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Abstract

Over-correction is a critical issue for large lan-
guage models (LLMs) to address Grammatical
Error Correction (GEC) task, esp. for Chinese.
This paper proposes a Chain-of-Task (CoTask)
framework to reduce over-correction. The Co-
Task framework is applied as multi-task instruc-
tion tuning of LLMs by decomposing the pro-
cess of grammatical error analysis to design
auxiliary tasks and adjusting the types and com-
binations of training tasks. A supervised fine-
tuning (SFT) strategy is also presented to en-
hance the performance of LLMs, together with
an algorithm for automatic dataset annotation
to avoid additional manual costs. Experimental
results demonstrate that our method achieves
new state-of-the-art results on both FCGEC
(in-domain) and NaCGEC (out-of-domain) test
sets.

1 Introduction

Grammatical Error Correction (GEC) is a chal-
lenging task of detecting and correcting vari-
ous grammatical errors in given sentences (Wang
et al., 2021). Current advancements in this do-
main are mostly centered around two approaches:
sequence-to-sequence (Seq2Seq) and sequence-to-
edit (Seq2Edit). The Seq2Seq models rely on large-
scale labeled data, sometimes requiring millions of
sentence pairs, to achieve good performance, which
leads to extremely high data annotation costs (Cao
et al., 2023; Rothe et al., 2021). The Seq2Edit
models also have inherent flaws, such as the de-
fect in handling errors involving word order due
to their reliance on predicting edit tags (e.g., inser-
tion, deletion, etc.) for each token to generate the
corrections(Xu et al., 2022).

Since most research on GEC has focused on
Indo-European languages, particularly English, the
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Given Sentence

我们要善于反思，及时解决和发现学习中存在的问题。

( We should be good at reflecting and solving and identifying

problems in our learning in a timely manner. )

LLMs Output

我们要善于经常反思，及时发现和解决学习中存在的问题。

( We should be good at reflecting frequently and identifying and 

solving problems in our learning in a timely manner. )

CoCGEC Output

我们要善于反思，及时发现和解决学习中存在的问题。

( We should be good at reflecting and identifying and solving 

problems in our learning in a timely manner. )

LLMs Correct
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C
h

ain
-o

f-T
ask

Figure 1: An example of over-correction, where red
indicates a grammatical error, green indicates the correct
change, and blue indicates over-correction. CoCGEC
learns prior knowledge from instruction data of Chain-
of-Task, reducing over-corrections.

performance of Seq2Seq or Seq2Edit GEC models
declines further in Chinese. In contrast to English,
Chinese grammatical structure is more flexible and
does not strictly follow the basic sentence pattern
of subject-verb-object. Grammatical relations in
Chinese are expressed by word order and context
rather than word inflection. In addition, there are
relatively few available high-quality datasets for
Chinese Grammatical Error Correction (CGEC)
training.

Recently, Large Language Models (LLMs) have
been emerging as a new paradigm in Natural Lan-
guage Processing (NLP) owing to their remark-
able performance in a variety of downstream tasks
(Zhao et al., 2023). Applied as a new possible solu-
tion for CGEC, LLMs still demonstrate inferior per-
formance compared with the state-of-the-art mod-
els due to the problem of over-correction (Li et al.,
2023b; Qu and Wu, 2023). Figure 1 illustrates
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this phenomenon, where LLMs add an unnecessary
word "frequently" after "be good at reflecting", de-
spite correcting a wrong word order "solving and
identifying problems" into "identifying and solving
problems". Over-correction leads to unexpected
semantic changes, which severely hampers the ef-
ficacy of CGEC systems, as it detracts from the
primary objective of correcting grammatical errors
without introducing unnecessary changes.

To address this challenge, this paper proposes a
novel Chain-of-Task (CoTask) framework inspired
by Error Analysis Theory in linguistics (Corder,
1975) to reduce over-correction by the LLMs. By
decomposing the process of grammatical error anal-
ysis, we design three sequential tasks pertinent
to CGEC as instruction tuning for LLMs: error
range determination, error type classification, and
grammatical error correction. We also propose a
multi-granularity dataset annotation algorithm to
generate the CoTask instruction data automatically.
To efficiently utilize the limited data, we apply
a two-stage fine-tuning strategy to achieve better
performance using the same dataset during SFT.
The CGEC system is fine-tuned using the CoTask
framework1.

We evaluate the performance of our system on
both in-domain and out-of-domain CGEC tasks,
using the FCGEC test set for in-domain evaluation
and the NaCGEC test set for out-of-domain evalua-
tion. Our system achieves F0.5 scores of 56.60 and
56.46 on the two test sets, respectively, outperform-
ing the prior state-of-the-art (SOTA) by absolution
improvements of 5.3 and 11.2 points.

Specifically, our contributions are as follows:
1. We introduce a novel Chain-of-Task frame-

work to reduce over-correction in LLMs by
multi-task instruction tuning. To the best of
our knowledge, our method is the first applica-
tion of CoT to CGEC, employing SFT through
decomposing CoT to design training tasks.

2. We propose a two-stage strategy for SFT,
which enhances the performance of LLMs
without increasing computational demands by
designing distinct types and combinations of
training tasks at different stages.

3. We develop a multi-granularity integrated
text comparison algorithm and construct
CoCGEC corpus, which contains additional
fine-grained annotated information for future
research in CGEC.

2 Chain-of-Task Framework

In linguistics, Error Analysis Theory delineates the
process of error analysis into three distinct steps:
identifying the error, describing the error, and ex-
plaining the error (Corder, 1975). Similarly, ad-
dressing NLP tasks such as CGEC involves mul-
tiple steps rather than a single step. Before cor-
recting a sentence with a grammatical error x(i)

into a corrected sentence y(i), humans typically
analyze the grammatical structure, determine the
error type, identify possible corrections, etc., to
effectively leverage their prior knowledge K and
improve correction accuracy.

Inspired by this, we propose the Chain-of-Task
(CoTask) framework, consisting of three stages: (1)
Chain-of-Task design by task process decompo-
sition, (2) Chain-of-Task instruction construction,
and (3) Two-stage Supervised Fine-Tuning, as il-
lustrated in Figure 2. The details of each stage are
introduced in this section.

