
Proceedings of the 31st International Conference on Computational Linguistics, pages 855–869
January 19–24, 2025. ©2025 Association for Computational Linguistics

855

TaCIE: Enhancing Instruction Comprehension in Large Language Models
through Task-Centred Instruction Evolution

Jiuding Yang 1 Shengyao Lu 1 Weidong Guo† 2 Xiangyang Li 2

Kaitong Yang 2 Yu Xu 2 Di Niu 1

1University of Alberta
2Platform and Content Group, Tencent

1{jiuding,shengyao,dniu}@ualberta.ca
2{weidongguo,xiangyangli,kaitongyang,henrysxu}@tencent.com

Abstract
Large Language Models (LLMs) require pre-
cise alignment with complex instructions to
optimize their performance in real-world appli-
cations. As the demand for refined instruction
tuning data increases, traditional methods that
evolve simple seed instructions often struggle
to effectively enhance complexity or manage
difficulty scaling across various domains. Our
innovative approach, Task-Centered Instruction
Evolution (TaCIE), addresses these shortcom-
ings by redefining instruction evolution from
merely evolving seed instructions to a more
dynamic and comprehensive combination of
elements. TaCIE starts by deconstructing com-
plex instructions into their fundamental com-
ponents. It then generates and integrates new
elements with the original ones, reassembling
them into more sophisticated instructions that
progressively increase in difficulty, diversity,
and complexity. Applied across multiple do-
mains, LLMs fine-tuned with these evolved
instructions have substantially outperformed
those tuned with conventional methods, mark-
ing a significant advancement in instruction-
based model fine-tuning.

1 Introduction

The rapid development of Large Language Mod-
els (LLMs) and their expanding real-world applica-
tions require closer alignment with complex human
instructions to enhance performance across various
tasks. This alignment demands high-quality in-
struction tuning data. However, manually crafting
such instructions is impractical due to the time-
intensive nature of the process and the tendency for
these human-written instructions to remain simplis-
tic (Xu et al., 2024), offering minimal benefits for
tuning effectiveness(Kung et al., 2023).

To mitigate the high costs and challenges of
manual instruction creation, researchers have devel-
oped automated synthesis methods using powerful

† Corresponding author.

LLMs to generate more sophisticated instructions
from simpler ones. Notable among these are SELF-
INSTRUCT by Wang et al. (2023a), which expands
the range of instructions from a set of seed inputs,
and EVOL-INSTRUCT by Xu et al. (2024), which
refines instructions by enhancing either diversity or
difficulty. Guo et al. (2024) also introduced Instruc-
tion Fusion, combining two distinct instructions to
increase task complexity.

Despite their success in enhancing instruction
quality and LLM performance, existing meth-
ods like EVOL-INSTRUCT and Instruction Fu-
sion exhibit significant limitations. Firstly, EVOL-
INSTRUCT struggles with managing difficulty in-
crements effectively; prompts such as “add one
more constraint” often lead to vague enhancements
that do not genuinely increase the task’s difficulty.
For example, a depth evolving experiment with
GPT-4o* showed that only one out of three attempts
successfully intensified the instruction’s complex-
ity (Figure 1). Other attempts either replicated
existing requirements or merely substituted terms
for more complex equivalents, illustrating the chal-
lenges of uncontrolled difficulty scaling. Further-
more, Luo et al. (2024)’s application in code gener-
ation tasks excessively escalated difficulty, adding
seven constraints in just four rounds.

Secondly, these methods fail to adequately
address cross-domain tasks. Although EVOL-
INSTRUCT was implemented in both math and
code generation tasks, it focused primarily on in-
creasing difficulty within the specific domain of
the initial instruction, leading to a lack of diversity
in task complexity. To mitigate this, (Guo et al.,
2024) developed Instruction Fusion to combine el-
ements from two seed instructions. However, this
approach, limited to a single round of fusion in
code generation, falls short of fully exploiting the
potential for enhanced complexity.

*https://platform.openai.com/docs/models

856

To address these deficiencies, we introduce Task-
Centered Instruction Evolution (TaCIE), which
employs advanced LLMs such as GPT-4o to dis-
sect and reassemble instructional elements, target-
ing enhancements in both difficulty and complex-
ity. TaCIE systematically decomposes instructions
into background information, objectives, and con-
straints. This allows for precise modifications and
fosters a more significant evolution of the instruc-
tions. By shifting the focus from evolving individ-
ual instructions to evolving their basic elements,
TaCIE not only refines difficulty scaling, but also
enables the integration of cross-domain elements.
This approach significantly improves the complex-
ity and applicability of the evolved instructions.

Empirical results show that LLMs fine-tuned
with TaCIE-evolved instructions outperform those
tuned with existing methods on diverse bench-
marks, including MT-Bench (Zheng et al., 2023),
AlpacaEval (Li et al., 2023), GSM8K (Cobbe et al.,
2021) and HumanEval (Chen et al., 2021). This
highlights TaCIE’s ability to generate instructions
that are more complex, nuanced, and broadly ap-
plicable across various domains. The key contribu-
tions of this work are:

• We introduce TaCIE, a task-centered instruc-
tion evolution method that decomposes seed
instructions into three distinct elements and
generates evolved instructions by modifying
these elements. TaCIE effectively overcomes
the challenges associated with difficulty scal-
ing and cross-domain applicability, overcom-
ing the limitation of existing instruction evo-
lution methods such as EVOL-INSTRUCT and
Instruction Fusion.

