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Abstract

Automatic radiology report generation is piv-
otal in reducing the workload of radiologists,
while simultaneously improving diagnostic ac-
curacy and operational efficiency. Current
methods face significant challenges, including
the effective alignment of medical visual fea-
tures with textual features and the mitigation of
data bias. In this paper, we propose a method
for radiology report generation that utilizes
a Cross-modal Enhancement and Alignment
Adapter (CmEAA) to connect a vision encoder
with a frozen large language model. Specifi-
cally, we introduce two novel modules within
CmEAA: Cross-modal Feature Enhancement
(CFE) and Neural Mutual Information Aligner
(NMIA). CFE extracts observation-related con-
textual features to enhance the visual features
of lesions and abnormal regions in radiology
images through a cross-modal enhancement
Transformer. NMIA maximizes neural mutual
information between visual and textual repre-
sentations within a low-dimensional alignment
embedding space during training and provides
potential global alignment visual representa-
tions during inference. Additionally, a weights
generator is designed to enable the dynamic
adaptation of cross-modal enhanced features
and vanilla visual features. Experimental re-
sults on two prevailing datasets, namely, IU
X-Ray and MIMIC-CXR, demonstrate that the
proposed model outperforms previous state-of-
the-art methods.

1 Introduction

Radiological imaging, such as chest X-rays, plays
an indispensable role in clinical diagnosis and treat-
ment(Lambin et al., 2017). For radiologists, the
process of interpreting radiology images and draft-
ing reports is both time-intensive and susceptible
to errors(Chen et al., 2020). The objective of au-
tomatic radiology report generation (RRG) is to
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Figure 1: Comparison of two alignment methods.(a)
illustrates that in a unified embedding space, it is chal-
lenging to align relevant features due to the inherent
gap between different modalities. (b) showcases our
alignment method within a low-dimensional embedding
space, achieving more effective modalities alignment in
contrast to (a).

synthesize natural language descriptions from med-
ical images that delineate observed abnormalities
and lesions(Goergen et al., 2013). This task aims
to alleviate the burden on radiologists, particularly
in regions with limited medical resources. Most
existing methods for RRG(Yuan et al., 2019; Xue
et al., 2018) are typically refinements derived from
image captioning(Cornia et al., 2020), leading to
significant advancements. Despite the remarkable
performance, these methods suffer from such data
bias: the normal cases dominate the dataset over the
abnormal cases(Huang et al., 2023). This data bias
causes the model to primarily learn representations
of normal samples during training, resulting in inad-
equate detection of abnormal lesions in the images.
Furthermore, cross-modal mapping between im-
ages and text is crucial for generating high-quality
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reports. Due to the absence of annotated correspon-
dences between images and text, directly aligning
them remains challenging. As shown in Figure 1(a),
some methods involve mapping the visual features
extracted from images and the textual embeddings
derived from ground truth reports into a unified em-
bedding space. Nonetheless, this straightforward
mapping of representations fails to bridge the inher-
ent gap between image features and text features,
leading to suboptimal alignment. As depicted in
Figure 1(b), our proposed method aligns image and
text features within a low-dimensional alignment
embedding space, which differs to previous meth-
ods(Chen et al., 2022), effectively alleviating this
issue.

To tackle these challenges, we introduce a novel
approach for RRG that employs a Cross-modal En-
hancement and Alignment Adapter (CmEAA) to
connect a vision encoder with a frozen large lan-
guage model. Within CmEAA, the Cross-modal
Feature Enhancement (CFE) is designed to en-
hance the visual features with diverse radiologi-
cal semantic information. Specifically, we obtain
observation labels according to the probabilities
of X-ray images on 14 types of radiological ob-
servations. Based on observation labels, high co-
occurrence observation-related n-grams are iden-
tified by calculating the pointwise mutual infor-
mation(Church and Hanks, 1990) between various
observations and n-grams derived from the training
set. The observation contextual embeddings, de-
rived by embedding observation-related n-grams,
are used to enhance the visual features of lesions
and abnormal regions in radiology images via a
cross-modal enhancement Transformer. The en-
hanced visual features are then adapted to vanilla
visual features via a set of dynamic weights. To
facilitate the global alignment of images and text
representations, we develop a Neural Mutual In-
formation Aligner (NMIA) that maximizes mutual
information between images and text representa-
tions within a low-dimensional alignment embed-
ding space during training and provides potential
global alignment visual representations through
two simple linear layers during inference. Our con-
tributions can be summarized as follows:

• To facilitate the enhancement of visual features
and global cross-modal alignments, we propose
a novel Cross-modal Enhancement and Align-
ment Adapter with two modules: Cross-modal
Feature Enhancement (CFE) and Neural Mutual

Information Aligner (NMIA).