2.1 Chain-of-Task Design by Task Process
Decomposition

The prior knowledge required by LMs (KLM ) and
humans (Khuman) to address the same target task
is not identical. Consequently, leveraging prior
knowledge based on human experience does not
always enhance LMs’ performance on the target
task (Rei and Yannakoudakis, 2017). The emer-
gence of Chain-of-Thought (CoT) reasoning in
LLMs provides insight into how these models solve
tasks, enabling the selection of prior knowledge
necessary for the model. CoT enables a com-
plex reasoning task t(i) = (x(i), y(i)) to be de-
composed into a series of intermediate reasoning
steps S = {s1, s2, ..., sn} leading to the final result
ŷ(i). This process not only improves model inter-
pretability but also enhances performance (Li et al.,
2023a; Wei et al., 2022). Although CGEC does not
naturally decompose into clear intermediate steps
like mathematical or symbolic reasoning and other
natural language reasoning tasks, LLMs can gener-
ate content with the process of grammatical error
analysis by using "step-by-step" prompts, thereby
incorporating the necessary prior knowledge KLM .

For CGEC, outputs from four LLM
products—GPT-4o2, ChatGLM43, Qwen2.54 and

1Our code, data, and models are publicly available at
https://github.com/lxp991108/CoCGEC

2https://chat.openai.com/
3https://chatglm.cn/main/alltoolsdetail
4https://tongyi.aliyun.com/qianwen/

https://github.com/lxp991108/CoCGEC
https://chat.openai.com/
https://chatglm.cn/main/alltoolsdetail
https://tongyi.aliyun.com/qianwen/
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Input:

Check and correct possible speech errors in the following 

sentence in a step-by-step manner.

Given Sentence: We should be good at reflecting on our learning 

and solving and identifying problems in our learning in a timely 

manner. 

Output:

In the given sentence, "solving and identifying" has an error of 

incorrect word order. After correction, the correct sentence 

would be: We should be good at reflecting on our learning 

and identifying and solving problems in our learning in a 

timely manner.

Decompose Process

"solving and identifying" has an error

an error of incorrect word order

the correct sentence would be: We should …

Design Tasks

Error Range Determination

Error Type Classification

Grammatical Error Correction

Generate Auxiliary Information

Word-LevelChar-Level Sentence-Level

Exact Match
Minimum Edit 

Distance

Data Integration

Construct Instruction

I.

II.

III.

Supervised Fine-Tuning

RNTNCNRN+1TN+1CN+1RN+2TN+2CN+2RN+3

Sample NSample N+1Sample N+2…

Training Order

C1C2

Training Order

C3C4C5C6C7C8…

Stage 1

Stage 2

Figure 2: Chain-of-Task framework, consisting of (I) Chain-of-Task design by task process decomposition, (II)
Chain-of-Task instruction construction, and (III) Two-stage supervised fine-tuning. R1, T1, and C1 denote the
instruction data for the error range determination task, error type classification task, and grammatical error correction
task for the 1st sample, respectively.

ERNIE3.55—exhibit a similar process. Detailed
results are provided in Appendix A.1. Based on
LLMs’ outputs, we decompose the CGEC process
into three steps. Firstly, the model identifies
whether any segment of the given sentence
contains a grammatical error. Subsequently, it
classifies the identified grammatical error into
a specific error type. Lastly, it corrects the
grammatical error based on its type, ultimately
generating a grammatically correct sentence.

Following this decomposition, we design a
Chain-of-Task containing three tasks pertinent to
CGEC: error range determination, error type
classification, and grammatical error correction.
These tasks align directly with the LLMs’ output
process steps. Designing auxiliary tasks by leverag-
ing inherent LLMs’ outputs is more effective and

5https://yiyan.baidu.com/

efficient than artificially designing unique auxiliary
tasks for each distinct target task based on human
experience. This method allows LLMs to leverage
the prior knowledge required to address the target
task more organically and generalize better across
various target tasks.

2.2 CoCGEC: Chain-of-Task Instruction
Construction for CGEC

Training data for these tasks needs to contain prior
knowledge KLM = (r, t, c) where r represents the
grammatical error range, t denotes the error type,
and c is the correction. Utilizing annotated datasets
directly circumvents the potential limitations im-
posed by the performance of a teacher model, as
opposed to relying on outputs with CoT generated
by the teacher model. A dataset for CGEC with

https://yiyan.baidu.com/
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error type annotations, FCGEC6, is constructed by
Xu et al. (2022), but datasets for error range de-
termination are less accessible. Consequently, we
extended the annotations of the FCGEC training set.
A multi-granularity integrated text comparison al-
gorithm is developed to automatically annotate the
range of grammatical errors across three granularity
levels: char-level, word-level, and sentence-level.
We use this algorithm to construct a Chain-of-Task
corpus for CGEC, CoCGEC.

• Char-Level. The char-level algorithm com-
pares differences between the original sen-
tence and the references from both forward
and backward, saving the start and end char-
acter indexes of the differences in the original
sentence to an index list. After comparison
with all references, the index list is sorted, and
a substring is extracted from the original sen-
tence based on the first and last indexes to
generate the final annotation result.

• Word-Level. Similar to char-level, but the
original sentence and references are seg-
mented into words using Jieba7 tool before
comparison, with words serving as the basic
units.

• Sentence-Level. The sentence-level algo-
rithm divides sentences into multiple clauses
based on Chinese punctuation marks such as
commas, periods, semicolons, etc., with these
clauses serving as the basic units to compare
and save indexes.

Comparisons with manual annotations reveal
that the similarity between algorithmic and man-
ual annotations at different granularity levels varies
depending on grammatical error type. For errors
related to semantics such as illogical, which often
involve an entire clause or even the whole sentence,
char-level or word-level algorithms might lose es-
sential semantic information. For errors involving
back-to-front correspondences, such as incorrect
word collocation or word order, these algorithms
will miss these correspondences if there is only one
reference. Conversely, sentence-level algorithms
may introduce unnecessary information for com-
ponent redundancy, typically repetitive words or
phrases.

Considering different types of errors suit dif-
ferent granularity annotations, we integrate the
results of multi-granularity algorithms based on

6https://github.com/xlxwalex/FCGEC
7https://github.com/fxsjy/jieba

Exact Match (EM) and Minimum Edit Distance
(MED) metrics. For each error type, the algorithm
with the highest EM and the lowest MED is se-
lected as the final annotation method from three
granularity levels. The distribution of grammatical
error types in CoCGEC is illustrated in Appendix
A.2, and the annotations and metrics calculations
are detailed in Appendix A.3.

