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Abstract

Multi-modal entity alignment (MMEA) is a
long-standing task that aims to discover iden-
tical entities between different multi-modal
knowledge graphs (MMKGs). However, most
of the existing MMEA datasets consider the
multi-modal data as the attributes of textual en-
tities, while neglecting the correlations among
the multi-modal data and do not fit in the real-
world scenarios well. In response, in this
work, we establish a novel yet practical MMEA
dataset, i.e. NMMEA, which models multi-modal
data (e.g., images) equally as textual entities in
the MMKG. Due to the introduction of multi-
modal data, NMMEA poses new challenges to ex-
isting MMEA solutions, i.e., heterogeneous
structural representation learning and cross-
modal alignment inference. Hence, we put for-
ward a simple yet effective solution, CrossEA,
which can effectively learn the structural in-
formation of entities by considering both intra-
modal and cross-modal relations, and further
infer the similarity of different types of entity
pairs. Extensive experiments validate the sig-
nificance of NMMEA, where CrossEA can achieve
superior performance in contrast to competitive
methods on the proposed dataset.

1 Introduction

Multi-modal knowledge graph (MMKG) (Liu et al.,
2019) is a large-scale semantic network of text, im-
age, audio of information in the real world, which
includes entities and concepts of different modal-
ities as nodes, and various semantic relations as
edges. MMKGs have attracted wide attentions in
various scenarios and promoted the development of
many downstream applications including informa-
tion retrieval (Sun et al., 2020; Zeng et al., 2023b)
and question answering (Zhao et al., 2019; Zhu
et al., 2024).

Current MMKGs can be typically categorized
into A-MMKGs (Attribute Multi-Modal Knowl-
edge Graphs) and N-MMKGs (Node Multi-Modal

Knowledge Graphs) (Zhu et al., 2024), while the
former takes the multi-modal data as the specific
attribute values of entities or concepts (Liu et al.,
2019), the latter directly treats multi-modal data
as entities in knowledge graphs representing en-
tities 1 (Li et al., 2020; Chen et al., 2013). The
difference is also illustrated in Figure 1. Compared
with A-MMKGs, N-MMKGs can better model
the relations between the multi-modal data, for in-
stance “liveIn” and “competitorOf” between visual
entities and “bornIn” between visual and textual
entities in Figure 1. In addition, when construct-
ing MMKGs from real-world data, most entities
do not inherently possess multiple modalities of
data, which may cause attribute missing issue in
A-MMKGs (Zhang et al., 2023; Li et al., 2023). In
contrast, N-MMKGs, with multi-modal data inher-
ently as entities, can avoid such an attribute missing
issue.

In general, MMKGs are constructed from in-
dependent multi-modal corpora for different pur-
poses, and hence, there consequently may be en-
tities representing the same real-world objects in
different MMKGs. Thus, it calls for the study of
multi-modal entity alignment (MMEA) that aims
to integrate the same information in different multi-
modal knowledge sources, which has become one
of the emerging tasks over recent years (Chen et al.,
2020; Cheng et al., 2022). For instance, as shown
in Figure 1, the entity “Joe Biden” in a MMKG
can be aligned to entity “Joseph Robinette Biden
Jr” in the other MMKG for they represent the same
person in real world. 2

Noteworthily, all of existing MMEA benchmarks
and solutions are built upon A-MMKGs (Zhu et al.,

1Note that in this work, we only consider the visual and
textual modalities, where the entities are referred to as “textual”
and “visual” entities, respectively. The studied contents can
be extended to more modalities.

2The definition of N-MMKGs and multi-modal entity
alignment task on N-MMKGs can be found in Appendix A
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Figure 1: An example to illustrate the difference between A-MMKG and N-MMKG, and to showcase entity
alignment between N-MMKGs. In A-MMKG, images serve as attribute values for the “hasImage” relation
associated with a “textual” entity. Conversely, in N-MMKG, images exist as “visual” entities and are treated
similar to “textual” entities. Thus, the alignment involves the intra-modal matching, e.g., “textual-textual” and
“visual-visual”, as well as the cross-modal matching, e.g., “textual-visual”.

2024), and they adopt the “representation learning
then alignment inference” paradigm to obtain the
alignment results (Zhao et al., 2023; Zeng et al.,
2023a), where they first learn and combine the
representations of different modalities and then
infer the equivalence between two “textual” en-
tities (Lin et al., 2022; Chen et al., 2023). How-
ever, these methods are not directly applicable to N-
MMKGs where the entities are in different modal-
ities. In fact, such multi-modal entities introduce
new challenges to alignment: (1) Heterogeneous
structural representation learning. The multi-
modal entities intrinsically make N-MMKG a het-
erogeneous graph, consisting of both intra-modal
and cross-modal edges. Hence, current homoge-
neous graph representation learning methods may
fail to effectively capture such differences. (2)
Cross-modal alignment inference. In addition
to comparing two entities in the same modality
(i.e., intra-modal alignment), the alignment in N-
MMKGs requires the comparison of cross-modal
entities (i.e., cross-modal alignment). A major chal-
lenge with this type of problem is how to make the
alignment similarities within intra-modal and cross-
modal comparable.