• CFE performs cross-modal feature enhancement
to visual features, enabling the model to learn
hidden radiological visual representations that
capture comprehensive semantic information per-
taining to lesions and abnormal regions. NMIA
accomplishes global alignment of visual and text
representations through the maximization of neu-
ral mutual information.

• We evaluate our method on two public radiol-
ogy report generation datasets, IU-Xray(Demner-
Fushman et al., 2016) and MIMIC-CXR(Johnson
et al., 2019). The experimental results demon-
strate the effectiveness of our method and we also
conduct a detailed case analysis to illustrate the
benefits of CFE and NMIA.

2 Methods

2.1 Overview
As shown in Figure 2, our proposed CmEAA is
built upon two RepAdapters(Luo et al., 2023) and
contains two novel modules: Cross-modal Fea-
ture Enhancement (CFE) and Neural Mutual In-
formation Aligner(NMIA). During training, CFE
leverages the observation-related contextual embed-
dings and cross-modal enhancement Transformer
to conduct cross-modal feature enhancement on
visual features, as detailed in section 2.2. NMIA
maps image and text representations to the same
low-dimensional alignment embedding space and
then aligns the cross-modal representations by max-
imizing the neural mutual information between
both with the multimodal representations, which
will be introduced in section 2.3.

Given a chest X-ray image X , we use Swin
Transformer(Liu et al., 2021) as the visual fea-
tures extractor to extract the vanilla visual features
Xi = {x1, x2, . . . , xi}. The entropy of features
across different modalities varies, indicating di-
verse levels of information content. In light of this,
we introduce a set of dynamic weights to achieve
adaptation between the cross-modal enhanced fea-
tures and the vanilla visual features. For the visual
features Xi, we first apply average pooling to ob-
tain the pooled feature Xp, which is used to gener-
ate dynamic weights. The weights generator in the
Weight&Fusion module consists of a linear layer
and a Softmax function, which can be formulated
as:

Xp = Pooling (Xi) (1)
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Figure 2: An overview of our proposed method. The visual encoder and frozen large language model are connected
by CmEAA, which includes two main modules: Cross-modal Feature Enhancement (CFE) and Neural Mutual
Information Aligner (NMIA).

ŵ = Softmax

(
Linear (Xp)

τ

)
(2)

where τ is the temperature of the Softmax. Thus,
the CmEAA can be defined by:

X̃∗ = CmEAA (Xi) (3)

CmEAA (Xi) = ŵ0 · CFE (fd (Xi)) + ŵ1 · fu (Xi)

+NMIA (fu (Xi))
(4)

Here, fd and fu are RepAdapters(Luo et al.,
2023). ŵ0 and ŵ1 are weights derived from Eqn.2.
The downsampling projection of two adapters are
shared. Following the application of CmEAA to
Xi, the visual representations X̃∗ are derived. Sub-
sequently, X̃∗ are concatenated with the text in-
structionXP and fed into the frozen Llama2 model
for decoding and generating the final report Xr.
The basic training objective of our method for lan-
guage modeling is defined as:

LCE = −
L∑
i=1

log pψ
(
xi|X̃∗, XP , Xr,<i

)
(5)

where ψ is the learnable parameters. Xr,<i is the
report tokens before the current prediction token
Xi.

2.2 Cross-modal Feature Enhancement

Relying exclusively on image features to gener-
ate corresponding text presents challenges in main-
taining consistency between images and detailed
text reports. Nonetheless, excessively complex ex-
ternal knowledge may interfere with the model’s
attention distribution, resulting in alterations to
the learned representations. Accordingly, we uti-
lize precise and well-curated observation-related
semantic information from the training set to facili-
tate cross-modal enhancement. In CheXpert(Irvin
et al., 2019), 14 observations are defined for X-ray
images, encapsulating the key visual information
present in the images. Each observation label is
classified as Present, Absent, or Uncertain. Ob-
servations encapsulate a high-level synthesis of the
radiological image, whereas the finalized generated
report must encompass more granular diagnostic in-
sights. Consequently, it is important to strengthen
the connection between lesions, abnormal regions,
and their pertinent contextual information, while
ensuring precise lesion prediction. Therefore, lever-
aging these fine-grained observation-related con-
textual information for cross-modal enhancement
of visual features could mitigate the impact of the
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Algorithm 1 LNMI Minimization with MINE
θ, ϕ← initialize network parameters
for each training iteration do