2.3 Two-stage Supervised Fine-Tuning
Fine-tuning LLMs using instruction data across a
range of NLP tasks has been shown to enhance their
performance on downstream applications (Ouyang
et al., 2022; Sanh et al., 2021). To optimize the
model for CGEC and improve its generalization ca-
pabilities, we employ instruction data across three
tasks pertinent to CGEC. Drawing on the principles
of Curriculum Learning (CL) Bengio et al. (2009),
we design a two-stage SFT strategy that views a
batch of training data samples as a whole to mea-
sure its difficulty. In this context, task diversity
within a batch reflects the complexity of the under-
lying knowledge, thereby increasing the learning
challenge for the model.

In the first stage, we fine-tune the model ex-
clusively on CGEC instruction data, ensuring the
model internalizes the specific objective and an-
swer formats required for CGEC. In the second
stage, we perform multi-task fine-tuning using in-
struction data from all three tasks. This approach
allows the model to leverage prior knowledge, such
as range and type of grammatical error, before
addressing CGEC, ultimately enhancing correc-
tion accuracy. The task order within each batch
is aligned with the CGEC process in LLMs, pro-
ceeding from error range determination to error
type classification, and finally, grammatical error
correction.

Leveraging prior knowledge through multiple
inferences is costly for LLMs while generating re-
sults containing all intermediate tasks in a single
inference is challenging for a 14B-parameter model.
This two-stage strategy allows the LLM to integrate
prior knowledge K

(i)
LM = (r̂(i), t̂(i), ĉ(i)) with the

given sentence x(i), thereby more accurately esti-
mating the probability

P (ŷ(i)|x(i), r̂(i), t̂(i), ĉ(i))

to directly generate a corrected sentence ŷ(i).

https://github.com/xlxwalex/FCGEC
https://github.com/fxsjy/jieba
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3 Experiment

3.1 Setting

Dataset Train Validation Test
FCGEC 36266 2000 3000

NaCGEC - 500 5869

Table 1: Statistics of sentence counts for datasets.

Dataset For fine-tuning LLMs, we utilize only
the CoCGEC dataset to construct instruction data.
We randomly sample 90% of the dataset for the
first stage of training, using grammatical error cor-
rection instruction data of these samples. The re-
maining 10% is used for multi-task instruction data
across the three tasks in the second stage. For vali-
dation and test sets, we follow prior work (Li et al.,
2023b; Qu and Wu, 2023; Wang et al., 2024) and
select two widely used and challenging datasets.
FCGEC (Xu et al., 2022) is a large-scale fine-
grained multi-reference CGEC corpus collected
from public school Chinese examinations for na-
tive Chinese speakers. NaCGEC (Ma et al., 2022)
is a large-scale dataset containing grammatical er-
rors made by native Chinese speakers in real-world
scenarios such as exams and news sites, used as
the validation and test sets in NLPCC 2023 Shared
Task 18. Examples of instructions used in the ex-
periment are detailed in Appendix A.4.

Evaluation Metrics We evaluate models’ perfor-
mance applying ChERRANT scorer (Zhang et al.,
2022), which calculates precision, recall, and F0.5
score for character-level span-based correction. We
obtain the same evaluation metrics by submitting
the results of the FCGEC test set in CodaLab9 on-
line platform.

Hyperparameters We choose Qwen1.5-14B-
Chat (Bai et al., 2023) as the foundation model for
SFT due to its strong Chinese language capabilities
among open-source LLMs. The LLaMA-Factory
framework (Zheng et al., 2024) is employed for
both model fine-tuning and inference. During fine-
tuning, we set the hyperparameters as follows: the
initial learning rate is 5e-05, with a cosine learn-
ing rate scheduler and a warmup ratio of 0.003.
The batch size is 256, and we fine-tune the model

8http://tcci.ccf.org.cn/conference/2023/
taskdata.php

9The benchmark publisher deploys the review page
at https://codalab.lisn.upsaclay.fr/competitions/
8020.

for one epoch. The temperature is set to 0.1 for
inference.

3.2 Baseline Approaches
To benchmark our method, we compare it against
several popular approaches in CGEC, includ-
ing state-of-the-art models on the FCGEC and
NaCGEC datasets. Additionally, we evaluate the
performance of larger-scale LLMs.

Seq2Edit GECToR-Chinese (Zhang et al., 2022)
is a Chinese variant of GECToR (Omelianchuk
et al., 2020) using StructBERT (Wang et al., 2019)
as its encoder. GECToR is a widely used and repre-
sentative Seq2Edit method. STG (Xu et al., 2022)
further decomposes the CGEC task into three pro-
cessing modules: Switch, Tagger, and Generator,
which are trained jointly.

Seq2Seq Bart-Large-Chinese (Shao et al., 2024),
a Chinese variant of Bart (Lewis et al., 2020),
serves as a representative Seq2Seq pre-trained
model, demonstrating strong performance in
CGEC. GPT2-medium (Radford et al., 2019) is
also considered, trained using unsupervised learn-
ing.

Post-processing We replicate a PPL-based
model ensemble method proposed by Tang et al.
(2023), utilizing three different granularities
(Sentence-level, Edit-level, Edit-combination). Ad-
ditionally, LM-Combiner (Wang et al., 2024) miti-
gates over-correction in CGEC systems by model
rewriting based on the original sentence and output,
outperforming the SOTA on the FCGEC.

LLMs We include HWCGEC (Su et al., 2023)
and GrammarGPT (Fan et al., 2023), which ranked
1st and 3rd on NLPCC 2023 Shared Task 1, re-
spectively. We also compare our approach with
GPT-4o (Achiam et al., 2023), a high-performing
closed-source LLM, and two open-source LLMs
with excellent Chinese capabilities, Qwen1.5-32B-
Chat (Bai et al., 2023) and Yi-1.5-34B-Chat (Young
et al., 2024).