In response, in this work, we aim to fill in these
gaps by building an N-MMKG oriented MMEA
dataset, NMMEA, which is sourced from a large
image-text pairs dataset Laion-400m (Schuhmann

et al., 2021). We carefully process and formal-
ize Laion-400m using the large language model
CLIP (Radford et al., 2021) to fit the requirement
of N-MMEA. The resulting NMMEA contains 29,607
entities total in two MMKGs with two modalities
and 20,832 aligned entity pairs. Furthermore, in
order to address the challenges posed by NMMEA,
we put forward a baseline model CrossEA, with
heterogeneous relational path modeling and cross-
modal inference components. We evaluate CrossEA
on NMMEA against state-of-the-art MMEA algo-
rithms, which demonstrate the challenges brought
by NMMEA and the effectiveness of CrossEA.

Contribution. In summary, our contributions
can be summarized as: (1) To the best of our knowl-
edge, this work is the first attempt to study the
MMEA task on N-MMKGs, and we construct a
N-MMKG alignment dataset NMMEA to inspire fol-
lowing research on this task; (2) We propose an
N-MMKG oriented MMEA method CrossEA to of-
fer a preliminary solution to the challenges posed
by NMMEA; (3) We conduct experiments on NMMEA
using CrossEA and existing MMEA methods, which
demonstrate the effectiveness of both NMMEA and
CrossEA.

2 Related Work

Multi-modal knowledge graphs (MMKGs).
During the construction of N-MMKG, which incor-
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A-MMKG EA Datasets A-MMKG Ent. Rel. Att. R.Triples A.Triples

FB15K-DB15K
FB15K 14951 1345 116 592213 29395
DB15K 14777 279 225 89197 48080

FB15K-YAGO15K
FB15K 14951 1345 116 592213 29395

YAGO15K 15283 32 7 122886 23532
N-MMKG EA Datasets N-MMKG Ent.T Ent.V Rel.TT Rel.TV Rel.VV Att.T Att.V R.Triples A.Triples

NMMEA
NMMKG1 7758 7163 729 47 67 73 6 163142 34803
NMMKG2 7597 7089 489 34 98 98 6 109834 31526

Table 1: Dataset statistics. Ent.T, Ent.V refer to the number of textual entities and visual entities, Rel.TT, Rel.TV,
Rel.VV stand for the number of “textual-textual”, “textual-visual” and “visual-visual” relations.

porates multi-modal data as entities, the methodol-
ogy necessitates integrating a component for iden-
tifying and extracting visual entities present within
images. NEIL (Chen et al., 2013) initially em-
ploys pre-trained classifiers to assign a solitary la-
bel to each image, followed by the extraction of
visual relations through heuristic principles based
on the spatial arrangement of the detected objects.
The system GAIA (Li et al., 2020) employs ob-
ject recognition coupled with detailed categoriza-
tion to discern subtle concepts within news content.
GAIA serves as a foundation for RESIN (Wen et al.,
2021), which further specializes in extracting visual
news occurrences and recognizing pertinent visual
entities and concepts, functioning as arguments,
from more confined resources such as individual
news articles. Subsequently, MMEKG (Ma et al.,
2022) enhances certain components of this process
and scales it up to handle the extraction of universal
events across billions of data points.

Multi-modal entity alignment (MMEA). Tra-
ditional knowledge graph entity alignment tasks
have already been studied in great depth and
breadth (Zhao et al., 2023; Zeng et al., 2021,
2022). Compared with traditional KGEA meth-
ods, MMEA methods typically involve integrat-
ing visual and text modalities to enhance KG-
based entity alignment. Previous works, such as
PoE (Liu et al., 2019), represent entities as sin-
gle vectors, concatenating features from multiple
modalities. HEA (Guo et al., 2021) combines
attribute and entity representations in hyperbolic
space, utilizing aggregated embeddings for align-
ment predictions. Methods like MCLEA (Lin
et al., 2022) enhance intra-modal learning with con-
trastive methods, while MEAformer (Chen et al.,
2023) improves modality fusion through hybrid
frameworks. DESAlign (Wang et al., 2024) ad-
dress the over-smoothing caused by semantic in-
consistency and interpolating missing semantics
using existing modalities. Despite their contribu-

tions, most of these methods are not suitable for
the entity alignment task on N-MMKG where each
entity has only one modality.

3 Construction Of NMMEA

NMMEA is sourced from Laion-400m (Schuhmann
et al., 2021), which is an image-text pair dataset
from random web pages crawling between 2014
and 2021.

N-MMKG construction. We first build N-
MMKGs based on Laion-400m using the multi-
modal graph construction framework GAIA (Li
et al., 2020) 3. We first selected 20,000 image-
text pairs related to “countries”, “locations” and
“people” from Laion-400m. After constructing
NMMKG1 using GAIA on these image-text pairs,
we obtained 7,163 visual entities and 7,758 textual
entities. Next, we retrieved and selected 40,000
image-text pairs related to the entities in NMMKG1

from Laion-400m, and similarly used GAIA to con-
struct NMMKG2, resulting in 16,581 visual entities
and 16,927 textual entities.

Since it is easier to find matching entities be-
tween two knowledge graphs in the textual modal-
ity compared to the visual modality, we priori-
tize annotating the seed entity pairs in the textual
modality of the two knowledge graphs first. Then,
through the “imageOf” relation in the knowledge
graphs, we identify the corresponding visual en-
tities within each graph, thereby obtaining seed
entity pairs for the other modalities. Afterwards,
we will search for visual entity pairs that are not
matched to textual entities via "imageOf" by com-
paring similar visual entities as a supplement. We
use the entities in NMMKG1 as target entities and
search for corresponding entities in NMMKG2 to
form seed entity pairs. Finally, we get NMMKG2

with 7089 visual entities and 7597 textual entities

3Details of the N-MMKGs construction based on GAIA
can be found in the appendix B.
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by the above matching method, the total number of
entity alignment pairs is 20832.