Draw b minibatch samples from the joint dis-
tribution:
(C

(1)
x , Z

(1)
xy ), ..., (C

(b)
x , Z

(b)
xy ) ∼ PCxZxy

(R
(1)
y , Z

(1)
xy ), ..., (R

(b)
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(b)
xy ) ∼ PRyZxy

Draw n samples from the Zxy marginal distri-
bution:
(Z̄

(1)
xy , ..., Z̄

(b)
xy ) ∼ PZxy

Evaluate the lower-bound:
Ic(Cx;Zxy) = 1

b

∑b
i=1 Tθ(C

(i)
x , Z

(i)
xy ) −

log(1b
∑b

i=1 e
Tθ(C

(i)
x , ¯Zxy

(i)
))

Ir(Ry;Zxy) = 1
b

∑b
i=1 Tθ(R

(i)
y , Z

(i)
xy ) −

log(1b
∑b

i=1 e
Tθ(R

(i)
y , ¯Zxy

(i)
))

Update θ, ϕ by minimizing:
LNMI(θ, ϕ) = −(Ic + Ir)

end for

aforementioned challenges.
As shown in Figure 2(d), to extract the obser-

vation labels of a given image, we adapt the cft-
chexpert1 to obtain the observation probabilities
within 14 categories C = {C1, C2, . . . , C14} as
indicated in (Irvin et al., 2019). We then use the
observation probabilities and the corresponding re-
port of the image to prompt GPT-4 to obtain the
observation labels, with specific details provided in
Appendix A.1. Following (Hou et al., 2023b), we
obtain observation-related n-grams as contextual
information relevant to visual features. Given a
predefined observation set O = {o1, o2, . . . , on}
and n-gram units S = {s1, s2, . . . , st} based on
the training reports, Organ(Hou et al., 2023b) ex-
tracts the observation-related n-gram units with
PMI (oi, sj):

PMI (oi, sj) = log
p (oi, sj)

p (oi) p (sj)
(6)

where oi is the i-th observation, sj is the j-th n-
gram, and p (oi, sj) is the frequency that an n-
gram sj appears in a report with observation oi
in the training set. A higher PMI score implies
two units with higher co-occurrence. Then, a set of
observation-related n-grams So

k = {so1, so2, . . . , sok}
is derived and the observation-related contextual
embeddings Eo

s are obtained by embedding So
k

through Llama2. As shown in Figure 2(b), cross-
modal enhancement Transformer in CFE consists

1https://github.com/maxium0526/cft-chexpert

of two Transformer(Vaswani, 2017) submodules:
(1) A text Transformer performs self-attention
for observation-related contextual embeddings Eo

s

and interacts with visual features through cross-
attention. (2) A visual Transformer that performs
self-attention on visual features Xd

v and transmits
them as queries to the text Transformer. The con-
catenated outputs of the text Transformer E∗ and
visual features Xd

v are processed through a FFN
layer to yield the enhanced features. The process
is formally defined as follows:

X ′
v = CFE

(
Eo
s , X

d
v

)
(7)

CFE
(
Eo
s , X

d
v

)
= FFN(E∗ ⊕ Xd

v ) (8)

E∗ = CA (Xv
sa, E

s
sa, E

s
sa) (9)

Es
sa = SA (Eo

s ) , Xv
sa = SA

(
Xd
v

)
(10)

where X ′
v are the cross-modal enhanced features.

CA and SA represent cross-attention and self-
attention, respectively. Xd

v are visual features pro-
cessed by fd.

2.3 Neural Mutual Information Aligner

The cross-modal alignment strategies employed
in RRG task can be divided into two cate-
gories: (1) aligning visual features with abnor-
mality(pathologic) labels, and (2) executing global
alignment between visual and textual representa-
tions. Nevertheless, the first approach is limited
by the paucity of annotated data and the precision
of lesion classification. Furthermore, labels repre-
sent a high-dimensional abstraction of visual data
and provide relatively sparse information. Con-
sequently, we introduce NMIA to globally align
visual and textual representations under a neural
mutual information loss. Mutual information quan-
tifies the dependence of two random variables X
and Y . In contrast to correlation, mutual informa-
tion captures non-linear statistical dependencies
between variables(Belghazi et al., 2018), and thus
can act as a measure of true dependence. How-
ever, only in a few special cases can one calculate
the exact value of mutual information(Cheng et al.,
2020), since the calculation requires closed forms
of density functions and a tractable log-density ra-
tio between the joint and marginal distributions.
Therefore, we employ the Mutual Information Neu-
ral Estimator(Belghazi et al., 2018) to approximate
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Dataset Model
NLG Metrics CE Metrics