• Our extensive fine-tuning experiments across
multiple domains demonstrate TaCIE’s su-
perior performance in instruction genera-
tion. To promote research collaboration,
we have open-sourced model weights, train-
ing data, and source code, available at
https://github.com/XpastaX/TaCIE.

2 Approach

In this section, we propose TaCIE, a novel and effi-
cient task-centred solution for instruction evolution
to overcome the limitations of existing methods.
Before introducing TaCIE, we first discuss the ex-
isting instruction evolution method.

Method:
Please add one more constraint/requirement into #The Given Prompt#

Succeed Reason: added one more constraint
I need to collect my son shortly. Compose a concise, polite SMS to my
supervisor requesting early departure, in exactly 20 words. Include a brief
apology for the inconvenience.

Seed:
I have to pick up my son. Write a short SMS to my supervisor asking for
leaving. In 20 words. Be polite.
Background:
1. The user needs to leave to pick up his son.
Objective:
1. Write a short SMS to the supervisor.
Constraints:
1. The SMS must be within 20 words.
2. The tone of the SMS should be polite.

Failed Reason: substituted terms for more complex equivalents
I need to fetch my child. Craft a succinct SMS to my supervisor to request
early departure, keeping it under 20 words and courteous.

Failed Reason: replicated existing requirements
I need to collect my son shortly. Compose a brief, courteous SMS to my
supervisor requesting early departure, within a 20-word limit, maintaining
formality.

Figure 1: Real examples of applying EVOL-INSTRUCT
using GPT-4.

2.1 Background

SELF-INSTRUCT enhanced LLMs by fine-tuning
with diverse self-generated instructions, leading to
the development of EVOL-INSTRUCT by Xu et al.
(2024), which uses ChatGPT† to create more chal-
lenging and varied instructions from simple seed
instructions. These seeds are evolved using five
human-designed methods, significantly boosting
LLM performance across various tasks. Recogniz-
ing limitations in task complexity, Guo et al. (2024)
introduced Instruction Fusion, merging two seeds
to enhance task complexity and performance, ef-
fectively complementing EVOL-INSTRUCT. Most
recently, Zeng et al. (2024) advanced this by devel-
oping an active instruction evolution method that
uses GPT to select the optimal evolution strategy
for seed instructions, further enhancing the instruc-
tion evolution’s impact on LLM performance.

However, the methods discussed above share two
significant limitations: inadequate management of
difficulty increments and insufficient consideration
of cross-domain tasks.

Difficulty Increment Management is essential
for effective instruction evolution. Current meth-
ods struggle with this aspect due to vague prompts
provided to LLMs, which lack specific guidance
for evolving instructions. This results in uncontrol-
lable and unpredictable outcomes. For instance,
Figure 1 demonstrates the evolution of a simple

†https://chatgpt.com

857

instruction using EVOL-INSTRUCT and GPT-4o.
Of three attempts, only the last one successfully
added a new constraint to the seed instruction. The
previous attempts either replaced terms with more
complex equivalents or repeated existing require-
ments. For example, the second attempt evolved
an instruction for a formal SMS, which GPT-4o
interpreted in a manner too similar to the origi-
nal, highlighting the inefficiency of these methods
and their limited effectiveness in enhancing LLM
fine-tuning.

Cross-Domain Task Consideration is equally
critical. Despite improvements from methods like
Instruction Fusion, they fail to accommodate the
complexity of cross-domain tasks. For instance,
consider a task where an LLM is asked to develop
an app function that automatically sends SMS mes-
sages in varying tones to selected contacts—this
complexity far exceeds that of tasks focusing solely
on message sending or SMS creation.

To address these challenges, we propose TaCIE,
which is designed to effectively manage difficulty
increments and cater to the demands of cross-
domain tasks.

2.2 Instruction Decomposition

The most effective way to control incremental diffi-
culty is to ensure that each new prompt introduces
additional constraints or logical reasoning steps.
To achieve this precise control over the evolution
process, we draw inspiration from established de-
composition methods in instructional design, as
outlined in (Qin et al., 2024; Yang et al., 2024b).
We employ GPT-4o to dissect seed instructions into
three fundamental components: Background, Ob-
jectives, and Constraints. This allows for direct
modifications in constraint and logic reasoning ap-
plied to these elements.

Figure 1 illustrates an example of this decom-
position approach. The Background component
encapsulates all relevant information necessary for
the instruction, such as facts, motivations, and pro-
vided texts for tasks like summarization. The Ob-
jectives segment outlines the primary tasks derived
from the seed instruction, for instance, composing
an SMS as depicted in the example. Lastly, the
Constraints section details specific requirements
and limitations related to the tasks, including word
count and formatting requirements.

