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Abstract

The task of determining whether two texts
are paraphrases has long been a challenge in
NLP. However, the prevailing notion of para-
phrase is often quite simplistic, offering only
a limited view of the vast spectrum of para-
phrase phenomena. Indeed, we find that evalu-
ating models in a paraphrase dataset can leave
uncertainty about their true semantic under-
standing. To alleviate this, we create PARA-
PHRASUS, a benchmark designed for multi-
dimensional assessment, benchmarking and se-
lection of paraphrase detection models. We
find that paraphrase detection models under our
fine-grained evaluation lens exhibit trade-offs
that cannot be captured through a single clas-
sification dataset. Furthermore, PARAPHRA-
SUS allows prompt calibration for different use
cases, tailoring LLM models to specific strict-
ness levels. PARAPHRASUS includes 3 chal-
lenges spanning over 10 datasets, including 8
repurposed and 2 newly annotated; we release
it along with a benchmarking library at https:
//github.com/impresso/paraphrasus

1 Introduction

Our study was set in motion by a serendipitous find-
ing. Like many other researchers at the time, we
were benchmarking large language models (LLMs).
We had particular interest in the paraphrasing de-
tection task1 and evaluated Llama and others LLMs
(Dubey et al., 2024; Alves et al., 2024) on the adver-
sarial paraphrase detection test set PAWS-X (Yang
et al., 2019). Interestingly, LLMs appear to under-
perform much on PAWS-X. Their performance lies
slightly above random coin flip, and they are vastly
outperformed by smaller BERT-based models fine-
tuned on the training split of PAWS-EN.

1We consider paraphrasing as an important and challenging
task, hand in hand with Quintilianus (95, p. 117) who lived
2,000 years ago, and of course, with many papers presented
at CL and ML conferences such as Bhagat and Hovy (2013);
Zhou and Bhat (2021); Krishna et al. (2023).
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Figure 1: Percentage of paraphrases predicted on the Se-
mantic Text Similarity Dataset (STSBenchmark) dataset
(Cer et al., 2017), binned by scores from 0 (completely
dissimilar) to 5 (completely equivalent). Human an-
notation comes from the STS-H human annotation we
perform.

Therefore, we investigated whether from analyz-
ing results on PAWS-X, we could make conclusions
about the paraphrase detection understanding (or
lack thereof) of different models. As what was
merely intended as a sanity check at first, we repur-
posed data from the semantic text similarity (STS)
task, and investigated the distribution of predicted
paraphrases against the fine-grained similarity la-
bels, where only the highest label of 5 denotes
true paraphrases. In fact, moving away from 5,
the semantic similarity decreases rapidly, so there
clearly are no paraphrases below a certain level
(e.g., 4). We confronted different models with this
simple test and were surprised by the results (see
Figure 1). Suddenly, the predictions of LLMs ap-
peared more reasonable than what we took away
from the benchmarking results, whereas the trained
models that performed well on PAWS-X appeared
naïve and much too over-confident, assigning many
paraphrase predictions to sentences that are seman-
tically different. Indeed, “predicting paraphrases is
not easy” (Vahtola et al., 2022).

https://github.com/impresso/paraphrasus
https://github.com/impresso/paraphrasus
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Inspired by these pilot findings, we began a
deeper empirical exploration into paraphrase no-
tions and paraphrase detection models, the results
of which are presented in the remainder of this
paper. A main outcome of this is our PARAPHRA-
SUS benchmark that allows the community to test
paraphrase detection models in different aspects,
building on existing, novel, and carefully repur-
posed data, eliciting diverse notions of paraphrases.
With PARAPHRASUS, we can gather a fine-grained
picture of paraphrase modes performance that re-
veals particular strengths and weaknesses. Our
contributions are the following:

1. We present PARAPHRASUS, a multi-faceted
evaluation benchmark for paraphrase detec-
tion, including datasets of human-written sen-
tence pairs of varying semantic and lexical
similarity repurposed for testing the general-
ization of paraphrase detection models.

2. Within our benchmark, we also contribute two
novel datasets. i) We annotate a test set of
338 semantically similar sentence pairs for
paraphrase classification, creating a challeng-
ing test set that paraphrase detection methods
plateau at 60% accuracy. ii) We exploit guide-
lines for Abstract Meaning Representation an-
notations, extracting expert examples of true
paraphrases.

3. To showcase the usefulness of PARAPHRA-
SUS, we test LLMs and trained models under
different setups, revealing new insights about
paraphrase detection models and paraphrase
data. A main insight is that evaluating a model
on a single paraphrase dataset, as commonly
done before, can yield a misleading picture
about actual generalization performance. The
effect is especially marked for trained models.

4. We perform quantitative and qualitative anal-
yses, learning about suitable model training
regimes and human perception of paraphrases.