BL-1 BL-2 BL-3 BL-4 RG-L P R F1

IU
X-Ray

R2Gen 0.470 0.304 0.219 0.165 0.371 - - -
R2GenCMN 0.475 0.309 0.222 0.170 0.375 - - -
M2KT 0.497 0.319 0.230 0.174 0.399 - - -
METransformer 0.483 0.322 0.228 0.172 0.380 - - -
MAN 0.501 0.328 0.230 0.170 0.386 - - -
XrayGPT(7B) 0.177 0.104 0.047 0.007 0.203 - - -
Ours 0.481 0.319 0.234 0.181 0.392 - - -

MIMIC
-CXR

R2Gen 0.353 0.218 0.145 0.103 0.277 0.333 0.273 0.276
R2GenCMN 0.353 0.218 0.148 0.106 0.278 0.334 0.275 0.278
M2KT 0.386 0.237 0.157 0.111 0.274 0.420 0.339 0.352
METransformer 0.386 0.250 0.169 0.124 0.291 0.364 0.309 0.311
MAN 0.396 0.244 0.162 0.115 0.274 0.411 0.398 0.389
XrayGPT(7B) 0.128 0.045 0.014 0.004 0.079 - - -
Med-PaLM(562B) 0.317 - - 0.115 0.275 - - -
Ours 0.407 0.255 0.174 0.126 0.281 0.505 0.330 0.399

Table 1: Performance comparisons of the proposed method with existing methods on the test sets of MIMIC-CXR
and IU-Xray with respect to NLG and CE metrics. The best results are highlighted in bold, while the second-best
results are underlined.

the lower bound of mutual information between im-
ages and text representations. MINE uses a lower-
bound to the MI based on the Donsker-Varadhan
representation(Donsker and Varadhan, 1983) of the
KL-divergence, which is formulated as:

DKL(P∥Q) = sup
T :Ω→R

EP[T ]− log(EQ[e
T ]) (11)

Then, MINE is defined as:

̂I(X;Z)n = sup
θ∈Θ

E
P(n)
XZ

[Tθ]− log(E
P(n)
X

⊗P̂(n)
Z

[eTθ ]) (12)

where Tθ is a discriminator function modeled by
a neural network with parameters θ. In practice,
images and text representations are regarded as ran-
dom variables, denoted as Cx and Ry, respectively.
As shown in Figure 2(c), we apply average pool-
ing to the visual features. The Llama2 tokenizer is
employed to process the ground truth report text.
Both types of features are mapped to an alignment
embedding space Rb×1×k using linear layers. The
inherent disparity between visual and textual fea-
tures may lead to training instability when directly
maximizing the neural mutual information between
images and text representations, potentially hinder-
ing the model’s convergence. Consequently, we
obtain the fused features Zxy by summing the two
types of features and then separately maximize the
neural mutual information between the images fea-
tures and the fused features, as well as between the

text features and the fused features during training.
Details on the implementation of NMIA are pro-
vided in Algorithm 1. Following the computation
of neural mutual information, an additional linear
layer is utilized to project the visual features into
the same embedding space with X ′

v as the glob-
ally aligned visual representations. During training,
NMIA calculates the neural mutual information
loss in a low-dimensional alignment space, max-
imizing the mutual information by updating the
parameters of the linear layers. During the infer-
ence phase, the same trained linear layers are used
to obtain the image representations aligned with
the text representations. The process is formally
defined as follows:

X∗
G = NMIA(Xu

v ) (13)

NMIA(Xu
v ) = Concat(X∗

g(1), X
∗
g(2), ..., X

∗
g(n)) (14)

X∗
g = W2 · (W1 ·Xu

v + b1) + b2 (15)

where X∗
g(i), i ∈ [1, n] is a replica of X∗

g . W1 and
W2 are the weights of the dimensionality reduction
and dimensionality expansion linear layers, respec-
tively. As stated in Eqn.14 and Eqn.4, across both
phases, the globally aligned features are replicated
n2 times and subsequently incorporated into the

2n is the number of visual tokens
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output of the CFE, thereby offering global align-
ment features for each visual token. The overall
loss function of our approach is formulated as:

L = LCE + λLNMI (16)

where λ is the scale factor.