Let C = {ci}1≤i≤N be the set of seed instruc-
tions, where ci is the i-th instruction and N is the

number of seeds. We define:

E = {ei}1≤i≤N = {Decompose(ci)}0≤i≤N . (1)

Here, ei represents the decomposed elements of
seed ci, Decompose denotes the decomposition pro-
cess, and E is the set of decomposed elements from
the seed pool C. A detailed prompt template for
decomposition is introduced in the Appendix.

2.3 Task-Centred Instruction Evolution
We break down the original seeds and then itera-
tively apply two types of evolution: depth evolution
and task fusion, as illustrated in Figure 2.

For depth evolution, we aims to increase the dif-
ficult of newly generated instructions. To manage
the increment in difficulty, we have developed a
prompt template. This template guides the evolver
to add precisely one additional constraint or one ex-
tra background setting to the elements of the seed
instruction, thereby enhancing either the difficulty
or the logical reasoning required. For example, as
shown in Figure 2, the depth evolution successfully
added an extra constraint to the original instruction
by requiring the mention of the expected return
time in an SMS requesting leave.

For task fusion, our objective is to enhance the
complexity of tasks in fused instructions, making
them more informative. We instruct the evolver to
merge all elements from each pair of seed instruc-
tions, as illustrated in Figure 2. The different colors
in the orange box represent elements from the two
seed instructions.

Despite the benefits these evolutionary methods
offer to LLMs, selecting the right candidate in-
struction is crucial. A well-chosen seed can lead to
evolved instructions of higher quality. To maximize
the effectiveness of the proposed evolution meth-
ods, we have also developed a new candidate sam-
pling technique. The entire process is segmented
into the following stages:

Seed Collection. We commence by collating
seed instructions from a diverse assortment of open-
source datasets tailored to various specializations:
Alpaca (Taori et al., 2023) and ShareGPT (Chiang
et al., 2023) for general instruction comprehension
and execution; GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) for mathemati-
cal problem-solving; and CodeAlpaca (Luo et al.,
2024) for coding tasks. Initially, we employ Sen-
tence Transformers‡ to compute embeddings for all

‡https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

858

Round t

Depth Evolve
Sampler

Task Fusion
Sampler

Instruction:
I have to pick up my son. Write a short SMS
to my supervisor asking for leaving. In 20
words. Be polite.

Decomposed Elements: …

Instruction:
I have to pick up my son. Write a short SMS
to my supervisor asking for leaving. In 20
words. Be polite.

Decomposed Elements: …

Instruction1:
I have to pick up my son. Write a short SMS
to my supervisor asking for leaving. In 20
words. Be polite.
Instruction2:
Write a Python program that sends an SMS
to a specified person at a designated time.

Decomposed Elements: …

Instruction1:
I have to pick up my son. Write a short SMS
to my supervisor asking for leaving. In 20
words. Be polite.
Instruction2:
Write a Python program that sends an SMS
to a specified person at a designated time.

Decomposed Elements: …

Instruction:
I have to pick up my son. Write a short SMS
to my supervisor asking for leaving, and
mention the expected return time. In 20
words. Be polite.

Decomposed Elements: …

Instruction:
I have to pick up my son. Write a short SMS
to my supervisor asking for leaving, and
mention the expected return time. In 20
words. Be polite.

Decomposed Elements: …

Instruction:
Develop a Python program to send a polite,
20-word SMS to your supervisor,
requesting early leave to pick up your son.
Schedule the message to be sent at a
specific time.

Decomposed Elements: …

Instruction:
Develop a Python program to send a polite,
20-word SMS to your supervisor,
requesting early leave to pick up your son.
Schedule the message to be sent at a
specific time.

Decomposed Elements: …

Round t-1
Instruction Pool

Round t
Instruction Pool

Depth Evolve

Task Fusion

Depth Evolve

Task Fusion

Depth Evolve

Task Fusion

Figure 2: An illustration of TaCIE during the t-th round of evolution.

instructions within these datasets. Using the Elbow
method, we identify the optimal clustering config-
uration for each source. After clustering, we ran-
domly select one seed instruction from each cluster.
To broaden the diversity of our initial seed pool, we
engage GPT-4o to generate three additional instruc-
tions that each have a different objective from the
original seed. This approach enriches our collec-
tion of instructions, creating a robust foundational
seed pool for the TaCIE framework, detailed further
in the Appendix.

Sample Scoring. The effectiveness of instruc-
tion tuning for LLMs relies on the quality of
instruction-response pairs, rather than their quan-
tity. As Zhou et al. (2024) have noted, instruction
sets of higher quality confer more significant ben-
efits to LLMs than those merely larger in volume.
To curate such beneficial instructions, following
Kung et al. (2023), we employ uncertainty to filter
out less beneficial instructions.

According to Kung et al. (2023), it has been es-
tablished that LLMs benefit more from fine-tuning
with informative and novel instructions. Such in-
structions exhibit a significant alteration in the prob-
ability of their original responses when subjected
to minor perturbations, like the random omission
of a certain percentage of words. This alteration is
considerably less pronounced in instructions that
are less informative (low uncertainty), which are ei-
ther “easy” (high response probability) or “difficult”
(low response probability) to the LLMs.