2 Related Work

Paraphrasing. We find early excitement about
paraphrases in the rhetorician Quintilianus (95)’s
book, written 2000 years ago. Quintilianus sug-
gests paraphrasing as an exercise for classrooms,
praising the task as “valuable in virtue of its diffi-
culty”, the goal is “to rival and vie with the original
in the expression of the same thoughts” (p. 117). A

useful taxonomy of different types of paraphrases
can be found later in Bhagat and Hovy (2013)’s
work, outlining 25 means of creating one, e.g., by
metaphor substitution or function word variation
(“Pat gave a nice demo”, “Pat’s demo was nice”).

Clearly, there are many NLP applications where
paraphrasing and understanding paraphrases plays
a crucial role (Mallinson et al., 2017). Some of
these are semantic search (Reimers and Gurevych,
2019), style transfer (Krishna et al., 2020), ma-
chine translation (Madnani et al., 2007), plagiarism
(Barrón-Cedeño et al., 2013; Sharjeel et al., 2016),
and text reuse (Büchler et al., 2012). The evalua-
tion of text generation is often interested in whether
a candidate and the reference are paraphrases (e.g.,
Freitag et al., 2020; Thompson and Post, 2020;
Nawrath et al., 2024).

Paraphrase Datasets Recognizing the impor-
tance of paraphrasing, prior research has developed
methods for constructing datasets, including min-
ing large corpora for multilingual paraphrases (Gan-
itkevitch et al., 2013; Ganitkevitch and Callison-
Burch, 2014) and using back-translation to generate
50 million paraphrase pairs (Wieting and Gimpel,
2018). Such large-scale datasets are especially at-
tractive for training models for each of the diverse
paraphrase-related applications mentioned above.
On the other hand, smaller datasets have been pro-
posed, with a stronger focus on quality and evalu-
ation of paraphrase judgment models. One of the
earliest of such datasets is the MRPC corpus (Dolan
and Brockett, 2005), this paraphrase classification
dataset was constructed by mining the web and fil-
tering the most promising candidates using lexicon-
based classifiers. Two non-specialist human judges
then labelled the sentence pairs, resulting in a test
set of 1,730 sentence pairs, of which 66.5% were
labelled positive.

Recently, the PAWS dataset (Zhang et al., 2019)
was introduced, providing an adversarial dataset
for paraphrase classification through the applica-
tion of word scrambling. They create challeng-
ing pairs by controlled word swapping and back-
translation, followed by human quality check for
fluency and paraphrase semantic. The dataset is
split in 49,401 training sentence pairs and 8,000
test sentence pairs. PAWSX (Yang et al., 2019) takes
2000 of the PAWS Wiki test samples and creates
a 7-way multilingual test set in German, Spanish,
French, Chinese, Japanese, and Korean using hu-
man translators. While these minimal pairs are
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interesting to perform a focused evaluation, its ad-
versarial mode of dataset creation can introduce
limitations on the coverage of linguistic formula-
tion variation and hinder generalization abilities.

Typically, there is a quantity-quality tradeoff.
With PARAPHRASUS we aim to get the best of the
worlds of quantity and quality, releasing a com-
prehensive and trustworthy multifold dataset for
evaluating paraphrase detection models and analyz-
ing various sorts of paraphrases.

Creating benchmarks. Benchmarking is a very
active topic in NLP (Gardent et al., 2017; Zhu et al.,
2018), and a key tool for study and development of
LLMs (Srivastava et al., 2023). These benchmarks
are useful since they help to assess and select mod-
els within a broader picture, and thus encourage
their further development (Gehrmann et al., 2021).
A recent critique that has emerged is due to the way
how LLMs are trained, as they are often trained on
large corpora crawled from the web. Hence, bench-
mark data may have leaked into the model, and the
performance is harder to assess (Deng et al., 2024).
A way to at least partially mitigate this concern
is by repurposing data from related tasks. Specifi-
cally, while Honovich et al. (2022) repurpose data
for their factuality benchmark from existing factual-
ity datasets from different domains, we take a step
further and source data not only from different do-
mains, but also from related tasks, projecting them
as paraphrase classification. This further increases
trust in evaluation results based on our proposed
PARAPHRASUS benchmark.

Semantic similarity datasets. STS (Agirre et al.,
2013; Cer et al., 2017) and SICK (Marelli et al.,
2014) elicited human ratings of sentence similarity
on a Likert scale. While STS annotates semantic
similarity, SICK annotates semantic relatedness.
These two aspects are highly related, but not ex-
actly the same (Budanitsky and Hirst, 2006; Kolb,
2009). However, the highest scores on the Likert
scales of SICK and STS denote the equivalence of
meaning of two sentences. We exploit this property
for our PARAPHRASUS paraphrase benchmark by
carefully selecting lower similarity pairs as non-
paraphrases for controlled tests.

3 Proposed Benchmark

Paraphrases come in different flavors, and distin-
guishing types of paraphrases can be fuzzy (Bha-
gat and Hovy, 2013). Our benchmark therefore

Dataset Pairs Paraphrase ¬Paraphrase

abs. rel. abs. rel.