Dataset analysis. The statistics of the dataset
can be found in Table 1. We conducted a statistical
analysis of the modality distribution of entities,
relations and the aligned entity pairs in NMMEA.

Entities distribution Unlike the A-MMKG
EA datasets, entities in NMMEA are divided into tex-
tual and visual entities, both accounting for approx-
imately 50%. The large number of visual entities
introduces a multitude of cross-modal and visual-
visual relations that do not exist in existing datasets,
making the knowledge graph more complex and
heterogeneous. Visual entities also bring various
types of aligned entity pairs, which complicates the
alignment tasks.

Relations distribution The relations in the
NMMEA can be categorized into three types: textual-
textual, textual-visual, and visual-visual. Among
these, textual-textual relations are the most nu-
merous, while cross-modal relations are the least
common. Statistics show that the “imageOf” rela-
tion accounts for 83.8% of cross-modal relations,
with other relations such as “photoOf”, “locatedIn”
and “bornIn” also appearing frequently in cross-
modal contexts. In visual-visual type relations,
the “sameAs”, “contain”, “nearBy” and “similar”
relations make up approximately 92.4%. Other
relations like “beneath”, “bornIn” and “dressedIn”
also appear in certain specific triplets. It is evi-
dent that some relations can appear across different
modalities, further highlighting the heterogeneity
and complexity of the NMMEA.

EA pairs distribution NMMEA has three kinds
of EA pairs, makes the number of EA pairs much
larger than existing datasets. Among the 20832
aligned entity pairs, “textual-textual”, “visual-
visual” and “textual-visual” entity pairs account for
about 40.07%, 19.97%, and 39.96%, respectively.
It can be concluded that the proposed dataset ex-
hibits a high degree of heterogeneity, effectively
mirroring the complex scenarios encountered in
actual MMEA applications.

Our aspiration is that these datasets will facili-
tate the development of more sophisticated MMEA
models, and thereby provide a clearer trajectory for
advancing MMEA research.

4 A Simple But Effective Method

In this section, we propose a simple but effec-
tive method CrossEA. It follows the “representa-
tion learning then alignment inference” paradigm
adopted by existing works, while designing a
method for learning structural feature representa-
tions based on the aggregation of features from
neighbor nodes along modality meta-paths, as well
as an alignment inference method that separately
predicts intra-modal and cross-modal alignments.
The overall framework of the model is shown in
Figure 2.

4.1 Representation Learning

Entity feature encoding module. To generate
visual and textual embeddings of entities, we em-
ploy RESNET (He et al., 2016) and BERT (Devlin
et al., 2019) to extract features from all visual and
textual entities, using the output of their last layer
as the representation.

Structural feature encoding module. Due to
the heterogeneous nature of NMMKG, using cur-
rent representation learning algorithms that treat
all nodes equally may not be able to effectively
capture the structural information.

Hence, we propose to classify the paths of rela-
tions originating from different target entities ac-
cording to the modalities, thus yielding a set of dis-
tinct modality paths that encompass all the modal-
ity types of relation paths appearing in the graph,
referred to as “modality meta-paths”.

Aggregation of neighbor nodes in each hop
along single modality meta-path Within each
modality meta-path, the modalities of the neighbor-
ing nodes at each hop are the same. We determine
the weight of the neighboring nodes by calculating
their similarity to the target node respectively. By
weighted averaging the representations of nodes
at the current hop, we obtain the structural feature
representation of neighbors at each hop:

embksi
l
=

∑
j∈P l

αl
jembl

j
, (1)

where embksi is the l-th hop structural embedding
of target entity i within certain modality meta-path
k, P l is the set of l-th neighbor nodes of target
node, embl

j stands for the j-th node modality fea-
ture representation among l-th hop neighbors, and
the αl

j is weight of the j-th node which can be
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Figure 2: Overview of CrossEA. Given two N-MMKGs, CrossEA first constructs entities feature encoders and
structural feature encoders to learn two kinds of embedding of each entity. The two embeddings of entities are fed
into an embedding fusion module to get the representation of each entity of different modality. At last, a similarity
calculation module is constructed to calculate the similarity between two entities in different N-MMKG.

calculated by:

αl
j =

exp(siml
j)∑

j∈P l exp(siml
j)
, (2)

where siml
j can be calculated by:

siml
j = tanh(embi

T · [Wembl
j
+ b]), (3)

where embi is the modality feature of target entity
(visual feature or textual feature).

Aggregation of all hops along single modal-
ity meta-path After obtaining the structural fea-
ture representation for each hop, we assign weights
to the structural feature representations of differ-
ent hops based on the proximity of the neighbors.
Specifically, the calculation process of the struc-
tural feature representation of the specific target
entity in the modal element path k is as follows:

embksi = α(embksi
1
) + α(1− α)(embksi

2
)

+ . . .+ α(1− α)(l−2)(embksi
(l−1)

)

+ (1− α)(l−1)(embksi
l
) (α > 0.5), (4)

where α is a trainable weight of the first-hop neigh-
bors, l is the highest order in the modal meta-path.
The formula adheres to the principle that closer
neighbors have greater weight than distant ones,
with the total weight summing to 1.