In the TaCIE framework, candidate sampling for
the evolution process is guided by calculating un-
certainty scores, which help identify instructions
with potential for greater informativeness. The
depth evolution strategy primarily targets seeds
with high uncertainty, aiming to evolve these into
more difficult instructions by incorporating addi-

tional logical reasoning steps or constraints. In
contrast, task fusion merges information from two
less informative seeds (low uncertainty) to create
a single, more comprehensive instruction. This ap-
proach ensures that newly generated instructions
are enriched with useful content without becoming
overly complex, thereby enhancing their practical
applicability in training LLMs. Further details on
this process are elaborated in the Appendix.

Specifically, we define uncertainty ui as the
score of the i-th instruction ci and use the following
Score function to calculate it:

ui = Score(ci, ri) =
1

NU

NU∑
j=1

(|qi − q̄ji |), (2)

where NU is the number of perturbation for each
instruction, and ri represents the response to the
instruction ci. qi is the response probability of
ci, and q̄ji is the response probability of the j-th
perturbation of ci.

The response probabilities are defined as fol-
lows:

qi = P(ri|ci,W), (3)

and
q̄ji = P(ri|c̄ji ,W). (4)

Here, qi and q̄ji represent the probabilities of a
response ri, conditioned on the original instruction
ci and the perturbed instruction c̄ji , respectively.
These probabilities are calculated using the model
weights W, reflecting the model’s evaluation of
the responses based on the provided instructions.

Candidate Sampling. As mentioned by Guo
et al. (2024), difficulty gradient is also an important
key for better fine-tuning performance. To balance
informative, “easy”, and “difficult” instructions, we
designed a sampler which samples the candidates

859

for the depth evolution and task fusion according
to different weighting approach. Denote the target
evolution amount to be Me and Mt, for depth evo-
lution, we directly use the uncertainty to weight
each seed, and defined the sample probability of
each instruction as:

pdepthi =
ui∑N

k=1 uk
, (5)

and we sample Me instructions:

Cdepth ∼ Multinomial(Me, {pdepthi }Ni=1), (6)

For task fusion, we use the following weighting
function:

pfusei =
si∑N

k=1 sk
(7)

where

si =
1

(nci + 1)× nobji × nrooti × ui
. (8)

Here si is the punished uncertainty of the seed
instruction ci. For each instruction, we punish the
uncertainty with three factors. nci represent the
frequency of instruction ci being used as the seed
for task fusion; nobji is the number of objectives
of the instruction, which will increase if it is fused
instruction last round; nrooti is the frequency of the
root domain that instruction lies in, such as coding,
math, etc. The sampling process is shown in the
Algorithm 1.

We categorize task fusion into two types: in-
domain fusion and cross-domain fusion. In-domain
fusion integrates tasks within the same domain,
whereas cross-domain fusion combines tasks from
different domains to generate more complex out-
comes. The process begins by sampling Mf initial
candidates, denoted as Ca, which form the first set
of seeds. Subsequently, we sample another set of
Mf candidates, Cb, and pair each candidate with
those in Ca based on the differences in their do-
mains. The sampling of Cb and its pairing process
are repeated until we achieve the desired number of
pairs for both in-domain and cross-domain fusions.

For simplification, in a cross-domain fused in-
struction involving a pair (ca, cb), we designate the
root domain of the instruction as the root domain
of ca.

Evolution with Evolver. In the round t of evo-
lution, based on our designed weighting functions
above, we first sample Md candidates for the depth
evolution, and Mf candidate pairs from the seed

Algorithm 1: Task Fusion Sampling
Input: Seed pool C which weights; Target number of

task fusion Mf .
Output: Candidate pairs.
Initialize pairsin, pairscross ← ∅, idx← 0
Let Ca ∼ Multinomial(Mf , {pfusei }Ni=1)

while pairsin <
Mf

2
or pairscross <

Mf

2
do

remain←Mf − (|pairsin|+ |pairscross|)
Cb ∼ Multinomial(remain, {pfusei }Ni=1)
for each cb ∈ Cb do

ca ← Fa[idx]
if domain(ca) == domain(cb) then

if |pairsin| <
Mf

2
then

pairsin ∪ {(ca, cb)}
idx← idx+ 1

end
end
else

if |pairscross| <
Mf

2
then

pairscross ∪ {(ca, cb)}
idx← idx+ 1

end
end

end
end
return pairsin ∪ pairscross

pool for the i-th round Ct for the task fusion, which
are:

Ct,depth = {ct,depthi }1≤i≤Md
,

Ct,fuse = {(ct,fusei,a , ct,fusei,b)}1≤i≤Mf
.

Next, we prompt evolver LLM to perform the two
kinds of evolution and obtained the new instruction
sets Dt = {dti}1≤i≤Md

and Ft = {f t
i }1≤i≤Mf

correspondingly, where

dti = Evol(ct,depthi , et,depthi , Pdepth),

f t
i = Evol((ct,fusei,a , et,fusei,a , ct,fusei,b , et,fusei,b), Pfuse).

Here Pdepth and Pfuse are the prompt template de-
signed for the evolution, and it detailed in Ap-
pendix.

After that, we merge them in to the previous
seed pool to form the new set of candidates Ct+1 =
Ct+Dt+Ft, and update the weight of all samples
according to their scores and evolution history for
the next round.