3.3 Main Results
Tables 2 and 3 present a comprehensive compar-
ison of various methods for CGEC across both
in-domain and out-of-domain test sets. As shown
in the tables, our CoTask framework significantly

10https://github.com/masr2000/NaCGEC

http://tcci.ccf.org.cn/conference/2023/taskdata.php
http://tcci.ccf.org.cn/conference/2023/taskdata.php
https://codalab.lisn.upsaclay.fr/competitions/8020
https://codalab.lisn.upsaclay.fr/competitions/8020
https://github.com/masr2000/NaCGEC
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Method P R F
GECToR-Chinese∗ 30.68 37.14 28.32
STG∗ 48.19 37.14 45.48
GPT2-medium∗ 56.71 24.79 45.10
Bart-Large-Chinese∗ 37.49 38.87 37.76
+ Sentence-level∗ 55.26 20.23 41.04
+ Edit-level∗ 58.22 24.12 45.39
+ Edit-combination∗ 58.16 25.63 46.38
+ LM-Combiner∗ 55.67 39.04 51.30
Qwen1.5-32B-Chat 22.16 20.09 21.71
Yi-1.5-34B-Chat 14.44 14.99 14.55
GPT-4o 22.33 24.14 22.67
Qwen1.5-14B-Chat 6.25 22.68 7.31
+ CoTask (Ours) 65.65 36.49 56.60

Table 2: Experimental results on FCGEC (in-domain)
test sets. Results marked with * are reported from an-
other paper (Wang et al., 2024). The best results of all
are listed in bold.

Method P R F
GrammarGPT∗ 45.40 15.15 32.45
HWCGEC∗ 50.95 31.29 45.26
Qwen1.5-32B-Chat 20.42 19.00 20.12
Yi-1.5-34B-Chat 12.34 13.65 12.58
GPT-4o 20.21 22.78 20.67
Qwen1.5-14B-Chat 6.36 23.47 7.44
+ CoTask (Ours) 62.50 40.72 56.46

Table 3: Experimental results on NaCGEC (out-of-
domain) test set. Results marked with * are reported
from NLPCC 2023 Shared Task 110. The best results of
all are listed in bold.

improves the performance of Qwen1.5-14B-Chat
for CGEC.

In the in-domain results (Table 2), Qwen1.5-14B-
Chat suffers from a low precision of 6.25 and an
F0.5 score of just 7.31, despite a relatively high re-
call of 22.68. This imbalance indicates a significant
issue with over-correction, where the model pro-
duces many incorrect corrections, leading to a very
low precision and, consequently, a poor F0.5 score.
However, after applying the CoTask framework,
the performance metrics undergo a dramatic im-
provement. Precision jumps to 65.65, an increase
of over tenfold, reflecting a substantial reduction
in over-corrections. This improvement in preci-
sion, coupled with an enhanced F0.5 score of 56.60,
demonstrates a better balance between precision
and recall.

The out-of-domain results (Table 3) further vali-

date the effectiveness of our approach. Qwen1.5-
14B-Chat again shows a low precision of 6.36 and
an F0.5 score of 7.44, highlighting the model’s
struggle with over-correction. After applying Co-
Task, the precision rises sharply to 62.50, and
the F0.5 score follows suit, increasing to 56.46.
This consistency across both in-domain and out-
of-domain datasets underscores the robustness of
our method, maintaining high precision and strong
F0.5 scores even when the model encounters data
that differs from what it was trained on.

Compared with other methods, our approach
consistently outperforms them, particularly in pre-
cision and F0.5 scores. Through supervised fine-
tuning of the CoTask framework, our CoCGEC
model improves F0.5 scores compared to SOTA
models by 5.3 and 11.2 points on the two test sets,
and precision by 7.43 and 11.55 points, respec-
tively. By significantly enhancing precision, Co-
Task ensures that the model’s corrections are both
accurate and relevant.

4 Analysis

We conduct a series of experiments and analyses on
some details in our proposed CoTask framework to
validate the effectiveness of the proposed CoTask
framework.

4.1 Effect of annotation granularity.

Method FCGEC (val.)
EM P R F

Direct 47.65 35.43 12.57 25.98
Manual 50.25 35.67 18.34 30.00

Char-Level 50.00 36.53 17.25 29.86
Word-Level 50.70 38.47 17.45 31.00

Sentence-Level 50.15 41.76 15.02 30.80
Multi-Level 48.95 36.73 16.10 29.24
Integration 51.15 40.31 17.91 32.24

Table 4: Performance of different annotation methods
on the FCGEC validation set. "Direct" uses only CGEC
instruction data for fine-tuning. "Multi-Level" incorpo-
rates all three levels of annotation data. "Integration"
combines three levels of annotation data based on the
metrics.

To validate the performance of the multi-
granularity annotation algorithm, a subset of
CoCGEC was sampled for both manual and au-
tomated annotation using different algorithms.
Specifically, we randomly sampled 150 samples
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Figure 3: Experimental results on FCGEC and NaCGEC test sets with different sampling proportions.

per error type and 450 error-free samples, result-
ing in a training subset containing 1500 samples.
Three native Chinese-speaking annotators with ad-
vanced education annotated the grammatical error
ranges in original sentences of the subset according
to error type and references, ensuring that the range
was minimal and necessary. The subset was used to
fine-tune the LLM, with separate experiments con-
ducted using manually annotated data and outputs
from the various annotation algorithms.

Table 4 shows the performance of the model
using only CGEC instruction data and various an-
notation algorithms. Regardless of which annota-
tion method is taken, the model consistently per-
forms better in terms of EM, precision, and F0.5
score than the method without any additional an-
notations, indicating that these annotations for er-
ror range determination indeed improve correction
accuracy and reduce over-correction. Among all
approaches, the integration of multi-granularity an-
notations achieves the highest performance, sur-
passing manual annotation by 0.90 points in EM
and 2.24 points in F0.5. This demonstrates that
our multi-granularity annotation approach not only
reduces manual annotation costs but also enhances
annotation quality.

4.2 Effect of task order.
The results in Table 5 highlight the significant ef-
fect of task order on model performance during
the second stage of SFT. The results reveal that
the task order aligned with the CGEC process in
LLMs achieves the highest F0.5 scores across both
datasets, with values of 56.60 and 56.46, respec-
tively. This suggests that beginning with error
range determination, followed by error type classifi-
cation, and concluding with grammatical error cor-
rection aligns optimally with the model’s learning

process, facilitating a more effective progression
of knowledge transfer between tasks.

In comparison, the Chain-of-Thought (CoT) ap-
proach, which combines all tasks within a single
sample, exhibits a significant gap in F0.5 scores
compared to the other methods. This indicates that
relatively small LLMs struggle to directly learn
task decomposition and handle subtasks from data
in CoT format. Randomized task order also un-
derperforms compared to well-structured orders,
further emphasizing the importance of task order
design.

While alternative orders such as T-C-R and T-
R-C deliver competitive results, they do not sur-
pass the performance of R-T-C. The R-T-C order
not only enhances precision but also maintains a
strong balance with recall, demonstrating that a
logical, progressive order of subtasks maximizes
the model’s ability to generalize and correct gram-
matical errors effectively. These findings validate
the efficacy of the carefully designed task order
within the CoTask framework.