Aggregation of all modality meta-paths from
the target entity Next, we calculate the structural
feature representations for all target entities within
the same modality meta-path and average these
vectors to represent the meta-path. By determining
the similarity between the meta-path and the target
entities, we measure how well each entity’s struc-
tural information is conveyed. This similarity score
serves as a weighting factor when combining differ-
ent modality meta-paths. The specific calculation
process is as follows:

embk =
1

N

N∑
j=1

embksj , (5)

Simk
i = tanh(embk

T · [Wembsi
k + b]), (6)

βk
i =

exp(Simk
i )∑

k∈K exp(Simk
i )
, (7)

embis =
∑
k∈K

βk
i embsi

k, (8)

where N is the number of initial entities within
modality meta-path k, K is the set of modality
meta-paths which contain the target entity i as ini-
tial entity. embis represent the structural feature
representation of the target entity i.

4.2 Alignment Inference
After weighting and averaging the modality and
structural features of entities, we obtain their rep-
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resentations. To resolve the non-comparability be-
tween cross-modal and intra-modal similarities, we
negate the representation vectors of visual entities
when calculating similarities. This makes cross-
modal similarities negative and intra-modal similar-
ities positive. During training, we use the absolute
values of the similarities and aim to increase the
similarity for matching pairs. In testing, we apply
different thresholds to positive and negative sim-
ilarities to evaluate cross-modal and intra-modal
matches separately. Entities are considered a match
if the absolute value of their similarity exceeds the
respective threshold. The specific similarity de-
noted as Simxy(embFx , emb

′
Fy
) (x, y ∈ t, v):

Simxy(embFx , emb
′
Fy
)

=
(−1)nembFx · (−1)memb

′
Fy

||embFx ||2||emb
′
Fy
||2

n =

{
1 x = v

2 x = t
m =

{
1 y = v

2 y = t.
(9)

4.3 Model Training
To ensure matching entities are closely positioned
within the vector space, we construct a negative
example set E′

s by replacing one entity in each pair
within seed entities pairs set Es. The model’s train-
ing process revolves around optimizing a margin-
based ranking loss function, which aims to mini-
mize the distances between matching entities effec-
tively. The margin-based ranking loss function is
as followed:

L =
∑

(i,j)∈Es

∑
(i′,j′)∈E′

s

[|Sim(embiFx
, embjFx

)|

+ η − |Sim(embiFx

′
, embjFx

′

)|]+, (10)

where [X]+ = max{0, x}, η is the margin hyper-
parameter separating positive and negative in-
stances.

5 EXPERIMENTAL STUDY

In this section, we conduct extensive experimental
studies to verify the effectiveness of our proposed
method CrossEA.

5.1 Experimental Setting

Dataset. We conduct extensive experiments on
our new proposed dataset NMMEA and use three dif-
ferent training data proportions 10%, 30% and 50%.

The statistic of the NMMEA is summarized in Table
1.

Baselines. A-MMKG entity alignment methods:
(1) POE (Liu et al., 2019), which represent enti-

ties as single vectors, concatenating features from
multiple modalities.

(2) ACK-MMKG (Li et al., 2023), which com-
pensate the context gaps through incorporating con-
sistent alignment knowledge.

(3) MCLEA (Lin et al., 2022), which enhance
intra-modal learning with contrastive methods.

(4) MEAformer (Chen et al., 2023), which im-
proves modality fusion through hybrid frameworks.

(5) DESAlign (Wang et al., 2024), which ad-
dress the over-smoothing caused by semantic in-
consistency and interpolating missing semantics
using existing modalities.

CLIP (Radford et al., 2021) model can integrate
image and text into a vector space to calculate sim-
ilarity. For MMEA task based on N-MMKG, the
alignment of visual entities and textual entities is
required, alignment methods based on CLIP are
worth trying. Since the knowledge graph contains
structural information, we use GAT (Velickovic
et al., 2018) to learn the structural information in
the graph and integrate it into CLIP to strengthen
its entity alignment ability.

CLIP based MMEA methods:
(1) CLIP-MMEA: The visual, textual encoder

and similarity calculation methods of CLIP are
applied to multi-modal entity alignment.

(2) SE-CLIP-MMEA: A similarity of structure
is calculated by using the representation of entity
structural information, and the final similarity is
obtained by weighted averaging the structural simi-
larity and the similarity calculated by CLIP.

(3) SE-CLIP-MMEA+: The representation of
entity structural information in the graph is inte-
grated into the visual representation and textual
representation encoded by CLIP, and then the simi-
larity of entity pairs is calculated.

Evaluation settings. When dealing with entity
alignment task on N-MMKG, an entity in one N-
MMKG might be aligned to several entities (same
or different modality), therefore, commonly used
metrics such as Hits@k are no longer suitable for
this type of entity alignment task. For this reason,
we have chosen Precision, Recall, and F1 score
as the evaluation metrics for our experiments.
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Models
NMMEA-10% NMMEA-30% NMMEA-50%

Precision Recall F1 Precision Recall F1 Precision Recall F1

A-MMKG
Entity

Alignment
Methods

POE 0.564 0.378 0.453 0.612 0.364 0.456 0.657 0.394 0.493
ACK-MMKG 0.763 0.537 0.631 0.792 0.541 0.643 0.810 0.562 0.664
MCLEA 0.787 0.583 0.670 0.798 0.603 0.687 0.818 0.591 0.686
MEAformer 0.806 0.613 0.696 0.823 0.618 0.706 0.828 0.624 0.712
DESAlign 0.813 0.637 0.715 0.831 0.635 0.720 0.834 0.638 0.723

CLIP
Based

Methods

CLIP-MMEA 0.727 0.539 0.619 0.733 0.612 0.667 0.758 0.630 0.688
SE-CLIP-MMEA 0.807 0.624 0.704 0.826 0.643 0.723 0.839 0.638 0.725
SE-CLIP-MMEA+ 0.802 0.628 0.704 0.834 0.639 0.724 0.841 0.647 0.731

Ours CrossEA 0.826 0.717 0.766 0.839 0.743 0.788 0.843 0.793 0.817

Table 2: Main entity alignment results on different training data proportions of NMMEA.