2.4 Data Statistic
Figure 3 presents detailed statistics from our
evolved instruction pool. We sampled a total of
12,000 seeds from multiple sources: 3,000 each
from ShareGPT, Alpaca, and Code Alpaca, along
with 1,500 from both the MATH and GSM8K train-
ing sets. Using these seeds, we prompted GPT-4o

860

Figure 3: The domain distribution. Note each fused
instruction contributes to multiple domains due to ob-
jectives from two seeds.

to generate an additional 36,000 variants, aiming
to diversify the seed pool with varied objectives.
Over six evolutionary rounds—excluding samples
that failed in evolution or were unrecognized by
our scripts—we applied two distinct evolutionary
methods, ultimately producing 143,917 viable sam-
ples out of 144,000 attempts. This yields a success
rate of over 99.94%, significantly surpassing the
performance of EVOL-INSTRUCT. During the pro-
cess, we utilized Llama-3-8B-Instruct§ to evaluate
the uncertainty of each instruction.

Additionally, the figure illustrates frequency
statistics across different domains. The scoring
language model identified mathematics and coding
problems as particularly "informative"—a finding
consistent with expectations, given that these cat-
egories often require robust logical reasoning and

§https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct

exhibit considerable variability with minor instruc-
tional modifications. This shift in domain distri-
bution has effectively improved the balance of our
data mix, enhancing instruction tuning. Subsequent
experiments confirm that this rebalancing has no-
tably improved performance across all evaluated
metrics.

Figure 4 depicts the distribution of rounds for
each evolutionary method. From this visualiza-
tion, it is clear that TaCIE, in contrast to full-size
evolution—which processes all candidates in each
round and reaches 144,000 instructions in just three
rounds—selects more informative seeds for evo-
lution. This approach enables the generation of
informative instructions over a higher number of
evolutionary rounds within the same total number
of generated instructions.

Rounds

0

20,000

40,000

60,000

80,000

0 1 2 3 4 5 6

Depth Evolve Task Fusion

Figure 4: The distribution of evolution rounds.

3 Experiments

3.1 Experimental Settings

To effectively showcase the capabilities of TaCIE,
we selected a diverse range of baselines, encom-
passing both general-purpose chatting LLMs and
domain-specific LLMs. Our primary comparisons
are with EVOL-INSTRUCT, Auto Evol-Instruct, and
Instruction Fusion. These three methods exten-
sively utilize instruction evolution techniques, mak-
ing them directly comparable to our approach.

We assess performance across four dimensions.
To evaluate general instruction comprehension, we
utilize MT-Bench (Zheng et al., 2023). IFEval
(Zhou et al., 2023) is employed to test instruction-
following capabilities. The GSM8K test set (Cobbe
et al., 2021) measures mathematical proficiency,
and HumanEval (Chen et al., 2021) gauges coding
skills.

We utilized GPT-4o both as the evolver and the

861

response generator for all instructions. Our founda-
tional model for these experiments was LLaMA-3-
8B (Dubey et al., 2024), augmented with LLaMA-
3-8B-Instruct for scoring purposes. Additionally,
we fine-tuned Mistral-7B-v0.1 (Jiang et al., 2023)
and Qwen2-7B (Yang et al., 2024a) to evaluate the
applicability of data generated with a dedicated
scorer across different models. We also included
performance metrics from their advanced official
chat LLMs. However, it’s important to note that
their fine-tuning protocols often incorporate tech-
niques beyond instruction tuning, such as Direct
Preference Optimization (Rafailov et al., 2024).
Therefore, their results are provided for reference
only.

Consistent with existing literature, all our exper-
iments were conducted using a batch size of 128
and a learning rate of 5 × 10−6. Each LLM was
trained over four epochs using bfloat16 precision
on four Nvidia A100 80G GPUs. For these pro-
cesses, we utilized resources from LLaMA Factory
(Zheng et al., 2024) and integrated DeepSpeed¶

with zero-stage 2 optimization.

3.2 Result Analysis

Table 1 shows TaCIE’s impact on LLaMA-3 across
four benchmarks. We compared the performance of
LLMs fine-tuned on 48,000 instructions from both
evolved and seed datasets. The results demonstrate
substantial improvements in instruction following,
math, and coding tasks with the evolved instruc-
tions, while maintaining competitive performance
on MT-bench. Using LLaMA-3-Instruct as the
scorer, TaCIE effectively identifies and samples in-
formative candidates, significantly enhancing task
performance in these domains. Despite only a mi-
nor performance increment on MT-bench due to
its multi-round chatting requirements—a feature
not covered in our datasets—the overall gains from
the evolved instructions outweigh this limitation.
The domain shift focuses on complex tasks over
multi-round chatting (Section 2.4), leading to less
performance boost but considerable benefits across
other domains, validating the evolution approach.