4.3 Selection of sampling proportion.
LLMs have strong instruction generalization ca-
pabilities and usually show excellent performance
with relatively little instruction data. Therefore, to
determine the optimal sampling proportion for the
two stages of supervised fine-tuning, we evaluate
various proportions: 5%, 10%, 20%, 25%, 30%,
40%, and 50%. Figure 3 illustrates the experimen-
tal results for these different sampling proportions.

The results reveal that when the sampling pro-
portion is below 10%, increasing the proportion
improves the model’s precision and enhances its
ability to correct more grammatical errors. Al-
though further increasing the sampling proportion
can improve recall, it often does so at the expense
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Method FCGEC (test.) NaCGEC (test.)
P R F P R F

Random 60.79 35.45 53.18 60.61 40.95 55.30
CoT 56.53 32.24 49.12 56.28 35.45 50.36

C-R-T 63.34 34.37 54.21 61.88 40.31 55.90
C-T-R 63.61 34.86 54.60 60.98 40.17 55.25
R-C-T 62.29 36.28 54.48 61.63 41.83 56.30
R-T-C 65.65 36.49 56.60 62.50 40.72 56.46
T-C-R 63.71 35.74 55.09 61.47 41.16 55.95
T-R-C 64.60 35.24 55.37 61.81 40.48 55.92

Table 5: Performance of different task orders during the second stage of SFT on FCGEC and NaCGEC test sets.
"Random" uses instruction data from the three tasks in a shuffled manner, and "CoT" represents the Chain-of-
Thought approach, combining data for all three tasks within a single sample. The remaining methods denote specific
task orders, e.g., “R-T-C” represents in the order of Error Range Determination, Error Type Classification, and
Grammatical Error Correction.

of precision. This phenomenon could be attributed
to the model potentially overfitting as it’s exposed
to more data from a single dataset.

The 10% sampling proportion appears to be opti-
mal, offering a balance between high precision and
acceptable recall, which results in the highest F0.5
scores across both datasets. This indicates that a
moderate amount of data during SFT allows the
model to generalize effectively, striking a balance
between precision and recall. Beyond this point,
the benefits in recall do not sufficiently compensate
for the losses in precision, leading to a decline in
overall performance as measured by the F0.5 score.

4.4 Ablation Study
We perform an ablation study to investigate the
effectiveness of the CoTask framework’s various
components. The results, presented in Table 6,
reveal the following insights:

Effect of Error Type Classification. Compared
to the baseline method, "Direct", introducing in-
struction data for error type classification has sig-
nificantly improved the recall of the model, as evi-
denced by the "Mix-Type" method’s performance.
This improvement is observed across both test sets,
suggesting that more effective error classification
enables the model to address a broader range of
error types.

Effect of Error Range Determination. Includ-
ing instruction data for error range determination
improves precision, though the increase in recall
is less pronounced compared to the "Mix-Type"
method. This indicates that error range determina-
tion helps in refining the model’s precision, while

it does not enhance recall to the same extent.

Effect of Two-stage SFT. Training with shuffled
data, as seen in the "Mix-All (Shuffle)" method,
achieves a high recall but at the expense of preci-
sion, resulting in the precision and F0.5 score even
falling below the baseline. This suggests that shuf-
fling leads to data dispersion, causing the model to
overfit errors present in the training set and under-
mining generalization. In contrast, the "Mix-All"
method, which employs a two-stage SFT, achieves
a balance between precision and recall, resulting in
the highest F0.5 scores. This indicates that the two-
stage approach stabilizes training and maximizes
the benefits of two additional instruction data.

5 Related Work

Instruction-tuning with Chain-of-Thought.
Chain-of-Thought reasoning is an emerging capa-
bility in LLMs, enhancing complex reasoning and
planning capabilities of LLMs with simple prompts
like "step by step" (Wei et al., 2022; Kojima et al.,
2022). Previous work has centered around utilizing
CoT reasoning results for fine-tuning the model
itself (Huang et al., 2023; Zelikman et al., 2024) or
distilling knowledge into smaller models (Shridhar
et al., 2023; Chenglin et al., 2023). However,
since these methods directly use CoT reasoning
results for knowledge distillation, the model’s
performance is limited by the teacher model’s
performance. In addition, these methods also limit
the utilization of CoT to reasoning tasks. While
the concept of Chain-of-Task (CoTask) has been
touched in EcomGPT (Li et al., 2024), it still relies
heavily on human experience to design atomic
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Method Range Type Two-Stage FCGEC (test.) NaCGEC (test.)
P R F P R F

Direct ✗ ✗ ✗ 61.97 34.32 53.37 60.84 39.37 54.86
Mix-Type ✗ ✓ ✓ 63.08 35.19 54.45 61.33 41.20 55.87

Mix-Range ✓ ✗ ✓ 63.04 35.19 54.43 61.58 40.56 55.80
Mix-All (Shuffle) ✓ ✓ ✗ 60.79 35.45 53.18 60.61 40.95 55.30

Mix-All ✓ ✓ ✓ 65.65 36.49 56.60 62.50 40.72 56.46

Table 6: Results of the ablation study on the FCGEC and NaCGEC test sets. Range indicates the inclusion of
instruction data for error range determination in the second stage of SFT. Type indicates the inclusion of instruction
data for error type classification. Two-Stage indicates that SFT is performed in two stages.

tasks, which are inefficient and dependent on large
labeled datasets. Our approach differs in that it
decomposes CoT to design auxiliary tasks, which
improves the model’s performance on relatively
weak tasks more efficiently and reduces training
costs.

Auxiliary task learning for CGEC. Auxiliary
task learning has been shown to improve model per-
formance across various NLP tasks (Bryant et al.,
2023). However, research on auxiliary tasks in
CGEC has been limited, with most research focus-
ing on token-level and sentence-level tasks. At the
token level, Rei and Yannakoudakis (2017) intro-
duced auxiliary objectives, such as the learner’s
first language, part-of-speech (POS) tags, grammat-
ical relations, etc. At the sentence level, Asano
et al. (2019) considered the learner’s proficiency as
an auxiliary task. Additionally, some works (Zhao
et al., 2019; Yuan et al., 2019) have combined both
levels. In contrast, our method does not rely on any
human experience about the target task to design
auxiliary tasks, which enhances its generalizability
to various target tasks.