Models
NMMEA-30%

Precision Recall F1
POE-md 0.621 0.453 0.524

ACK-MMKG-md 0.793 0.637 0.706
MCLEA-md 0.802 0.672 0.731

MEAformer-md 0.836 0.694 0.758
DESAlign-md 0.829 0.703 0.761

CLIP-MMEA-md 0.751 0.687 0.718
SE-CLIP-MME-md 0.819 0.714 0.763

SE-CLIP-MMEA+-md 0.833 0.720 0.772

Table 3: Results of A-MMKG entity alignment meth-
ods and CLIP-based methods with alignment inference
method mentioned in Section 4.

5.2 Main Results

Comparison with A-MMKG entity algnment
methods.

As can be seen in Table 2, compared to our
model, the methods based on A-MMKG are much
inferior to CrossEA. Moreover, the larger the pro-
portion of the training set, the greater the gap of
Recall, reaching a maximum decrease of 0.155.
We hypothesize that this is because the meth-
ods based on A-MMKG often omit cross-modal
aligned entity pairs during prediction, leading to
the lower Recall. In order to test our hypothesis,
we use the alignment inference method mentioned
in Section 4 on each A-MMKG entity alignment
method, and test the improved methods on NMMEA,
as shown in Table 3. It can be seen from the exper-
imental results that Recall is improved to a large
extent, which illustrates the significant impact that
the incomparability between cross-modal and intra-
modal entity similarities can have on the alignment
effect. At the same time, it can be seen that the
improved experimental results still have a signif-
icant gap compared with the results of CrossEA,
which indicates that the heterogeneity structure of

N-MMKGs also affects the effect of the A-MMKG
entity alignment methods to a large extent.

Comparison with CLIP based methods. We
test three CLIP-based entity alignment methods on
NMMEA, and the experimental results show that the
SE-CLIP-MMEA+ has some improvement over
the A-MMKG entity alignment methods on the N-
MMKG dataset. Specifically, when the training
data proportion is 30%, compared with the SOTA
method DESAlign, the F1 is improved by 0.004,
and with DESAlign-md, the F1 is improved by
0.011. Experimental results indicate that, for tasks
requiring cross-modal entity alignment, introduc-
ing CLIP, which are designed for image-text match-
ing, can yield considerable improvements.

However, compared with CrossEA, CLIP-based
methods still have certain drawbacks when applied
to multi-modal entity alignment tasks. In addition
to the fact that it cannot handle the heterogene-
ity structure of N-MMKGs, their performance in
entity alignment tends to degrade on N-MMKGs
with a large number of entities. This is because
CLIP model is essentially designed for image-text
matching, with its pre-training process conducted
in batches. However, when confronted with the
task of entity alignment, the challenge lies in eval-
uating the similarity between a single entity from
one graph and all entities in another graph. This re-
quirement drastically expands the scope of similar-
ity computations during model fine-tuning, far ex-
ceeding the scale encountered during pre-training.
Such a substantial inflation in computational scale
leads to significant adjustments in model parame-
ters, which in turn negatively impact experimental
results.

To validate this limitation, we reduced the
dataset size by a factor of 10, resulting in a graph
with 1,500 entities, and recorded the results of the
CLIP-based methods at different embedding dimen-
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(a) Results in NMMEA (b) Results in reduced NMMEA

Figure 3: F1 of the CLIP-based methods under different embedding dimensions in NMMEA and the reduced dataset

Models
FB15K-DB15K FB15K-YAGO15K NMMEA

Hits@1 Hits@1 Hits@1
POE 0.666 0.573 0.543

ACK-MMKG 0.682 0.676 0.657
MCLEA 0.730 0.667 0.642

MEAformer 0.762 0.703 0.695
DESAlign 0.805 0.728 0.714

Table 4: Results of A-MMKGs entity alignment meth-
ods on different datasets.

sions on both datasets, as shown in the Figure 3.
The best F1 on smaller-scale datasets (0.737) is
better than those on larger-scale datasets (0.724).
Furthermore, when the vector dimension reaches a
certain level on the larger datasets, there is a sub-
stantial decline in the experimental results.

5.3 Comparison of Datasets

In order to analysis the difficulty of NMMEA, we test
existing A-MMKG entity alignment methods on
three datasets, the results are shown in Table 4. For
unifying evaluation indicators, Hits@1 was used
here to evaluate experimental results. It can be seen
that compared with the results on A-MMKG en-
tity alignment datasets (FB15K-DB15K, FB15K-
YAGO15K), the results on NMMEA have different
degrees of decline. It is evident that the modality
diversity of entities, relations, and entity pairs in
NMMEA gives it a more complex structure, which
significantly impacts the model during both repre-
sentation learning and alignment inference.

5.4 Ablation Study

To evaluate the effectiveness of components in
CrossEA, we conduct the ablation study. Firstly,

Models NMMEA-30%
Precision Recall F1

CrossEA 0.839 0.743 0.788
CrossEA w/o SL 0.753 0.633 0.688

CrossEA w/o AIM 0.814 0.649 0.722

Table 5: Results of ablation study.

we remove the structural feature learning module
mentioned in Section 4.1, and replace it by GAT. It
can be seen in Table 5 that the F1 of CrossEA w/o
SL declines by 0.100 which prove the significance
of overcoming the heterogeneous in structural rep-
resentation learning.