3 Experiment

This section provides an overview of the experimen-
tal datasets and the evaluation metrics employed.
The implementation details can be found in Ap-
pendix A.3.

3.1 Configurations
Datasets We evaluate our model on two widely-
used benchmarks for RRG: IU X-Ray(Demner-
Fushman et al., 2016) and MIMIC-CXR(Johnson
et al., 2019). IU X-Ray from Indiana Univer-
sity is a relatively small but publicly available
dataset containing 7,470 chest X-ray images and
3,955 radiology reports. We split the dataset into
train/validation/test sets with a ratio of 7:1:2, which
is the same data split as in (Chen et al., 2020).
MIMIC-CXR provided by the Beth Israel Dea-
coness Medical Center. The dataset consists of
377,110 chest X-ray images and 227,835 reports.
We adopt the standard train/validation/test splits.
The statistics of the datasets can be found in Ap-
pendix A.2.
Metrics Following previous research(Chen et al.,
2020), we employ the widely-used natural lan-
guage generation (NLG) metrics and clinical ef-
ficacy (CE) metrics. The NLG metrics include
BLEU(Papineni et al., 2002) and ROUGE-L(Lin,
2004). And for the clinical efficacy, we apply
CheXpert(Irvin et al., 2019) for MIMIC-CXR
dataset to label the generated reports with 14 cate-
gories. According to these annotations, the Preci-
sion, Recall and F1 scores can be calculated over
the generated reports and the ground truth reports
as the Clinical Efficacy (CE) metrics. Higher is
better for all metrics.

3.2 Comparison with State-of-the-Arts
To demonstrate the effectiveness, we compare the
performances of our model with a wide range of
state-of-the-art models on the MIMIC-CXR and
IU X-Ray. The models we compare to include
R2Gen(Chen et al., 2020), R2GenCMN(Chen et al.,
2022), M2KT(Yang et al., 2023), MAN(Shen et al.,
2024), XrayGPT(Thawakar et al., 2024), et al. Ta-
ble 1 shows the comparison results on NLG and

Model CFE NMIA
IU X-Ray

BL-1 BL-4 RG-L
(a) - - 0.467 0.168 0.376
(b) ! 0.468 0.172 0.380
(c) ! 0.479 0.170 0.393
(d) ! ! 0.481 0.181 0.392

Table 2: Ablation results of our model and its variants,
where the model (a) replaces CmEAA with a linear
layer.

k BL-1 BL-4 RG-L ∆

32 0.464 0.175 0.378 +0.1%
64 0.458 0.176 0.385 +0.5%
128 0.465 0.180 0.379 +1.3%
256 0.481 0.181 0.392 +3.7%
512 0.465 0.172 0.374 -0.7%

Table 3: Models with different dimensions of the low-
dimensional embedding space. The ∆ in the table refers
to the average variation relative to model (b).

CE metrics. Our method outperforms most of the
baselines and achieves state-of-the-art performance.
Specifically, on the IU X-Ray dataset, our method
achieves the best results on BLEU-3 and BLEU-4.
On the MIMIC-CXR dataset, our method achieves
the best results on all BLEU metrics and the second-
best result on Rouge-L. This indicates that by in-
troducing the CmEAA, our model can generate
more coherent reports than baselines. Nonetheless,
on IU X-Ray dataset, we notice that our model
still exhibits a performance disparity when com-
pared to the best baseline (i.e., MAN(Shen et al.,
2024)) on BLEU-1 and BLEU-2. This discrepancy
could stem from two factors: (1) Given that the
reports in IU X-Ray are relatively brief, n-grams
of lengths 1 and 2 become predominant among
the extracted n-grams.3 (2) The classifier was not
specifically trained on IU X-Ray, resulting in the
prediction of incorrect observation labels, which
further led to the extraction of erroneous n-grams.
Nevertheless, the introduction of globally aligned
visual representations ensures that the model main-
tains robust performance on BLEU-3 and BLEU-4
metrics, demonstrating the benefits of cross-modal
global alignment within the NMIA. Experiment
results on MIMIC-CXR also validate this find-
ing. For the Clinical Efficacy (CE) metrics, our
model achieves the best results on Precision and

3The statistics of observation-related n-grams with differ-
ent lengths can be found in Appendix A.2
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Radiology Image Groud Truth    Report

...
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Portable semi-erect chest radiograph demonstrates low lung volumes with bibasilar 

atelectasis . There is no pneumothorax or pleural effusion . The cardiomediastinal 
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terminates in the right atrium . Left internal jugular catheter terminates in the right 

atrium .