Curriculum learning on LLMs. Curriculum
learning (Bengio et al., 2009) is a method to im-
prove model performance by gradually increasing
the difficulty of training samples. Although cur-
riculum learning has been extensively studied, its
application to LLMs remains relatively underex-
plored. Feng et al. (2023) proposed CITING, us-
ing a teacher LLM to design the curriculum. Lee
et al. (2023) proposed a curriculum learning strat-
egy based on the educational stages of concepts and
the cognitive hierarchy outlined in Bloom’s taxon-
omy. Previous curriculum learning strategies have
focused on measuring the difficulty of each sam-
ple, our work extends to measuring the difficulty
of a batch of samples as a whole, providing a more
comprehensive and effective training strategy.

6 Conclusion

This paper proposes a Chain-of-Task framework
via multi-task instruction tuning to address the over-
correction in LLMs-based CGEC. Utilizing this
framework, we outperform previous techniques at
lower inference costs. The core idea is to decom-
pose the LLMs’ process of grammatical error anal-
ysis to design auxiliary tasks, and then adjust the
types and combinations of training tasks for super-
vised fine-tuning. This method does not rely on
any human experience or additional manual anno-
tations, making it a promising solution for reducing
over-correction of LLMs.

Limitations

Due to computational and time constraints, our ap-
plication of the CoTask framework is demonstrated
only in the Chinese Grammatical Error Correction
task via a light LLM, Qwen1.5-14B-Chat. We will
extend it to more NLP tasks, more LLMs, and
additional languages in future work. In addition,
potential biases in the dataset or model may af-
fect generalizability, and the automated annotation
algorithm may introduce errors, particularly with
different syntactic structures.

Ethics Statement

Data and models license. The datasets and mod-
els used in this paper are publicly available under
licenses such as Apache-2.0, with strict assurances
that they are used only for academic research. Our
datasets, code, and models are also released under
this license.

Annotation process. During the annotation pro-
cess, these annotators will be distributed with orig-
inal sentences containing grammatical errors, ref-
erences, and types of grammatical errors. All they
need to do is annotate the range of grammatical
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errors. We pay the annotator an average of RMB
20 per 500 data points according to the amount of
data annotated.
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A Appendix

A.1 Output with CoT of LLMs for CGEC
Based on the Chinese language proficiency and
comprehensive ability of LLMs, four products are
chosen to access the process of LLMs addressing
CGEC: GPT-4o, ChatGLM4, Qwen2.5-V3.0.0, and
ERNIE3.5-V3.0.0. The instructions used in the in-
put are "Correct any possible grammatical errors
in the following sentences in a step-by-step man-
ner and output the correct sentences." The outputs
of four products are shown in Figure 4, Figure 5,
Figure 6 and Figure 7.

A.2 Distribution of Grammatical Error Type
in FCGEC

The distribution of different types of grammatical
errors in FCGEC corpus is shown in Table 7, which
contains seven different types of grammatical er-
rors, namely, Incorrect Word Order (IWO), Incor-
rect Word Collocation (IWC), Component Missing
(MS), Component Redundancy (MR), Structure

Type Sentence #Refs
IWO 2851 1.02
IWC 3984 1.49
CM 3860 1.60
CR 1499 1.74
SC 3185 1.46
ILL 3388 1.26
AM 943 1.38

SUM 19710 1.41
NE 16556 1.00

Table 7: Distribution of different types of grammatical
errors in FCGEC corpus. #Refs indicates the average
number of references contained in each sentence on
average. NE indicates data without any grammatical
errors.

Confusion (SC), Illogical (ILL) and Ambiguity
(AM). Moreover, each sentence with a grammati-
cal error in this corpus corresponds to one or even
more references.

A.3 Results and Metrics of Different
Granularity Annotations

We perform manual annotation and automatic an-
notation of the grammatical error range with dif-
ferent granularity algorithms, and the annotation
results are shown in Table 8. Exact Match (EM)
and Minimum Edit Distance (MED) are chosen
to measure the similarity between the annotation
results of multi-granularity algorithms and the man-
ual annotation results. EM is calculated as the ratio
of cases in which the generated string is identical
to the target string. MED quantifies the similarity
between two strings by calculating the number of
insertion, deletion, and modification operations re-
quired to transform the generated string into the
target string. The specific calculation results are
shown in Table 9, and we find that the word-level
algorithm is better than the char-level one in all as-
pects. Compared with the sentence-level algorithm,
the word-level algorithm is better than the sentence-
level algorithm in the case of CR and AM, and all
the other five types of errors have a certain gap
with the sentence-level algorithm. After data inte-
gration, we obtain an exact match ratio of 38.19%
between the final automated annotations and the
manual annotations, with a minimum edit distance
of 6.38 operations on average.
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Algorithm Example

Ori.

这个地区的雨季很特别，90%都集中在七八两个月。
The rainy season in this region is very special, with 90 percent of it all concen-
trated in July and August.
(Error: It is not clear what "it" refers to: "it" can refer to either "the rainy
season" or "this region".)

Ref.
这个地区的雨季很特别，90%的雨季都集中在七八两个月。
The rainy season in this region is very special, with 90 percent of the rainfall
all concentrated in July and August.

Manual
90%都集中在七八两个月
with 90 percent of it all concentrated in July and August

Char-Level
%都
percent of it all

Word-Level
90%都
90 percent of it all

Sentence-Level
90%都集中在七八两个月
with 90 percent of it all concentrated in July and August

Table 8: Example of the results of different algorithmic annotations. Ori. indicates the original sentence while Ref.
indicates the references.

Metric Algorithm IWO IWC CM CR SC ILL AM Total

EM

Char-Level 7.95 11.33 8.67 44.00 22.82 12.67 24.67 18.86
Word-Level 9.93 13.33 8.67 52.67 20.81 14.00 27.33 20.95

Sentence-Level 19.87 31.33 50.67 13.33 48.99 36.67 24.00 32.10
Integraion 19.87 31.33 50.67 52.67 48.99 36.67 27.33 38.19

MED

Char-Level 10.44 11.31 14.69 4.49 11.60 9.97 5.66 9.74
Word-Level 10.39 11.05 13.73 4.29 11.52 9.46 5.03 9.35

Sentence-Level 10.19 7.17 4.93 10.04 5.68 7.30 9.42 7.82
Integraion 10.19 7.17 4.93 4.29 5.68 7.30 5.03 6.38

Table 9: Exact Match Ratio (EM) and Minimum Edit Distance (MED) between different algorithmic annotations
and manual annotations. For EM, larger values indicate that the annotation results are more similar to the manual
annotations. For MED, smaller values indicate greater similarity to the manual annotations.