Secondly, we remove the alignment inference
method mentioned in Section 4.2, the Recall of
CrossEA w/o AIM declines by 0.094 which is very
much larger than the decline of Precision. This
demonstrates that the alignment inference method
we propose can effectively handle situations where
an entity may correspond to entities in multiple
modalities.

5.5 Significance Testing

To conduct significance tests on the experimen-
tal results and further verify the effectiveness of
CrossEA, we conducted experiments for 10 times
for both CrossEA and the second best solution DE-
SAlign. The specific results are shown in table 6.
From the table, we calculated the p-value using
the F1 scores obtained from these 10 experiments,
which is 2.126 × 10−17, much lower than 0.05.
This indicates that, with 95% confidence, CrossEA
shows a significant improvement over DESAlign
in terms of performance.
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F1
CrossEA 0.768 0.763 0.759 0.769 0.766 0.763 0.769 0.773 0.764 0.768
DESAlign 0.714 0.718 0.717 0.712 0.711 0.714 0.713 0.721 0.714 0.715

Table 6: Results of significance testing

6 Conclusion

This paper introduces a novel benchmark—NMMEA,
which more accurately reflects the complex multi-
modal entities and heterogeneous relations of
MMKG in realistic applications. In conjunction
with this, we propose an efficient and practical
method CrossEA tailored to address these complex
challenges. Our findings not only highlight the in-
tricacy of the new benchmark but also attest to the
efficacy of the suggested solution.

Moving forwards, for the point of more ad-
vanced methods, to address the limitations of tra-
ditional MMEA methods in effectively extracting
structural information, prioritizing the development
of more advanced models becomes crucial. This
entails exploring new MMEA architectures capable
of handling highly heterogeneous structures more
efficiently, as well as incorporating sophisticated
GNN techniques to delve deeper into the complex
structural associations among multi-modal entities
within N-MMKGs. These enhancements aim to
facilitate the creation of more comprehensive and
performance-enhanced MMEA solutions.

Limitations

In this section, we faithfully discuss the limitations
that we would like to improve in future work.

Firstly, although the proposed CrossEA achieved
good results on the dataset, there were still some
incorrect judgments for entity pairs, such as the vi-
sual entity "teamFranklin" being aligned with both
the textual entity "teamFranklin" and the textual en-
tity "FranklinSchool." This situation arises because
CrossEA uses the same optimal similarity threshold
for all entity pairs to predict alignments, leading
to some non-aligned entity pairs having similarity
scores higher than the threshold. In future work, we
will investigate a method to dynamically set simi-
larity thresholds for each entity pair to improve this
issue.

Secondly, the method CrossEA we designed may
encounter the issue of redundant high-order neigh-
bor node features when computing structural char-
acteristics due to overly long relational paths in
larger and more complex knowledge graphs. This

is a direction for improvement in our future work.
Thirdly, in this paper, We only use data from

two modalities, images and text, as entities in the
knowledge graph for entity alignment, focusing on
these two modalities as a starting point to study
the new multi-modal entity alignment task. In fu-
ture work, we will explore the alignment task on
multi-modal knowledge graphs that incorporate ad-
ditional modalities such as audio, video, heatmaps,
etc.

Acknowledgements

This work was partially supported by National Key
R&D Program of China (No. 2022YFB3103600),
NSFC (Nos. U23A20296, 62272469, 62302513),
and The Science and Technology Innovation Pro-
gram of Hunan Province (No. 2023RC1007).

References
Liyi Chen, Zhi Li, Yijun Wang, Tong Xu, Zhefeng

Wang, and Enhong Chen. 2020. MMEA: entity align-
ment for multi-modal knowledge graph. In Knowl-
edge Science, Engineering and Management - 13th
International Conference, KSEM 2020, Hangzhou,
China, August 28-30, 2020, Proceedings, Part I, vol-
ume 12274 of Lecture Notes in Computer Science,
pages 134–147. Springer.

Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta.
2013. NEIL: extracting visual knowledge from web
data. In IEEE International Conference on Computer
Vision, ICCV 2013, Sydney, Australia, December 1-8,
2013, pages 1409–1416. IEEE Computer Society.

Zhuo Chen, Jiaoyan Chen, Wen Zhang, Lingbing Guo,
Yin Fang, Yufeng Huang, Yichi Zhang, Yuxia Geng,
Jeff Z. Pan, Wenting Song, and Huajun Chen. 2023.
Meaformer: Multi-modal entity alignment trans-
former for meta modality hybrid. In Proceedings
of the 31st ACM International Conference on Multi-
media, MM 2023, Ottawa, ON, Canada, 29 October
2023- 3 November 2023, pages 3317–3327. ACM.

Bo Cheng, Jia Zhu, and Meimei Guo. 2022. Multi-
jaf: Multi-modal joint entity alignment framework
for multi-modal knowledge graph. Neurocomputing,
500:581–591.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of

https://doi.org/10.1007/978-3-030-55130-8_12
https://doi.org/10.1007/978-3-030-55130-8_12
https://doi.org/10.1109/ICCV.2013.178
https://doi.org/10.1109/ICCV.2013.178
https://doi.org/10.1145/3581783.3611786
https://doi.org/10.1145/3581783.3611786
https://doi.org/10.1016/J.NEUCOM.2022.05.058
https://doi.org/10.1016/J.NEUCOM.2022.05.058
https://doi.org/10.1016/J.NEUCOM.2022.05.058
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423


8723

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Hao Guo, Jiuyang Tang, Weixin Zeng, Xiang Zhao,
and Li Liu. 2021. Multi-modal entity alignment in
hyperbolic space. Neurocomputing, 461:598–607.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pages 770–778. IEEE
Computer Society.