Atelectasis_True

Pleural Effusion_False

Support Devices_True

Fracture_False
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Ap portable upright view of the chest . Left chest wall pacer device is noted with 

leads terminating in the right atrium and right ventricle . There is mild pulmonary 

vascular congestion without overt pulmonary edema . No large pleural effusion or 

pneumothorax is seen . Cardiomediastinal silhouette is unchanged . Bony structures 

are intact .

A single portable ap semi-

upright view of the chest was 

obtained. Right ij central 
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the right atrium . An icd 

pacing device with 

biventricular leads appears 

unchanged in position . Lung 

volumes remain low with 

right basilar atelectasis . 

Cardiomediastinal silhouette 

is stable . There is no focal 

consolidation or pleural 

effusion . no pneumothorax .

Figure 3: An illustration of the report generated by Baseline and the proposed method. The Baseline corresponds to
model (a) introduced in Section 3.3. Below the image are observation labels. The contents of the generated report
that correspond to the ground truth report and observation labels are highlighted in the same color(blue and green).
The areas marked in red correspond to the model’s incorrect predictions.

F1. Specifically, our model achieves 0.505 pre-
cision and 0.399 F1, with up to 20.2% and 2.5%
compared to the best baseline. In addition, 0.330
recall is achieved by CmEAA, which is competi-
tive result. The CE results indicate that our model
can successfully maintain the clinical consistency
between the images and the reports.

3.3 Ablation Study
To verify the effectiveness of CmEAA, we do abla-
tion study on IU X-Ray dataset, which is shown in
Table 2. The visual encoder and large language
model are preserved unchanged, with a simple
linear layer employed to replace CmEAA as the
model (a). There are two variants: (b) represents
the model containing only the CFE module within
CmEAA, and (c) depicts the model incorporating
solely the NMIA module within CmEAA. Specifi-
cally, in comparison to (a), (d) achieves an average
improvement of 4.9% across the BLEU-1, BLEU-
4, and ROUGE-L metrics, demonstrating the ef-
fectiveness of CmEAA in improving the model’s
long-text generation capabilities. In comparison
to the full model (d), the performance of (b) and
(c) significantly deteriorates. This indicates that
CFE and NMIA play a vital role in generating
reports. Notably, (c) improves on BLEU-1 and
Rouge-L by 2.5% and 4.5% compared to (a), while
(b) shows limited improvement on BLEU-1 met-
ric. This result is also consistent with previous
finding that the efficacy of CFE is constrained by
the performance of the classifier, whereas NMIA
demonstrates greater stability.

Furthermore, we conduct experiments in differ-

ent dimensions (k) of the low-dimensional align-
ment embedding space from 32 to 512 on IU X-Ray
to study its impact on the results. As shown in Table
3, the model attains optimal performance when k is
set to 256. When k is too small (e.g., 32 or 64), the
model exhibits only modest improvements. This
limitation is likely attributable to the reduced di-
mensionality of the embedding space, which inade-
quately accommodates cross-modal alignment in-
formation. Consequently, this information may be
compressed or lost, resulting in suboptimal align-
ment of the relevant features. On the other hand, rel-
atively large k can have adverse effects(e.g., 512),
potentially due to overfitting. This does not imply
that the value of k has a decisive impact on the
model’s performance. However, choosing an ap-
propriate value for k is advantageous for attaining
improved results.

3.4 Qualitative Analysis
To further understand the effectiveness of our
model, qualitative examples are given in Figure 3.
Intuitively, the report generated by our model are
both accurate and robust, which shows significant
alignment with ground truth reports. As the Figure
3 shows, the report generated by our model closely
align with the corresponding observation labels and
accurately identify the abnormal finding "low lung
volumes", the support device "venous catheter", as
well as the normal finding "cardiomediastinal sil-
houette is within normal limits". In contrast, the
baseline failed to detect the abnormal finding "low
lung volumes", and it incorrectly identifies the sup-
port device "venous catheter" as "pacer device". It
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is pertinent to highlight that "low lung volumes"
may indicate the presence of a pathologic condition
in the lungs, such as "Atelectasis". The term "low
lung volumes" was not defined as an observation in
CheXpert(Irvin et al., 2019). Considering that the
X-ray image illustrated in Figure 3 was labeled with
the Observation "Atelectasis true", the n-grams re-
lated to this label encompass pertinent descriptions
related to "low lung volumes". When observation
contextual embeddings were used to enhance the
visual features in CFE, semantic information re-
lated to "low lung volumes" achieved an effective
adaptation to visual features. Consequently, our
model correctly generated this finding, while the
baseline failed to report it in its result. This further
illustrates the effectiveness of CmEAA in bridging
the gap between visual and textual features.