A.4 Example of Instruction Data
The instructions used for fine-tuning in the experi-
ment of our work consisted of four main types of
instruction data, namely, error range determination,
error type classification, grammatical error correc-
tion, and CoT instruction data combining the three
tasks, and examples of the four types of instruction
data are shown in Figure 8, Figure 9, Figure 10 and
Figure 11. Additionally, we also used instructions
for LLMs inference, in which supervised fine-tuned
models use the same inference instructions as fine-
tuning instructions, whereas the other LLMs such
as GPT-4o use instructions as shown in Figure 12.



8636

User:

分步骤地纠正下面句子中可能存在的语病并输出正确的句子：根据麦可思研究院的报告显示，我国2016届大学毕业生自主创业比
例为2.9%。
Agent:

好的，下面是分步骤地纠正句子中可能存在的语病的过程：

1. 原句：根据麦可思研究院的报告显示，我国2016届大学毕业生自主创业比例为2.9%。
• 问题：句子结构不够流畅，存在赘余部分。

2. 改正步骤：
• 首先，"根据" 和 "显示" 两个动词连用显得不协调。
• 可以将句子结构简化，使其更简洁明了。

3. 改正后的句子：
• 根据麦可思研究院的报告，我国2016届大学毕业生的自主创业比例为2.9%。

最终的正确句子是：
根据麦可思研究院的报告，我国2016届大学毕业生的自主创业比例为2.9%。

User:

Correct any possible grammatical errors in the following sentences in a step-by-step manner and output the correct sentences: According to 

a report by the McKesson Institute shows that the proportion of China's 2016 college graduates who started their own businesses was 2.9 

percent.

Agent:

Okay, here's a step-by-step process for correcting possible grammatical errors in a sentence:

1. Original Sentence : According to a report by the McKesson Institute shows, the proportion of China's 2016 college graduates who started 

their own businesses was 2.9 percent.

• Problem: The sentence structure is not fluent enough and there are redundant parts.

2. Correction steps:

• First, the conjunction of the verbs ‘according to’ and ‘shows that’ seems incongruous.

• The sentence structure can be simplified to make it more concise and clear.

3. Corrected sentence:

• According to a report by the McKesson Institute, the proportion of China's 2016 college graduates who started their own businesses 

was 2.9 percent.

The final corrected sentence is: According to a report by the McKesson Institute, the proportion of China's 2016 college graduates 

who started their own businesses was 2.9 percent.

Figure 4: Output of GPT-4o for Chinese Grammatical Error Correction.

User:

分步骤地纠正下面句子中可能存在的语病并输出正确的句子：根据麦可思研究院的报告显示，我国2016届大学毕业生自主创业比
例为2.9%。
Agent:

原句：根据麦可思研究院的报告显示，我国2016届大学毕业生自主创业比例为2.9%。
纠正步骤：
1. "根据麦可思研究院的报告显示" 中的 "根据" 和 "显示" 语义重复，可以删除其一。
2. "我国2016届大学毕业生" 中的 "我国" 在此语境中可以省略，因为前文没有提到其他国家的比较。
修改后的句子：麦可思研究院的报告显示，2016届大学毕业生自主创业比例为2.9%。

User:

Correct any possible grammatical errors in the following sentences in a step-by-step manner and output the correct sentence: According to a 

report by the McKesson Institute shows that the proportion of China's 2016 college graduates who started their own businesses was 2.9 

percent.

Agent:

Original sentence: According to a report by the McKesson Institute shows that the proportion of China's 2016 college graduates who started 

their own businesses was 2.9 percent.

Correction Steps:

1. ‘According to’ and ‘shows that’ in ‘According to a report by the McKesson Institute shows that’ are semantically repetitive, and one of 

them can be deleted.

2. ‘China’ in ‘China's 2016 college graduates’ can be omitted in this context because there is no mention of comparisons to other countries 

in the previous sentence.

Corrected Sentence: A report by the McKesson Institute shows that the proportion of 2016 college graduates who started their own

businesses was 2.9 percent.

Figure 5: Output of ChatGLM4 for Chinese Grammatical Error Correction.
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User:

分步骤地纠正下面句子中可能存在的语病并输出正确的句子：根据麦可思研究院的报告显示，我国2016届大学毕业生自主创业比
例为2.9%。
Agent:

步骤1：识别语病
原句的语病在于“根据麦可思研究院的报告显示”这个部分，其中“根据”和“显示”两个词造成了句式杂糅，应该进行调整。
步骤2：修正语病

一种修正方式是去掉“根据”或者“显示”，使句子结构清晰。去掉“根据”较为合适，因为报告本身能显示数据，这样句子更
加直接。
步骤3：输出正确句子
修正后的句子为：“麦可思研究院的报告显示，我国2016届大学毕业生自主创业比例为2.9%。”

这样，句子的语病就被纠正了，表达也更为准确流畅。

User:

Correct any possible grammatical errors in the following sentences in a step-by-step manner and output the correct sentence: According to a 

report by the McKesson Institute shows that the proportion of China's 2016 college graduates who started their own businesses was 2.9 

percent.

Agent:

Step 1: Identify the problem

The problem with the original sentence lies in the part ‘According to a report by the McKesson Institute shows that’ where the words 

‘according to’ and ‘shows that’ create a mishmash of sentences that should be adjusted.

Step 2: Correcting the error

One way to fix the problem is to remove the words ‘according to’ or ‘shows that’ to make the sentence clearer. Removing ‘according to’ is 

more appropriate because the report itself shows the data, making the sentence more straightforward.

Step 3: Output the corrected sentence

The corrected sentence reads, ‘A report by the McKesson Institute shows that the proportion of China's 2016 college graduates who started 

their own businesses was 2.9 percent.’

In this way, the sentence is corrected and the expression is more accurate and fluent.

Figure 6: Output of Qwen2.5-V3.0.0 for Chinese Grammatical Error Correction.