Manling Li, Alireza Zareian, Ying Lin, Xiaoman Pan,
Spencer Whitehead, Brian Chen, Bo Wu, Heng Ji,
Shih-Fu Chang, Clare R. Voss, Daniel Napierski, and
Marjorie Freedman. 2020. GAIA: A fine-grained
multimedia knowledge extraction system. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics: System Demon-
strations, ACL 2020, Online, July 5-10, 2020, pages
77–86. Association for Computational Linguistics.

Qian Li, Shu Guo, Yangyifei Luo, Cheng Ji, Lihong
Wang, Jiawei Sheng, and Jianxin Li. 2023. Attribute-
consistent knowledge graph representation learning
for multi-modal entity alignment. In Proceedings of
the ACM Web Conference 2023, WWW 2023, Austin,
TX, USA, 30 April 2023 - 4 May 2023, pages 2499–
2508. ACM.

Zhenxi Lin, Ziheng Zhang, Meng Wang, Yinghui Shi,
Xian Wu, and Yefeng Zheng. 2022. Multi-modal con-
trastive representation learning for entity alignment.
In Proceedings of the 29th International Confer-
ence on Computational Linguistics, COLING 2022,
Gyeongju, Republic of Korea, October 12-17, 2022,
pages 2572–2584. International Committee on Com-
putational Linguistics.

Ye Liu, Hui Li, Alberto García-Durán, Mathias Niepert,
Daniel Oñoro-Rubio, and David S. Rosenblum. 2019.
MMKG: multi-modal knowledge graphs. In The Se-
mantic Web - 16th International Conference, ESWC
2019, Portorož, Slovenia, June 2-6, 2019, Proceed-
ings, volume 11503 of Lecture Notes in Computer
Science, pages 459–474. Springer.

Yubo Ma, Zehao Wang, Mukai Li, Yixin Cao, Meiqi
Chen, Xinze Li, Wenqi Sun, Kunquan Deng, Kun
Wang, Aixin Sun, and Jing Shao. 2022. MMEKG:
multi-modal event knowledge graph towards univer-
sal representation across modalities. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics, ACL 2022 - System
Demonstrations, Dublin, Ireland, May 22-27, 2022,
pages 231–239. Association for Computational Lin-
guistics.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 8748–8763.
PMLR.

Christoph Schuhmann, Richard Vencu, Romain Beau-
mont, Robert Kaczmarczyk, Clayton Mullis, Aarush
Katta, Theo Coombes, Jenia Jitsev, and Aran Ko-
matsuzaki. 2021. LAION-400M: open dataset of
clip-filtered 400 million image-text pairs. CoRR,
abs/2111.02114.

Rui Sun, Xuezhi Cao, Yan Zhao, Junchen Wan, Kun
Zhou, Fuzheng Zhang, Zhongyuan Wang, and Kai
Zheng. 2020. Multi-modal knowledge graphs for
recommender systems. In CIKM ’20: The 29th ACM
International Conference on Information and Knowl-
edge Management, Virtual Event, Ireland, October
19-23, 2020, pages 1405–1414. ACM.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In 6th International
Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Yuanyi Wang, Haifeng Sun, Jiabo Wang, Jingyu Wang,
Wei Tang, Qi Qi, Shaoling Sun, and Jianxin Liao.
2024. Towards semantic consistency: Dirichlet
energy driven robust multi-modal entity alignment.
CoRR, abs/2401.17859.

Haoyang Wen, Ying Lin, Tuan Manh Lai, Xiaoman Pan,
Sha Li, Xudong Lin, Ben Zhou, Manling Li, Haoyu
Wang, Hongming Zhang, Xiaodong Yu, Alexander
Dong, Zhenhailong Wang, Yi Ren Fung, Piyush
Mishra, Qing Lyu, Dídac Surís, Brian Chen, Su-
san Windisch Brown, Martha Palmer, Chris Callison-
Burch, Carl Vondrick, Jiawei Han, Dan Roth, Shih-
Fu Chang, and Heng Ji. 2021. RESIN: A dockerized
schema-guided cross-document cross-lingual cross-
media information extraction and event tracking sys-
tem. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies: Demonstrations, NAACL-HLT 2021, Online,
June 6-11, 2021, pages 133–143. Association for
Computational Linguistics.

Weixin Zeng, Xiang Zhao, Xinyi Li, Jiuyang Tang, and
Wei Wang. 2022. On entity alignment at scale. VLDB
J., 31(5):1009–1033.