4 Related work

4.1 Radiology Report Generation

RRG is an application of image captioning methods
in the medical field. Compared to image caption-
ing, RRG not only puts forward higher require-
ments on the length of generated reports but also
presents greater challenges on the accuracy of long
contextual descriptions(Huang et al., 2023). With
the good performance of Transformer(Vaswani,
2017) in various vision and language tasks, a
plethora of Transformer-based methods have been
explored to enhance image description perfor-
mance. R2Gen(Chen et al., 2020) records informa-
tion about previous generation processes through
relational memory (RM) , where similar patterns in
different radiology reports can be implicitly mod-
eled and remembered during the generation pro-
cess to facilitate report generation. RECAP(Hou
et al., 2023a) can capture both spatial and tempo-
ral information for generating precise and accurate
free-text reports. Additionally, several studies em-
phasize improving cross-modal alignments in RRG.
R2GenCMN(Chen et al., 2022) utilizes a memory
matrix as an intermediary between the visual and
textual modalities to strengthen global cross-modal
alignments. M2KT(Yang et al., 2023) introduces
a multimodal alignment module that aligns the
pooled visual features with the pooled textual repre-
sentations derived from a BERT model, alongside
the predicted pathologic condition labels. Addi-
tionally, some works(Zhang et al., 2020; Huang
et al., 2023) began to explore enhancing report gen-
eration with additional knowledge. (Zhang et al.,

2020) utilized a pre-constructed graph embedding
module (modeled with a graph convolutional neural
network) on multiple disease findings to assist the
generation of reports. Kiut(Huang et al., 2023) in-
jects clinical knowledge by constructing a symptom
graph, combining it with the visual and contextual
information, and distilling them when generating
the final words in the decoding stage.

4.2 Vision-Language Models

The convergence of computer vision and natu-
ral language processing has facilitated the emer-
gence of vision-language models, which integrate
visual and linguistic models to attain cross-modal
comprehension and inferential abilities(Li et al.,
2024b). Recent years have witnessed the remark-
able progress of large language models(Touvron
et al., 2023; Chiang et al., 2023). By scaling up
data size and model size, these LLMs raise amazing
emergent abilities(Yin et al., 2023). This makes it
possible to unify various vision and language tasks
into a single framework. A prevalent paradigm for
vision-language models involves adapting a vision
encoder to a pretrained LLM with varying levels
of integration, as done by LLaVA(Liu et al., 2024)
and BLIP-2(Li et al., 2023). Vision-language mod-
els pre-trained on extensive visual-textual data ex-
hibit exceptional performance across various down-
stream vision-language tasks. Additionally, there
have been multiple efforts to adapt vision-language
models for applications within the field of medical
healthcare or specifically for radiology applications.
For example, Med-Flamingo(Moor et al., 2023) is
the first multimodal few-shot learner adapted to
the medical domain, which promises novel clini-
cal applications such as rationale generation. (Tu
et al., 2024) introduced Med-PaLM M, a single
multitask, multimodal biomedical AI system that
can perform medical image classification and ra-
diology report generation with the same set of
model weights. LLaVA-Med(Li et al., 2024a) is
a novel curriculum learning method for adapting
LLaVA(Liu et al., 2024) to the biomedical domain
using their self-generated biomedical multi-modal
instruction-following dataset.