To justify the transferability of the evolved in-
structions (candidates sampled with the LLaMA-3
based scorer can also benefits other base LLMs),
we use them to further fine-tune Mistral-7B-v0.1
and Qwen2-7B, which also show significant im-
provements all most domains. Here the beneftis

¶https://github.com/microsoft/DeepSpeed

Model Para. Data MT-Bench IFEval GSM8K HumanEval

Close-Source Model

GPT-4 - - 8.99 85.37 92 84.1
GPT-3.5 - - 7.9 - 80.8 73.2

Open-Source General Model

WizardLM 13B 70k 6.35 18.5 - 24
Vicuna-v1.3 13B - 6.57 33.44 10.77 -
LLaMA-2-Chat 13B - 6.65 39.85 15.24 32.3
Mistral-instruct-v0.1 7B - 6.84 42.51 14.25 31.1
LLaMA-3-Instruct 8B - 8.05 73.01 79.6 62.2
Qwen2-Instruct 7B - 8.41 55.08 82.3 79.9

TaCIE General Model

LLaMA-3-seed 8B 48k 7.14 38.45 64.82 43.9
TaCIE-LLaMA-3 8B 48k 7.18 39.74 68 51.2
TaCIE-LLaMA-3 8B 144k 6.63 42.7 72.25 54.9
Mistral-seed 7B 48k 6.75 27.73 53.3 21.3
TaCIE-Mistral 7B 48k 6.99 18.11 58.38 36.6
TaCIE-Mistral 7B 144k 6.73 30.13 66.64 43.3
Qwen2-seed 7B 48k 7.62 39 82.56 72.6
TaCIE-Qwen2 7B 48k 7.85 43.99 83.32 69.5
TaCIE-Qwen2 7B 144k 7.87 41.4 81.65 76.8

TaCIE-LLaMA-3-id 8B 10k 6.9 31.05 74 51.8
TaCIE-LLaMA-3-cd 8B 10k 6.96 34.18 74.45 51.8

Open-Source Task-Specific

AIE-ShareGPT 7B 10k 7.51 - - -
WizardMath 7B 96k - - 54.9 -
MetaMath 7B 395k - - 66.51 -
AIE-GSM8K 7B 7k - - 70.74 -
WizardCoder 15B - - -
CodeLlama-Instruct 13B - - - - 42.7
AIE-CodeAlpaca 13B 20k - - - 65.85
IF-20k 13B 20k - - - 67.7

TaCIE Task-Specific

TaCIE-ShareGPT 7B 10k 7.53 - - -
TaCIE-GSM8K 7B 7k - - 73.46 -
TaCIE-CodeAlpaca 13B 20k - - - 67.1

Table 1: Experimental results of TaCIE.

for Qwen2 model is less than that on the other
two base LLMs, because Qwen2-7B have better
performance than LLaMA-3-8B||, so what LLaMA-
3-8B find informative may not be true for Qwen2-
7B. However, it still outperforms the baseline fine-
tuned with seeds.

Besides the general purpose LLMs, we also
conduct experiment fine-tuning base models using
domain-specific instructions. We mainly compare
our performance with AIE proposed by Zeng et al.
(2024). For fair comparison, we use the same base
LLMs and sample the same amount of evolved
instructions that only contains single-domain in-
formation among all of its evolution history. For
ShareGPT, we mix 7,000 evolved instructions with
3,000 original samples to cover multi-round re-
quirements of MT-Bench.

As shown in the domain-specific part in Table 1,
we outperform AIE on all three domains, especially
on math and coding, which requires better logic for
answering. For Instruction Fusion, we sampled
20,000 samples from their 110,000 evolved coding
instructions for baseline fine-tuning (IF-20k). Al-
though they has evolved more complex instructions
with higher diversity due to the large amount of in-

||https://qwenlm.github.io/blog/qwen2/

862

structions, we still achieved 67.1% on HumanEval,
which is comparable to their 67.7%.

In conclusion, TaCIE’s evolved instructions sig-
nificantly boost base LLM performance across
tasks, particularly in complex areas like instruction
comprehension, math, and coding. These enhance-
ments persist even when applied to LLMs with
varying architectures, such as Mistral-7B-v0.1 and
Qwen2-7B, demonstrating their broad applicabil-
ity and transferability. These findings confirm the
effectiveness of the TaCIE evolution approach in
enhancing instruction sets for diverse LLM appli-
cations.

3.3 Ablation Study

To further demonstrate task fusion’s effectiveness,
we fine-tuned LLaMA-3-8B with 10,000 single-
domain and 10,000 cross-domain-only evolved in-
structions (excluding seeds). The results, shown
as TaCIE-LLaMA-3-id and TaCIE-LLaMA-3-cd in
Table 1, reveal that models fine-tuned with cross-
domain instructions outperform those fine-tuned
with in-domain instructions. This supports the no-
tion that fusing objectives from different domains
introduces greater complexity and information, en-
hancing LLM learning.

Additionally, to evaluate the scalability of TaCIE,
we fine-tuned LLaMA-3-8B with various subsets
of instructions randomly sampled from our instruc-
tion pool. The results, depicted in Figure 5, in-
dicate that performance peaks when utilizing the
entire instruction pool. This observation suggests
that further enhancements in performance could be
achieved through additional rounds of instruction
pool evolution. We also extended this fine-tuning
process to two other base LLMs using the com-
plete set of 143,917 instructions (Table 1). This
approach demonstrated significant improvements
across multiple metrics when compared to using
only 48,000 instructions.