Classify!
PAWSX 14,000 6,160 44% 7,840 56%
MRPC 1,730 1,159 67% 571 33%
STS-H 338 109 32% 229 68%

Group 16,068 7,427 48% 8,641 52%

Minimize!
SNLI 6,632 0 0% 6,632 100%
ANLI 798 0 0% 798 100%
XNLI 16,700 0 0% 16,700 100%
STS 706 0 0% 706 100%
SICK 2,305 0 0% 2,305 100%

Group 27,141 0 0% 27,141 100%

Maximize!
TRUE 167 167 100% 0 0%
SIMP 600 600 100% 0 0%

Group 767 767 100% 0 0%

Total 43,976 8,194 34% 35,782 66%

Table 1: Overview of the datasets in the PARAPHRASUS
benchmark along with their label distribution.

adopts an empirical approach to evaluating para-
phrase detection models, according to three desider-
ata: i) It should reflect a broad spectrum of do-
mains, to lower the impact of any superficial train-
ing that may have been acquired by a model. ii)
It should reflect a broad spectrum of different fla-
vors of paraphrases, e.g., varying strictness lev-
els of paraphrases, negative examples with contra-
diction or neutral semantic relation. iii) It should
help us select models for different paraphrase chal-
lenges, or select a single model that performs con-
sistently across multiple categories. Table 1 gives
an overview of the size and label distribution of
each of the ten evaluation sets. More statistics are
available in Appendix C.

3.1 The data: Ten Parts with Three Objectives

Our benchmark consists of 10 parts, with eight
of them repurposed from various types of NLP
tasks, such as natural language inference (NLI) and
meaning representation annotation guidelines. By
distributing the data across different domains, we
aim to capture a wide range of paraphrase phenom-
ena. An additional benefit of repurposing existing
data could be that it helps alleviate concerns that
the LLMs being evaluated may have incorporated
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this data during training. In addition to the repur-
posed data, three datasets are genuine paraphrase
datasets, one of which is a human-annotated set of
particularly challenging examples created by us.

The benchmark is divided into three challenges,
along which we structure its description:

Classify! We evaluate the models on three bi-
nary paraphrase classification datasets, where each
model must determine whether a given pair of sen-
tences constitutes a paraphrase or not.

• PAWSX: As mentioned in Section 2, PAWSX is
a multilingual dataset containing lexically sim-
ilar pairs of paraphrases and non-paraphrases.

• MRPC: As also mentioned in Section 2,
MRPC is one of the first paraphrase detec-
tion dataset that has been released (Dolan and
Brockett, 2005).

• STS-H: We propose using challenging sen-
tence pairs without relying on adversarial
strategies. To achieve this, we select highly
similar sentence pairs from the STS dataset,
which are annotated on a 5-point Likert scale.
Potential paraphrase candidates are situated at
the upper end of this scale. We select all pairs
from 4-5 and carefully create a high-quality
set of 338 paraphrase annotations.

A semantics expert and a student anno-
tated this subset independently, resulting in
moderate-to-good Kappa of 0.63 (Cohen,
1960). Finally, disagreements were discussed
and adjudicated. For the few cases where dis-
agreements could not be resolved (13 out of 56
total), we assigned the non-paraphrase class.
This decision was based on the reasoning that
it is easier to argue that two sentences are not
paraphrases than to prove the opposite.

Minimize positive predictions! In a dataset that
contains no paraphrases, the primary objective of
the model is to minimize the prediction of para-
phrases. However, to ensure the task remains chal-
lenging, the paired texts should exhibit some de-
gree of similarity. In this study, we repurpose the
following five datasets.

• SNLI, ANLI, XNLI— Natural Language Infer-
ence (NLI) repurposed: NLI asks whether a
hypothesis follows a given premise, labeling
the relationship with entailed, neutral, or con-
tradiction. We select those pairs that either

stand in a neutral relationship, or in a contra-
diction. Since typically the premise is longer
than the hypothesis, we control this bias by
adding the flipped pairs. The resulting data
are denoted by SNLI, sampled from the first
large-scale NLI dataset (Bowman et al., 2015);
ANLI taken from an adversarial version of the
task (Nie et al., 2020); and the cross-lingual
XNLI (Conneau et al., 2018) 2 that allows us
to study paraphrase detection models in the
minimization task in different languages.

• STS, SICK— Similarity repurposed: Orthog-
onally to how we created the STS-H data by
using only extremely similar pairs, we now
select only pairs that we know that they are
not paraphrases. To ensure maximum data
quality and lower the possibility of annotation
confusions in the upper spectrum of the simi-
larity Likert scale, we select only values 0-3
as negative pairs, excluding the range of 3 to
5. The resulting data are gathered from two
datasets (Marelli et al., 2014; Cer et al., 2017).

