display
substantial overlap, demonstrating its strong ability
to learn invariant features across datasets. In com-
parison, SCL and ImpCon show less overlap, with
ImpCon performing better than SCL. This is may
be due to ImpCon aligning posts with their impli-
cations. However, despite this advantage, ImpCon
still fall short of both CCL or LAHN, possibly
because it relies on only one positive sample per
anchor and overlooks label information. LAHN,
while demonstrating some overlap, is outperformed
by CCL, likely due to its vulnerability to biases
arising from label information and spurious cor-
relations. In contrast, CCL excels by leveraging
both ground truth and predicted label information
and using multiple positive samples per anchor,
enhancing its generalization ability

Another indicator of strong generalization is
a clear margin between different classes (Ben-

gio et al., 2013; Gunel et al., 2021). To assess
the boundary between hate speech and non-hate
speech, we randomly sampled 2,000 instances of
each from the SBIC dataset. Figure 5 illustrates
a visualization of the embeddings for these sam-
ples, with the models fine-tuned on the IHC dataset.
The embeddings produced by CCL create a notably
sharper distinction between hate speech and non-
hate speech compared to the other three models.
This suggests that CCL enables the model to gen-
erate more generalizable representations than the
alternative methods.

4.6 Ablation Study

To assess the effectiveness of the causality-guided
positive sampling, we contrast it with standard su-
pervised positive sampling in SCL, where all sam-
ples sharing the same ground truth label as the an-
chor are selected as positive samples. Additionally,
we conduct ablation studies to examine the impact
of varying the number of positive samples in mini-
batch across different batch sizes. It is important
to highlight that, due to the uneven distribution of
data, the number of positive and negative samples
in each mini-batch may not be balanced. This can
result in cases where the number of positive pairs
in a batch is lower than the predicted cap size. For
example, if the cap size is set to 9 but a mini-batch
contains only 7 positive pairs, the final number of
positive pairs will be 7 rather than 9.
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Positives Sampling Capping Batch Number of Positives
Methods Methods Size 1 3 5 7 9 No cap

SCL

Random

8 60.2 60.8 60.5 59.6 60.0 60.5
16 62.1 62.5 60.7 61.2 61.4 60.4
32 62.3 62.7 62.5 62.1 63.1 62.6
64 62.0 61.3 61.7 61.0 61.9 61.3

Similarity-based

8 60.3 60.9 60.7 59.8 59.7 60.5
16 61.4 63.3 62.2 61.2 61.7 60.4
32 62.8 63.1 62.6 63.6 62.0 62.6
64 61.1 61.3 62.3 61.5 61.1 61.3

Causality-guided

Random

8 61.1 61.9 62.7 61.3 60.0 60.8
16 61.3 64.0 63.2 62.2 61.7 61.9
32 63.7 64.3 63.1 63.4 62.4 63.6
64 62.4 62.1 61.7 62.2 63.5 62.6

Similarity-based

8 61.3 62.2 63.0 62.9 61.7 60.8
16 62.5 64.7 64.4 65.0 64.6 61.9
32 64.9 64.4 65.7 65.4 65.9 63.6
64 63.0 62.5 63.0 66.4 65.1 62.6

Table 4: Ablation study results for positives sampling methods and capping methods.

As shown in Table 4, causality-guided models
consistently outperform SCL methods. A possi-
ble reason is that we only treat posts with opposite
predicted labels as well as the same ground truth,
rather than all posts with the same ground truth,
as positive samples. This introduces fine-grained
label information for supervised contrast learning,
allowing the model to focus on more challenging
cases where predictions diverge from ground truth
labels. This demonstrates the robustness and ef-
fectiveness of incorporating spurious correlations
mitigation into the learning process for hate speech
detection.

When comparing random sampling to similarity-
based sampling, we find that similarity-based sam-
pling yields significantly better performance. By
selecting samples with lower similarity to the an-
chor, the model is encouraged to learn more diverse
and robust representations, rather than relying on
overly similar or redundant information. These
findings highlight the critical role of carefully se-
lecting relevant and challenging examples during
training, as it helps improve the model’s ability
to generalize across varied and nuanced contexts,
ultimately leading to more accurate and reliable
detection outcomes.

Regarding the batch size, we observed that in-
creasing batch size does not always enhance model
performance. That is, there is an optimal batch size

beyond which performance plateaus or declines.
Similarly, increasing the number of positive sam-
ples does not result in linear improvement. Since
hard positive samples are selected based on similar-
ity to the anchor, choosing too many risks increas-
ing similarity. As a result, increasing the capping
threshold beyond a certain point introduces noise,
limiting the model’s effectiveness in detecting hate
speech. This findings emphasize the need for care-
ful selection of hard positive samples, batch size,
and hyperparameters to optimal performance in
implicit hate speech detection.

5 Conclusions

In this paper, we propose a causality-guided con-
trastive learning framework aimed at improving the
generalization capabilities of implicit hate speech
detection models. By incorporating causality into
the contrastive learning process, our approach ef-
fectively mitigates spurious correlations, leading to
more robust representations. Particularly, we lever-
age prediction errors from ERM model for hard
positives sampling. The empirical results confirm
that our method significantly enhances the general-
ization capabilities in cross-dataset setting. Future
work could explore the extension of this framework
to other types of toxic language and its integration
with multi-modal data.
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6 Limitations

While our causality-guided contrastive learning ap-
proach has shown improvements in detecting im-
plicit hate speech, several limitations must be ad-
dressed. First, like many machine learning mod-
els, our method requires careful tuning of multiple
hyperparameters, which can be computationally
expensive. Second, we sampled only the hard posi-
tives while ignoring the benefit of hard negatives
sampling. Exploring causality-guided hard nega-
tives sampling would further enhance the model’s
generalizability.

7 Ethics Statement

Our work on implicit hate speech detection aims to
address the challenges of identifying content with
subtle semantics and spurious correlations. We use
publicly available datasets to ensure transparency
and reproducibility while prioritizing user privacy.
All data employed in this research is anonymized,
and no personal information is used or disclosed.
Our goal is to enhance the detection of implicit hate
speech without exacerbating harm.
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