User:

分步骤地纠正下面句子中可能存在的语病并输出正确的句子：根据麦可思研究院的报告显示，我国2016届大学毕业生自主创业比
例为2.9%。
Agent:

原句分析：
句子“根据麦可思研究院的报告显示，我国2016届大学毕业生自主创业比例为2.9%。”的主要问题在于“根据...的报告显示”这
一部分的表达冗余。在这里，“根据”和“...的报告显示”两个结构同时出现，造成了句式上的重复和累赘。
修改步骤：
1. 去掉“根据”或“...的报告显示”其中一个，以避免句式冗余。
2. 保留句子中的其他部分，确保信息的完整性和准确性。
修改后的句子：
• 选项一：麦可思研究院的报告显示，我国2016届大学毕业生自主创业比例为2.9%。（去掉了“根据”）
• 选项二：根据麦可思研究院的报告，我国2016届大学毕业生自主创业比例为2.9%。（去掉了“...的报告显示”）

User:

Correct any possible grammatical errors in the following sentences in a step-by-step manner and output the correct sentence: According to a 

report by the McKesson Institute shows that the proportion of China's 2016 college graduates who started their own businesses was 2.9 

percent.

Agent:

Analysis of the original sentence: The main problem of the sentence ‘According to a report by the McKesson Institute shows that the 

proportion of China's 2016 college graduates who started their own businesses was 2.9 percent.’ lies in the redundancy of the expression 

‘according to a report … shows that’. Here, the two structures of ‘according to’ and ‘shows that’ appear simultaneously, causing repetition 

and redundancy in the sentence.

Correction Steps:

Remove either ‘according to’ or ‘shows that’ to avoid redundancy.

Keep the rest of the sentence to ensure completeness and accuracy of the information.

Corrected Sentence:

Option 1: A report by the McKesson Institute shows that the proportion of China's 2016 college graduates who started their own businesses 

was 2.9 percent. (Remove ‘according to’)

Option 2: According to a report by the McKesson Institute, the proportion of China's 2016 college graduates who started their own 

businesses was 2.9 percent. (Removed ‘shows that’)

Figure 7: Output of ERNIE3.5-V3.0.0 for Chinese Grammatical Error Correction.
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Input：
找出下面句子中存在语病的地方：
中小学生近视率普遍比成人高，主要原因是课业负担过重、课外活动时间过少造成的。
Output:

该句存在语病的地方：主要原因是课业负担过重、课外活动时间过少造成的

Input:

Identify the range of grammatical error in the following sentence:

Primary and secondary school students have a higher prevalence of myopia than adults, mainly due 

to excessive academic burden and insufficient extracurricular activity time causing.

Output:

The range of grammatical error present in the sentence: mainly due to excessive academic burden and 

insufficient extracurricular activity time causing

Figure 8: Example of instruction data for error range determination task.

Input：
判断下面句子是否含有某种类型的语病错误：
中小学生近视率普遍比成人高，主要原因是课业负担过重、课外活动时间过少造成的。
Output:

这句话中含有的语病错误类型：结构混乱

Input:

Determine whether the following sentence contain some type of grammatical error:

Primary and secondary school students have a higher prevalence of myopia than adults, mainly due 

to excessive academic burden and insufficient extracurricular activity time causing.

Output:

Type of grammatical error contained in this sentence: Structure Confusion

Figure 9: Example of instruction data for error type classification task.

Input：
纠正下面句子中可能存在的语病并输出正确的句子：
中小学生近视率普遍比成人高，主要原因是课业负担过重、课外活动时间过少造成的。
Output:

正确的句子：中小学生近视率普遍比成人高，主要原因是课业负担过重、课外活动时间过少。

Input:

Correct any possible grammatical error in the following sentence and output the correct sentence:

Primary and secondary school students have a higher prevalence of myopia than adults, mainly due 

to excessive academic burden and insufficient extracurricular activity time causing.

Output:

Corrected Sentence: Primary and secondary school students have a higher prevalence of myopia than 

adults, mainly due to excessive academic burden and insufficient extracurricular activity time.

Figure 10: Example of instruction data for grammatical error correction task.
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Input：
分步骤地检查下面句子中是否存在语病，若存在则纠正并输出正确的句子：
中小学生近视率普遍比成人高，主要原因是课业负担过重、课外活动时间过少造成的。
Output:

该句子存在语病，其中“主要原因是课业负担过重、课外活动时间过少造成的”存在结构混乱
的问题。经过纠正后，正确的句子是：中小学生近视率普遍比成人高，主要原因是课业负担过
重、课外活动时间过少。

Input:

Check the following sentence in a step-by-step manner for the presence of grammatical error, correct 

it if present and output the correct sentence: 

Primary and secondary school students have a higher prevalence of myopia than adults, mainly due 

to excessive academic burden and insufficient extracurricular activity time causing.

Output:

The sentence has a grammatical error, in which the phrase "mainly due to excessive academic burden 

and insufficient extracurricular activity time causing" is structure confusion. After correction, the 

correct sentence is: Primary and secondary school students have a higher prevalence of myopia than 

adults, mainly due to excessive academic burden and insufficient extracurricular activity time.

Figure 11: Example of instruction data for grammatical error correction task with Chain-of-Thought.

User:

你是一个优秀的中文语病纠错模型，你需要识别并纠正输入的句子中可能含有的语病错误并输出
正确的句子，纠正时尽可能减少对原句子的改动，并符合最小变化原则，即保证进行的修改都是
最小且必要的。你应该避免对句子结构或词汇表达进行不必要的修改。要求直接输出没有语法错
误的句子，无需添加任何额外的解释或说明，如果输入的句子中不存在语法错误，则直接输出原
句即可：根据麦可思研究院的报告显示，我国2016届大学毕业生自主创业比例为2.9%。
Agent:

根据麦可思研究院的报告，我国2016届大学毕业生自主创业比例为2.9%。

User:

You are an excellent Chinese Grammatical Error Correction model, you need to identify and correct 

grammatical errors that may be contained in the input sentences and output correct sentences, correcting 

them with as little change to the original sentence as possible and in accordance with the principle of 

least change, which ensures that the modifications made are minimal and necessary. You should avoid 

making unnecessary changes to sentence structure or lexical expressions. Require direct output of 

sentences without grammatical errors without adding any additional explanations or clarifications, and if 

there are no grammatical errors in the input sentence, just output the original sentence directly: 

According to a report by the McKesson Institute shows that the proportion of China's 2016 college 

graduates who started their own businesses was 2.9 percent. 

Agent:

According to a report by the McKesson Institute, the proportion of China's 2016 college graduates who 

started their own businesses was 2.9 percent.

Figure 12: Example of instruction data used for LLMs inference.
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