Maximize positive predictions! If we know that
a dataset contains only pairs of paraphrases, the nat-
ural expectation towards a model would be to maxi-
mize its paraphrase detection rate. We selected two
datasets to test this behavior:

• TRUE: We create a dataset of simple, guar-
anteed paraphrases. The objective for a para-
phrase model using this dataset is to correctly
identify as many paraphrases as possible. To
ensure the accuracy of these examples, we
leverage Abstract Meaning Representation an-
notation guidelines (Banarescu et al., 2013).3

AMR has the goal of mapping the same mean-
ing to the same structure, and highlights this in
its annotation guidelines by presenting graphs
together with a group of semantically equiva-
lent (but structurally different) sentences. For
every meaning graph, we extract the n-sized
set of example sentences and create n2−n

2
true paraphrase pairs.4 As the guidelines suc-
cinctly treat diverse phenomena, there can be
short phrases, like “20 km” and “20 kilome-
ters”, but most of them are short sentences,

2Limited to EN, DE, FR, ES, ZH due to compute costs.
3https://github.com/amrisi/amr-guidelines
4Since AMR currently captures many, but not all semantic

aspects (Sadeddine et al., 2024), we exclude any parts of the
annotation guidelines where AMR conflates two aspectually
divergent sentences into a single representation.

https://github.com/amrisi/amr-guidelines
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e.g., “The boy desires the girl to believe him.”
and “The boy has a desire to be believed by
the girl.” 5

• SIMP: From the AMR guidelines, we re-
trieved simple and accurate paraphrases; how-
ever, the manually constructed nature of the
data limits its diversity. To create a more di-
verse dataset of paraphrases, albeit at the cost
of introducing more noise, we repurpose paral-
lel sentence pairs of different readability levels
(Advanced, Intermediate, Elementary) from
Vajjala and Lučić (2018)’s OneStopEnglish.

3.2 Evaluation Metric
To achieve a final ranking of systems, we need to
select a metric. While there are many choices for a
metric, and each has their benefits and drawbacks
(Opitz, 2024), we wish for an interpretable and
robust measure. For each dataset, we calculate a
classification error percentage. For datasets from
the classify challenge, this is the ratio of wrong
predictions. For datasets where the goal is to min-
imize the amount of positive predictions, like the
neutral and contradictory pairs of the NLI data,
this is the ratio of positive predictions (in that case,
equivalent to false positive rate). For the datasets
in the maximization challenge, such as TRUE, this
is the ratio of negative predictions (equivalent to
false negative rate). To achieve a robust final score,
we calculate an unweighted average per each of
the three challenges, and then another unweighted
average over these averages:

Err =

∑
challenge∈benchmark

( ∑
dataset∈challenge

error(dataset)

|challenge|

)
|benchmark|

The Err models the probability of observing a
wrong prediction, given we randomly select one
of the three challenges, and randomly pick an ex-
ample from a random dataset of the task. Since all
scores on PARAPHRASUS are error measurements
(or their averages), lower numbers are better.

4 Testing Paraphrase Detection Models

In this section, we introduce the methods and mod-
els used for systematically testing our PARAPHRA-
SUS benchmark to assess the paraphrase detection
capabilities. We focus on two research questions:

5The license of the AMR guidelines allows us to publicly
release this subset of true paraphrases.

Zero Shot Paraphrase Detection Prompt

Are the following sentences {paraphrase
notion}?

Sentence 1: {sentence1}
Sentence 2: {sentence2}

Answer with ’Yes’ or ’No’

Figure 2: For P1, P2, and P3, the paraphrase notions
we ask for are “paraphrases”, “semantically equivalent”
and “expressing the same content” respectively. For the
ICL expanded prompt, see Appendix A.

1. Given that PAWSX is a widely used dataset for
measuring the Natural Language Understand-
ing of LLMs and is relatively large, we ask:
What insights can be gained from training on
it? Specifically, we aim to determine how
useful PAWSX is for training smaller, more
efficient models.

2. Given the increasing use of LLMs, we aim to
test a reference open-source LLM to examine
its ability to recognize different types of para-
phrasing in PARAPHRASUS. We also explore
different ways of describing the concept of
paraphrasing to assess the best methods for
prompting LLMs to classify paraphrases.

4.1 What can we learn from PAWSX?
We replicate the approach from the original PAWSX
study by Yang et al. (2019) and fine-tune a mul-
tilingual encoder, XLM-RoBERTa base (XLM-R)
(Conneau et al., 2020) on the PAWS Wiki English
training set. Using default fine-tuning hyperparam-
eters, we train for 6 epochs. During initial evalua-
tion, we observed considerable variance between
different fine-tuning seeds on PARAPHRASUS. To
reduce the impact of this variance on our results,
we report the average performance based on three
high-performing checkpoints, each corresponding
to a different seed, yielding a total of nine predic-
tions.