Weixin Zeng, Xiang Zhao, Zhen Tan, Jiuyang Tang,
and Xueqi Cheng. 2023a. Matching knowledge
graphs in entity embedding spaces: An experimental
study. IEEE Trans. Knowl. Data Eng., 35(12):12770–
12784.

https://doi.org/10.1016/J.NEUCOM.2021.03.132
https://doi.org/10.1016/J.NEUCOM.2021.03.132
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.18653/V1/2020.ACL-DEMOS.11
https://doi.org/10.18653/V1/2020.ACL-DEMOS.11
https://doi.org/10.1145/3543507.3583328
https://doi.org/10.1145/3543507.3583328
https://doi.org/10.1145/3543507.3583328
https://aclanthology.org/2022.coling-1.227
https://aclanthology.org/2022.coling-1.227
https://doi.org/10.1007/978-3-030-21348-0_30
https://doi.org/10.18653/V1/2022.ACL-DEMO.23
https://doi.org/10.18653/V1/2022.ACL-DEMO.23
https://doi.org/10.18653/V1/2022.ACL-DEMO.23
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
https://arxiv.org/abs/2111.02114
https://arxiv.org/abs/2111.02114
https://doi.org/10.1145/3340531.3411947
https://doi.org/10.1145/3340531.3411947
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.48550/ARXIV.2401.17859
https://doi.org/10.48550/ARXIV.2401.17859
https://doi.org/10.18653/V1/2021.NAACL-DEMOS.16
https://doi.org/10.18653/V1/2021.NAACL-DEMOS.16
https://doi.org/10.18653/V1/2021.NAACL-DEMOS.16
https://doi.org/10.18653/V1/2021.NAACL-DEMOS.16
https://doi.org/10.1007/S00778-021-00703-3


8724

Weixin Zeng, Xiang Zhao, Jiuyang Tang, Xuemin Lin,
and Paul Groth. 2021. Reinforcement learning-based
collective entity alignment with adaptive features.
ACM Trans. Inf. Syst., 39(3):26:1–26:31.

Yawen Zeng, Qin Jin, Tengfei Bao, and Wenfeng Li.
2023b. Multi-modal knowledge hypergraph for di-
verse image retrieval. In Thirty-Seventh AAAI Con-
ference on Artificial Intelligence, AAAI 2023, Thirty-
Fifth Conference on Innovative Applications of Artifi-
cial Intelligence, IAAI 2023, Thirteenth Symposium
on Educational Advances in Artificial Intelligence,
EAAI 2023, Washington, DC, USA, February 7-14,
2023, pages 3376–3383. AAAI Press.

Yichi Zhang, Zhuo Chen, and Wen Zhang. 2023.
MACO: A modality adversarial and contrastive
framework for modality-missing multi-modal knowl-
edge graph completion. In Natural Language Pro-
cessing and Chinese Computing - 12th National CCF
Conference, NLPCC 2023, Foshan, China, October
12-15, 2023, Proceedings, Part I, volume 14302 of
Lecture Notes in Computer Science, pages 123–134.
Springer.

Xiang Zhao, Weixin Zeng, and Jiuyang Tang. 2023.
Entity Alignment - Concepts, Recent Advances and
Novel Approaches. Springer.

Zhengwei Zhao, Xiaodong Wang, Xiaowei Xu, and
Qing Wang. 2019. Multi-modal question answering
system driven by domain knowledge graph. In 5th In-
ternational Conference on Big Data Computing and
Communications, BIGCOM 2019, QingDao, China,
August 9-11, 2019, pages 43–47. IEEE.

Xiangru Zhu, Zhixu Li, Xiaodan Wang, Xueyao Jiang,
Penglei Sun, Xuwu Wang, Yanghua Xiao, and
Nicholas Jing Yuan. 2024. Multi-modal knowledge
graph construction and application: A survey. IEEE
Trans. Knowl. Data Eng., 36(2):715–735.

A Appendix

N-MMKG. N-MMKG takes multi-modal data
(images in this paper) as entities, which denoted
as G = {E,R,A, V, TR, TA}, where E,R,A, V
represent the set of entities, relations, attributes and
attribute values respectively, TR = (ET ∪ EV )×
R× (ET ∪EV ) is the set of relation triples, ET is
the set of textual entities and EV is the set of visual
entities.

Multi-model Entity Alignment Based
on N-MMKG. Given two N-MMKGs,
KG1 = (E1, R1, A1, V1, TR1 , TA1) and
KG2 = (E2, R2, A2, V2, TR2 , TA2), multi-
model entity alignment based on N-MMKG
aims to obtain the identical entity set
S = {(eiT , eiV ) ∪ (ejT , ekT ) ∪ (ejV , ekV ) ∥
eiT , ejT , ekT ∈ ET , eiV , ejV , ekV ∈ EV } repre-
sent the same real-world entity. The three different

types of entity pairs ((eiT , eiV ), (ejT , ekT ),
(ejV , ekV )) represent the cross-modal and intra-
modal alignments that exist between the two
entities.

B Appendix

N-MMKGs construction method based on
GAIA. The N-MMKGs construction method
based on GAIA includes three branches: textual
knowledge extraction, visual knowledge extraction
and MMKG fusion. In the textual knowledge ex-
traction branch, an LSTM-CRF model is used for
the coarse-grained extraction of entities, relations,
and events. Entities are then clustered using entity
linking and coreference resolution to group iden-
tical entities. For entities that cannot be linked
to a background knowledge base, heuristic rules
are applied to form NIL clusters. Additionally,
an attention-based fine-grained type classification
model is developed to determine the fine-grained
types of entities. Finally, a weight score is assigned
to each entity in a document to better filter infor-
mation.

In the visual knowledge extraction branch, con-
volutional neural networks (CNNs) are employed
to extract features from images, and deep learning
models are used for semantic segmentation of the
images. The results of semantic segmentation are
then utilized to identify elements such as scenes,
objects, and activities within the images.

In the MMKG fusion branch, for each text-
extracted entity, GAIA uses an ELMo model on
the text and sentence, compares it with surrounding
images’ CNN feature maps to generate a relevance
score and heatmap. For relevant images, a bound-
ing box is derived from the heatmap, compared
with known visual entities, and assigned to the best
match. After linking textual and visual entities via
NIL clustering, a N-MMKG is constructed.
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