5 Conclusion

In this paper, we propose a method for RRG that uti-
lizes a Cross-modal Enhancement and Alignment
Adapter (CmEAA) to connect a vision encoder
with a frozen large language model. In contrast
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to methods that utilize a simple linear layer as the
modality mapper, CmEAA harnesses contextual in-
formation from diverse observations in the training
data to facilitate cross-modal feature enhancement
of visual features and employs a Neural Mutual In-
formation Aligner to effectively align global medi-
cal visual representations with textual representa-
tions. Experimental results on the MIMIC-CXR
and IU X-Ray datasets demonstrate that our ap-
proach achieves a state-of-the-art performance and
generates radiology reports that are both coherent
and precise. Example of reports generated by our
model indicates that CmEAA effectively bridge the
gap between visual features and textual features.
Ablation studies further validate the effectiveness
of the proposed CmEAA.
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After inputting the chest X-ray image into a classifier, I obtained the 

probabilities of various observations related-to the image. Based on 

the ground truth radiology report provided and the classifier's output 

probabilities for 14 observations, determine the observations labels 

corresponding to the radiological image. Each observation can be in 

one of two states: present or absent. The observations mentioned in 

the report need to be judged in context as well as probabilities to 

determine their presence or absence.  Observations not mentioned in 

report should be considered absent.

Ground Truth Report: ...

Classifier Predicted Probabilities: ...

Prompt

Ground truth/Retrived report

     The lungs are clear.  The 

cardiomediastinal silhouette 

is within normal limits.  Left 

surgical neck humerus 

fracture is better seen on 

dedicated shoulder films. 

There is chronic deformity of 

the proximal right 

humerus ...

Figure 4: An example prompt we used to query the label
of observation from GPT-4. The prompt includes the
observation probabilities output by the classifier as well
as the ground truth/retrieved report.

A Appendix

A.1 Observation Labels Extraction

There are 14 categories of observations: No Find-
ing, Enlarged Cardiomediastinum, Cardiomegaly,
Lung Lesion, Lung Opacity, Edema, Consolida-
tion, Pneumonia, Atelectasis, Pneumothorax, Pleu-
ral Effusion, Pleural Other, Fracture, and Support
Devices. Each observation label is classified as
Present, Absent, or Uncertain. To simplify the pre-
diction of observation labels, we regard Present
and Uncertain as Positive and Absent as Negative.
We employ cft-chexpert as the classifier to predict
the probability of 14 observations corresponding
to X-ray images. After obtaining the classifica-
tion results, the probability of each observation, the
prompt illustrated in Figure 4, and the ground truth
report are input to GPT-4 to generate the observa-
tion labels for each image. For images within the
validation and test sets, we use CLIP(Endo et al.,
2021) pre-trained on MIMIC-CXR training set to
retrieve similar reports from the training set as re-
placements for the ground truth reports.

A.2 Statistics of the Datasets

The statistics of two datasets are shown in Table 4,
with the numbers of images, reports, and the aver-
age length of reports. The statistics of observation-
related n-grams with different lengths extracted
from two datasets are shown in Table 5. In IU X-

Dataset
IU X-Ray MIMIC-CXR

Train Val Test Train Val Test
Image # 5226 748 1496 368960 2991 5159
Report # 2770 395 790 222758 1808 3269
Avg.Len. 37.56 36.78 33.62 53.00 53.05 66.40

Table 4: The statistics of the two datasets, including the
numbers of images, reports, and the average word-based
length (Avg.Len.) of reports.

n-gram
Dataset

IU X-Ray MIMIC-CXR
1-gram 1183 720
2-gram 238 838
3-gram 64 493
4-gram - 287

Table 5: The statistics of observation-related n-grams
with different lengths extracted from two datasets.

Ray dataset, 1-grams and 2-grams are predominant,
significantly surpassing the number of 3-grams.

A.3 Implementation Details
We leverage Llama2-7B4 as the frozen large lan-
guage model and the base version of Swin Trans-
former5 as the Visual Encoder. Based on previous
research(Wang et al., 2023), for an input chest X-
ray image X and its corresponding report R, the
detailed prompt inputted into Llama2 is as follows:

Human :< Img > X < /Img >,XP .
Assistant : R < /s > .

Here XP is the instruction prompt specific to the
RRG task. In this paper, XP="Generate a com-
prehensive and detailed radiology report for this
chest X-ray image." For this prompt, before in-
putting it into Llama2 for computation, X will be
replaced by visual representations X̃∗ processed
by Eqn.3. Other text is tokenized into word tokens
using Llama’s tokenizer. The training process was
conducted on one NVIDIA L20 48GB GPU using
mixed precision for 3 epochs for MIMIC-CXR and
10 epochs for IU-Xray. For MIMIC-CXR dataset,
we employed a mini-batch size of 6, with a learning
rate of 1e-5. For IU-Xray, we employed a mini-
batch size of 8, with a learning rate of 1e-4.

4https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
5https://huggingface.co/microsoft/swin-base-patch4-

window7-224
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