4.2 What can we learn from LLMs?
Recent research has indicated that LLMs have de-
veloped a strong understanding of human language,
which can be accessed through natural language
prompts. In this study, we prompt Llama3 Instruct
8B (Dubey et al., 2024) quantized to 4 bits with
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Results are error percentages ↓ Classify! Minimize! Maximize! Averages

Classification Method
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P

Clfy! Min! Max! Err

XLM-R← PAWS-EN Train 15.2 54.1 33.4 32.4 7.2 26.7 46.6 37.0 31.4 5.3 34.2 30.0 18.3 27.5
Llama3 Instruct P1 44.7 56.2 23.6 7.3 13.0 12.3 12.9 0.9 9.0 14.7 41.5 9.3 11.8 ⋆20.9
Llama3 Instruct P2 40.7 37.6 45.9 1.0 1.2 1.4 2.4 0.1 34.7 47.3 41.4 1.2 41.0 27.9
Llama3 Instruct P3 38.1 41.7 37.5 1.3 1.7 1.3 3.5 0.0 35.3 37.5 39.1 1.6 36.4 25.7
Llama3 Instruct P1-ICL_K4 39.0 44.7 33.2 1.9 2.0 2.8 3.5 0.3 29.9 33.3 39.0 2.1 31.6 24.2
Llama3 Instruct P2-ICL_K4 34.1 41.7 45.2 0.8 0.8 0.3 3.1 0.0 40.1 42.3 40.3 1.0 41.2 27.5
Llama3 Instruct P3-ICL_K4 33.2 39.1 46.7 0.5 0.8 0.3 2.4 0.0 50.9 45.5 39.7 0.8 48.2 29.6

Table 2: Main results on PARAPHRASUS. For description of prompts P1, P2, P3, and their ICL variants, see
§4.2. All results are error percentages: Lower numbers are better. The classification method with the best overall
performance is marked with an asterisk (⋆).

three different paraphrase notions along with their
in-context learning equivalents.

Expressing different paraphrase notions.
Given that multiple “personalities” can be elicited
from LLMs (Chan et al., 2024), we leverage this
property to design three distinct, minimalistic
prompts that vary only in how the concept
of “paraphrase” expressed. The first prompt
(henceforth denoted as P1) is most straightforward,
just asking the model to judge whether two
sentences are paraphrases. The second prompt P2
intends to emulate a person with background in
semantics, asking the model whether the following
two sentences are semantically equivalent. We
speculate that this prompt triggers a model mode
that very strictly judges the pairs, refraining
from assigning a positive label if there is only
a minor semantic difference. The third prompt
P3 aims to kindle a person who is primed from
Information Retrieval: The model is asked whether
the following two sentences are about the same
content. We speculate that this prompt provides a
suitable balance between the straightforward P1
prompt and the presumed strict prompting P2.

In-context learning with PAWS-X examples.
Our second version of these prompt personas lever-
ages the “emergent capability” of in-context learn-
ing (Brown et al., 2020), and is henceforth denoted
by the ICL_K4 suffix. Compared to the original,
during inference time, we sample two positive and
two negative sentence pairs from the training set of
PAWS-Wiki and prepend them to the prompt.

5 Main Benchmark Results

The main results on PARAPHRASUS are shown in
Table 2.

What model is best overall? Interestingly, our
most simple LLM setup (P1) demonstrates the best
overall result (21% errors on average) on PARA-
PHRASUS, outperforming the second best model
that uses in-context examples from PAWSX (P1-
ICL_K4) by 3.2 percentage points (pp). While
the smaller fine-tuned XLM-R model excels on
PAWSX with an error rate of only 15.2% it struggles
to generalize across the other objectives and ranks
second to last, showing an overall error of 27.5%.

What model is best for specific objectives?
Findings on PARAPHRASUS show that each model
exhibits unique strengths. When examining the
averages for each objective (right side of Table 2),
Llama with prompt P3-ICL_K4 (Min!, 0.8% aver-
age error) outperforms others in the minimization
objective, while Llama3 with prompt P1 (Max!,
11.8% average error) excels in the maximization
objective. In the classification objective, the trained
XLM-R model achieves the best performance.
However, it is important to note that this partic-
ular average is skewed due to the model’s training
on PAWSX. In the other two classification datasets,
XLM-R is outperformed by Llama3 prompts, with
up to a 14.8 pp error difference on STS-H (using
prompt P2) and a 9.8 pp difference on MRPC (using
prompt P1).

Zero Shot or In Context Learning In the zero-
shot experiments, the different paraphrase notions
in the prompt lead to different levels of strict-
ness and overall result, whereas in the ICL exper-
iments the three prompts behave stricter. Adding
in-context examples to P1 seems to calibrate the
model to reduce false positives, but at the cost of a
19.8 pp error difference in the maximization aver-
age, and a lower overall result.
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Results are error percentages ↓ Classify! Minimize! Maximize! Averages

Model← PAWS-EN % Negatives to EasyNegs.
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Clfy! Min! Max! Err

XLM-R← Original Negatives (44% | 56%) 15.2 54.1 33.4 32.4 7.2 26.7 46.6 37.0 31.4 5.3 34.2 30.0 18.3 27.5
XLM-R← 25% Easy Negatives (44% | 56%) 15.1 54.8 32.1 32.8 5.9 20.8 42.6 32.7 32.0 4.0 34.0 27.0 18.0 ⋆26.3
XLM-R← 50% Easy Negatives (44% | 56%) 15.9 58.5 30.8 43.6 7.7 29.8 58.9 50.7 14.5 2.3 35.1 38.1 8.4 27.2
XLM-R← 75% Easy Negatives (44% | 56%) 18.0 63.1 33.2 75.8 38.0 67.4 85.3 78.9 5.3 1.1 38.1 69.1 3.2 36.8

Table 3: Ablation study A: XLM-R fine-tuned on PAWS EN Wiki training samples where a percentage of the second
sentences of the negative pairs was exchanged with a random sentence. All results are error percentages: Lower
numbers are better. The classification method with the best overall performance is marked with an asterisk (⋆).

Results are error percentages ↓ Classify! Minimize! Maximize! Averages

Model← PAWS EN Train Labeled by Prompt
PA
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Clfy! Min! Max! Err

XLM-R← Original Labels (44% | 56%) 15.2 54.1 33.4 32.4 7.2 26.7 46.6 37.0 31.4 5.3 34.2 30.0 18.3 ⋆27.5
XLM-R← Llama3 P1 (79% | 21%) 45.0 63.2 33.4 77.9 93.1 89.9 70.4 63.7 23.2 2.9 47.2 79.0 13.0 46.4
XLM-R← Llama3 P2 (59% | 41%) 34.1 58.8 32.7 60.3 63.7 70.8 66.4 50.6 21.3 6.9 41.9 62.4 14.1 39.5
XLM-R← Llama3 P3 (56% | 44%) 30.0 56.4 32.8 47.5 58.7 62.6 52.6 34.5 29.0 8.5 39.7 51.2 18.8 36.6
XLM-R← Llama3 P1 ∧P2 ∧P3 28.4 54.6 34.0 33.7 49.0 55.7 40.6 19.0 38.1 10.7 39.0 39.6 24.4 34.3

Table 4: Ablation study B: XLM-R fine-tuned on PAWS Wiki training samples but instead using predicted Llama3
labels as targets (for description of prompts P1, P2, P3 see 4.2). X ∧ Y : The positive label is assigned if and
only if it is predicted by both prompt X and Y . All results are error percentages: Lower numbers are better. The
classification method with the best overall performance is marked with an asterisk (⋆)

.

6 Discussion

6.1 Can we improve the XLM-R training?

In the main results, we observed that fine-tuning a
model on the PAWSX training set yields strong per-
formance on the PAWSX test set. However, despite
this success, the trained model ranks second to last
overall on PARAPHRASUS. A natural question then
is: Why did the model fail to generalize?

Is it the adversarial character? We hypoth-
esize that this may be due to the adversarial ch-
aracter of PAWSX. While its difficulty should ide-
ally teach the model to handle even the most chal-
lenging cases, the artificial creation of the dataset
may have introduced biases. These biases could
have led the model to rely on spurious correlations
– similar to the "Clever Hans" effect – where the
model learns to exploit patterns that do not gener-
alize well, potentially explaining its struggles with
broader generalization (Niven and Kao, 2019).

Ablation study A: Adding easy negatives to
the training data. To test this hypothesis, we in-
troduce varying amounts of easy negative samples
into the training data. To maintain the original la-
bel distribution, we generate these easy negatives
by replacing one part of an adversarial negative
pair with a random sentence from the training set.
The results are presented in Table 3. We observe

that this strategy can indeed improve the general-
ization ability of the trained model, but only when
the amount of easy negative samples are up to 50%.
Adding 25% of easy negatives reduces the model’s
overall error from 27.5 to 26.3, with improvements
on SICK (-4.3 pp) and XNLI (-5.9 pp).

Is it the labels? XLM-R models trained on
PAWSX exhibit poor generalization on PARAPHRA-
SUS, which could be attributed to the target labels
assigned to the adversarial sentence pairs.

Ablation Study B: Relabeling the Training Data
with Llama3. To examine whether the model’s
generalization ability could be improved by uti-
lizing labels generated by large language models
(LLMs), we trained the model on the PAWS-Wiki
training set using silver labels predicted by Llama3
through zero-shot prompting. Contrary to our hy-
pothesis, the results in Table 4 show that models
trained on these silver labels exhibit even poorer
generalization performance, invalidating the as-
sumption that relabeling enhances generalization.
We eyeballed a handful of examples where all
prompts agreed on the label, but disagreed with
the original one. Some of these examples suggest
annotation errors, such as the following: S1: In
1923, there were 568 wz.1902 guns in the Polish
inventory S2: In 1923, 568 Polish guns were in
the inventory of wz.1902. In this example, PAWS
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assigns a negative label, while all prompts assign
a positive label. The consensus seems to suggest
that the LLM has realized that ‘wz.1902’ is a type
of Polish gun, and all numbers do perfectly match.
Though to be perfectly fair, an extremely strict in-
terpretation could argue, e.g., that some of the guns
in S1 might have been (e.g., accidentally) put in
another inventory, hence supporting the assigned
label, an insight that seems to “post-hoc” support
our initial hypothesis in this experiment. But even
when changing only those labels to positive where
all prompts agreed on, the average error rises by
about 6.8 pp. to 34.3% (see Table 4, last row).

Summary of ablation studies What is the under-
lying cause of the model’s lack of generalization?
Based on our experiments, we cannot provide a
definitive answer. The first experiment indicates
that incorporating simple negative samples and re-
ducing the adversarial nature of the training data
may improve generalization. This adjustment also
exposes the model to a broader spectrum of seman-
tic similarity between sentence pairs, as opposed
to the original dataset, which consisted primarily
of difficult positives and negatives. On the other
hand, the second experiment seems to indicate that
the given PAWS labels are of mostly good quality.
While apparently a few annotation mistakes can
be corrected by LLM relabeling, any relabeling
overall worsens a trained model’s generalization.

We conclude that good performance on PAWSX
does not always mean strong generalization in para-
phrase detection overall. We have not yet identified
a method to train an efficient model on PAWS that
effectively generalizes to out-of-distribution sce-
narios. We speculate that over-fitting to complex
adversarial data creation schemes may be at play,
counteracting any potentially valuable learning sig-
nal (for now).

6.2 Human Paraphrase Understanding Study

When creating STS-H, we obtained independent
annotations from two annotators before agreeing
on a final gold standard. One annotator was a re-
searcher with a background in semantics, and the
other was a student annotator. This setup allows
for an interesting analysis of different agreement
patterns: between the semanticist and the student,
between the LLM and the trained model or one of
the human annotators, and other comparisons.

We calculate pairwise Cohen’s Kappa inter-
annotator agreement scores (Cohen, 1960) and
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Figure 3: Cohens κ between humans and systems when
annotating the STS-H dataset that consists of highly
similar (STS Score 4-5) sentences.

show the results in Figure 3. We see that there
is moderate to high agreement within humans and
each model type. Then there is low agreement of
Llama with human, and basically zero agreement
of XLM with both human and Llama. Interest-
ingly, when considering the maximum STS label
of 5 as indicative of a paraphrase, as intended by
the task, we observe that human annotators exhibit
only moderate agreement with this classification.
Occasionally, both humans assigned a paraphrase
to a pair from STS that has a score lower of 5.0, at
other times, both humans agreed to assign a non-
paraphrase label to an STS pair labeled with 5.0.

6.3 Failure modes of LLM
When analyzing LLM performance on PARAPHRA-
SUS using datasets containing only certified nega-
tives or certified positives, we observed that while
the error rate of the LLMs was low, it was never
zero. Table 5 shows three pairs each from the repur-
posed NLI XNLI dataset (non-paraphrases only),
as well as from the AMR-guidelines repurposed
data (paraphrases only). In all these cases, all LLM
prompts agree – on the wrong decision. Interest-
ingly, sometimes, the LLM seems to be tricked by
seemingly simple active/passive variants and as-
signed a negative prediction, like X saddened Y / Y
was saddened by X or a slight positional variation
of an adverbial particle (look up X / look X up). At
times, the model mistakenly labeled a contradiction
as a paraphrase, as seen in the first pair where one
sentence calls something a significant threat, while
the other denies it was a threat.

Overall, we should note that LLMs generally
show low error rates on the NLI-repurposed data,
demonstrating robustness against hard negatives.



8757

False Positive examples: LLMs predict paraphrase

The threat that was coming was not from sleeper cells.
Sleeper cells were the only threat of any significance.

The cover story reviews the latest research on how babies think.
The cover story talks about how infants make decisions.

(a) Change each d or t in the target to c.
After the conversion is finished the target should have exactly four c’s.

False Negative examples: LLMs predict non-paraphrase

The girl was saddened by the disaster.
The disaster saddened the girl.

Behavioral problems.
Problems behaving.

The boy looked up the answer.
The boy looked the answer up.

Table 5: Examples of LLM failures on NLI and AMR-
repurposed data. In the first three pairs, all Llama3
prompts (P1, P2, and P3) incorrectly classify the pairs as
paraphrases, even though they are not. In contrast, in the
last three pairs, the prompts fail to assign a paraphrase
label, although all examples are indeed paraphrases.

However, the error rate is higher on hard positives
in the AMR-repurposed data. In 92% of the cases
where one or more LLMs make an error, at least
one prompt still makes the correct decision. Nev-
ertheless, our analysis indicates that LLMs can be
misled by relatively simple linguistic variations.

7 Conclusion

A key contribution of our work is the introduction
of the PARAPHRASUS benchmark, which includes
sentence pairs from ten domains and covers three
paraphrase detection challenges. We are releasing
this benchmark to the research community, with
the goal of facilitating further exploration of para-
phrase phenomena, evaluating paraphrase detection
models and zero-shot capabilities of LLMs, and
pinpointing specific areas for improvement.

Our experiments using PARAPHRASUS revealed
several interesting insights:

1. None of the tested LLM and classifier setups
demonstrated strong performance across the
full spectrum of paraphrases captured by the
benchmark, highlighting its objective nature
and the need for system development.

2. Even modern LLMs as Llama3 failed to accu-
rately and consistently detect paraphrases – in
some cases, the passivization of the verb is all
it takes to confuse all tested prompt variants.

3. Improving training strategies for smaller,
more efficient models is challenging, but not

impossible. Specifically, carefully inserting
a certain amount of easy negatives into a
large training set of adversarial pairs helped
to lower the average error.

4. Among all tested LLM prompting strategies,
each exhibited strengths and weaknesses de-
pending on the particular challenge within
PARAPHRASUS. However, the simplest
prompt – directly asking whether the sentence
pairs are paraphrases – performed best with an
average error of 20.9% across the benchmark.

Limitations & Future Work

Our proposed benchmark includes text pairs with
different levels of semantic and lexical similarity
from diverse domains and covers many interesting
paraphrasing phenomena. Does it cover all possible
phenomena related to paraphrases and paraphras-
ing? Clearly not. For example, an obvious limi-
tation is its coverage of phenomena in languages
other than English. While our dataset does include
a total of 25,360 non-English samples, they are
not spread across all ten parts of PARAPHRASUS
(e.g., the AMR-sourced dataset is only English).
Thus, expanding PARAPHRASUS to include more
datasets in languages other than English, particu-
larly low-resource languages, appears as a fruitful
avenue for future work. We invite community col-
laboration to help extend PARAPHRASUS.

While many resources were used to perform our
evaluations, regarding our selection of LLMs, we
limited ourselves to Llama3 Instruct 8B quantized
to 4 bits. Similarly, the basic architecture for our
experiments with trained models was limited to
XLM-RoBERTabase. We believe that the bench-
mark can be viewed as an extended reasoning eval-
uation of LLMs, useful for comparing capabilities
of different sizes and architectures. Specifically,
among all the many ablations and different setups
that we ran for both model types, there was none
that showed consistently good performance.
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A ICL Prompt

In-Context-Learning (k=4) Paraphrase Detection Prompt

Here are example sentence pairs that are {paraphrase notion} (Yes) and not {paraphrase notion}
(No):

Sentence 1: {RandPos1.sentence1}
Sentence 2: {RandPos1.sentence2}
Yes

Sentence 1: {RandNeg1.sentence1}
Sentence 2: {RandNeg1.sentence2}
No

...

Are the following sentences {paraphrase notion}?

Sentence 1: {sentence1}
Sentence 2: {sentence2}

Answer with ’Yes’ or ’No’

Figure 4: In-Context-Learning Prompt Template. For P1, P2, and P3, the questions asked are “paraphrases,”
“semantically equivalent,” and “expressing the same content,” respectively.

B Per Language Performance

Model en (E%) de (E%) fr (E%) es (E%) ja (E%) ko (E%) zh (E%)

XLM-R← PAWS-EN Train 6.15 12.40 11.53 11.27 23.18 23.09 19.03
Llama3 Instruct P1 34.75 43.90 43.30 43.60 49.70 50.20 47.25
Llama3 Instruct P2 33.60 37.55 39.45 38.35 45.95 46.55 43.65
Llama3 Instruct P3 29.65 35.00 35.85 34.90 45.00 45.15 40.85
Llama3 Instruct P1-ICL_K4 35.50 37.65 38.40 39.10 40.25 43.50 38.25
Llama3 Instruct P2-ICL_K4 29.90 31.20 33.05 33.85 37.45 38.70 34.70
Llama3 Instruct P3-ICL_K4 27.95 31.15 32.20 32.85 36.55 38.50 33.30

Table 6: Error rates of Table 1 for the PAWSX test set per language.

Model en (E%) de (E%) fr (E%) es (E%) zh (E%)

XLM-R← PAWS-EN Train 26.99 24.70 29.88 29.94 21.96
Llama3 Instruct P1 15.18 12.71 13.16 11.87 8.74
Llama3 Instruct P2 2.23 1.44 1.18 1.15 0.79
Llama3 Instruct P3 2.40 1.24 1.14 1.20 0.63
Llama3 Instruct P1-ICL_K4 4.82 3.10 2.60 1.98 1.44
Llama3 Instruct P2-ICL_K4 1.00 0.19 0.15 0.12 0.04
Llama3 Instruct P3-ICL_K4 0.78 0.13 0.15 0.13 0.06

Table 7: Error rates of Table 1 for the XNLI subset dataset for the five languages we use.
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C Additional Datasets Statistics
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Figure 5: Average Word Position Deviation (WPD) and Lexical Diversity (LD) (Liu and Soh, 2022) of the symmetric
datasets of PARAPHRASUS.
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