4 Related Work

4.1 Instruction Tuning

Instruction Tuning (Wei et al., 2022) is a piv-
otal method for aligning Large Language Models
(LLMs) with human instructions, enhancing their
applicability to real-world scenarios (Zhang et al.,
2023). This approach aims to improve the zero-
shot capabilities of well-trained LLMs, enabling
them to perform tasks guided solely by natural
human instructions. It allows LLMs to cater to a di-

data size (k)

0

20

40

60

80

12 24 48 72 144

MT-Bench IFEval GSM8K HumanEval

Figure 5: The performance scaling of TaCIE.

verse array of general requests (Wang et al., 2023b).
However, the effectiveness of Instruction Tuning
heavily depends on the availability of high-quality
data to optimize both performance and interaction
quality (Zhou et al., 2024; Zhao et al., 2024).

For enhancing and proofing high-quality instruc-
tions, Zhou et al. (2024) introduced LIMA, an LLM
trained on just 1,000 high-quality instances. This
model demonstrated that smaller datasets of su-
perior quality can be more beneficial than larger,
less curated ones. Additionally, Zhao et al. (2024)
found that detailed, lengthy instructional responses
also enhance LLM performance, underscoring the
significance of data quality.

Conversely, Kung et al. (2023) explored the con-
cept of task uncertainty by examining how minor
perturbations in instructions affect response proba-
bilities. They proposed that instructions whose per-
turbations can cause significant shifts in response
probabilities are particularly informative and novel
for LLMs, thus aiding in better alignment. This ap-
proach has inspired our methodology for the design
of seed sampling.

These studies collectively highlight the critical
role of high-quality instructions and responses in
the efficacy of LLMs. Nonetheless, the reliance
on manually crafted instructions or templates con-
strains the diversity, quantity, and creativity of the
data available.

4.2 Instruction Evolution
In response to the growing demand for high-
quality data, Wang et al. (2023a) developed SELF-
INSTRUCT, a strategy that utilizes LLMs for both
generating data and tuning instructions. This
method produces enhanced synthetic instructions
and responses. Building on this concept, Xu
et al. (2024) introduced EVOL-INSTRUCT, which

863

evolves initial simple instructions into more chal-
lenging or varied forms by leveraging sophisticated
LLMs (e.g., ChatGPT) and a designed evolution
methodology. Further expanding on this, Zeng et al.
(2024) proposed an advanced framework that al-
lows LLMs to autonomously determine the most
effective evolution strategy for a given set of seed
instructions.

Guo et al. (2024) focused on task complex-
ity by developing Instruction Fusion, which inte-
grates two simple tasks into a single, more complex
challenge, thereby enhancing performance. This
method has inspired further exploration into cross-
domain task fusion within our proposed approach.

5 Conclusion

In this paper, we introduce TaCIE, a novel method
for evolving instruction that enhances difficulty
management and promotes cross-domain complex-
ity. TaCIE employs a decomposition approach to
break down seed instructions into three fundamen-
tal elements. This transformation shifts the evolu-
tion process to the elemental level, allowing for tar-
geted modifications that culminate in the regenera-
tion of advanced instructions. Experimental results
underscore TaCIE’s efficacy, demonstrating signifi-
cant performance improvements across a variety of
base LLMs compared to previous methods.

Limitations

Our work focus on task-centered evolution, mak-
ing them more difficult and complex in controllable
manner, thus the multi-turn chatting is not consid-
ered in our evolving procedure. Future work could
easily built evolution method for multi-turn conver-
sation based on our proposed method.

The total cost of our experimental process was
approximately 2,000 USD, largely driven by our
reliance on GPT-4o for augmentation and evalu-
ation—a common challenge in LLM-related re-
search. However, the expenses associated with
using such APIs are decreasing due to rapid ad-
vancements in LLM technologies, making these
tools more affordable and accessible.

Ethics Statement

Our data collection relies on publicly released
datasets. The augmented data were generated us-
ing GPT-4o, whose outputs are already carefully
monitored, ensuring that no privacy-sensitive or
confidential information was included.

References
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming

Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
lmsys. org (accessed 14 April 2023), 2(3):6.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Weidong Guo, Jiuding Yang, Kaitong Yang, Xiangyang
Li, Zhuwei Rao, Yu Xu, and Di Niu. 2024. Instruc-
tion fusion: Advancing prompt evolution through
hybridization. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 3883–3893,
Bangkok, Thailand. Association for Computational
Linguistics.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Po-Nien Kung, Fan Yin, Di Wu, Kai-Wei Chang, and
Nanyun Peng. 2023. Active instruction tuning:

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://aclanthology.org/2024.acl-long.214
https://aclanthology.org/2024.acl-long.214
https://aclanthology.org/2024.acl-long.214

864

Improving cross-task generalization by training on
prompt sensitive tasks. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1813–1829.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-
tomatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:
Empowering code large language models with evol-
instruct. In The Twelfth International Conference on
Learning Representations.

Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao,
Sangwoo Cho, Xiaoyang Wang, Xuansheng Wu, Fei
Liu, Pengfei Liu, and Dong Yu. 2024. Infobench:
Evaluating instruction following ability in large lan-
guage models. arXiv preprint arXiv:2401.03601.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023a. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xing-
shan Zeng, Wenyong Huang, Lifeng Shang, Xin
Jiang, and Qun Liu. 2023b. Aligning large lan-
guage models with human: A survey. arXiv preprint
arXiv:2307.12966.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. Preprint,
arXiv:2109.01652.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. WizardLM: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024a. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Jiuding Yang, Weidong Guo, Kaitong Yang, Xiangyang
Li, Zhuwei Rao, Yu Xu, and Di Niu. 2024b. Op-
timizing and testing instruction-following: Ana-
lyzing the impact of fine-grained instruction vari-
ants on instruction-tuned llms. arXiv preprint
arXiv:2406.11301.

Weihao Zeng, Can Xu, Yingxiu Zhao, Jian-Guang Lou,
and Weizhu Chen. 2024. Automatic instruction
evolving for large language models. arXiv preprint
arXiv:2406.00770.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792.

Hao Zhao, Maksym Andriushchenko, Francesco Croce,
and Nicolas Flammarion. 2024. Long is more
for alignment: A simple but tough-to-beat base-
line for instruction fine-tuning. arXiv preprint
arXiv:2402.04833.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, et al. 2024. Lima: Less is more for align-
ment. Advances in Neural Information Processing
Systems, 36.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

A Data Analysis

A.1 Diversification

As detailed in Section 2, we utilize the Elbow
method to optimally cluster each data source and
randomly select one instruction from these clusters
as the initial seeds. These seeds are then used to
prompt GPT-4o to generate a diverse set of 48,000
instructions, forming our initial instruction pool
(Round 0). Figure 6 shows a 2D projection of both

https://github.com/tatsu-lab/alpaca_eval
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

865

Figure 6: The 2D projection of original data source and
diversified seed pool.

the randomly sampled instructions from the origi-
nal data sources and our diversified seed pool. It is
evident that the diversified seeds cover more of the
previously blank regions compared to the original
data.

To quantify this increase in diversity, we employ
the variance calculation method used in Instruction
Fusion by Guo et al. (2024):

U =
1

N
ΣN
i=1(di − µ)2, (9)

where

di = ||(ei, eNN
i)|| (10)

and

µ =
1

N
ΣN
i=1di. (11)

In this formula, U represents the uniformity of
the distribution, di denotes the Euclidean distance
between the semantic embedding ei of a seed and
the embedding eNN

i of its nearest neighbor, and µ
is the average Euclidean distance across all seeds.
This calculation of variance in nearest neighbor
distances provides a measure of the instruction
pool’s diversity. A lower variance signifies a more
uniform distribution of data points, indicative of
greater diversity. As depicted in the accompany-
ing figure, the variance for the diversified seed
pool stands at 0.0431, which is approximately 12%
lower than that of the original data source, confirm-
ing an enhancement in diversity.

A.2 Uncertainty Shift

To examine the impact of depth evolution and
task fusion on instruction uncertainty, we gener-
ated 24,000 depth-evolved instructions and 12,000
task-fused instructions, both in-domain and cross-
domain. Figure 7-9 show 2D projections of the
original and evolved instructions. From these fig-
ures, it is apparent that depth evolution does not
significantly alter the uncertainty of instructions.
In contrast, both in-domain and cross-domain task
fusion lead to an increase in uncertainty, from 0.07
to 0.09. This indicates that task fusion, through the
merging of two seed instructions, produces more
informative content, thereby enhancing the overall
uncertainty within the dataset. However, merging
highly informative instructions could potentially
overload the learning process of LLMs due to in-
creased complexity. To mitigate this, during the
sampling process, we prioritize less informative
seeds, balancing the generation of enriched instruc-
tions while ensuring they remain tractable for learn-
ing enhancements.

B Prompt Templates

In this section, we introduce all prompt templates
we designed and use in TaCIE.

B.1 Instruction Decomposition

To better decompose each instruction, we provided
GPT-4o with two examples during the decomposi-
tion process.
Given a prompt, your task is to:
1.**Extract Backgrounds Settings:** Identify and
list the backgrounds of the prompt, such as facts,
and motivations. If the prompt provides extra
information such as code to debug, passage to
polish or summarize, directly include them in this
section, do not summarize them. Do not include
Objectives or Requirements. If no Backgrounds
Settings is given in the prompt, output ’N/A’ in the
Extract Background Settings: section.
2.**Extract Objective:** List the core task of the
prompt.
3.**Extract Constraints:** List all specific
requirements or constraints for the objectives. If
no Constraints is given in the prompt, output ’N/A’
in the **Extract Constraints:** section.

—

Given Prompt:

866

Figure 7: Depth Evolution Figure 8: In-domain Task Fusion Figure 9: Cross-domain Task Fusion

I have to pick up my son. Write a short SMS to my
supervisor asking for leaving. In 20 words. Be
polite.
Extract Background Settings:
1.The user needs to pick up his son.

Extract Objectives:
1.Write an SMS.

Extract Constraints:
1.The SMS should be short.
2.The SMS should ask the supervisor’s permission
to leave.
3.The SMS should be polite.
4.The SMS should not exceed 20 words.

—

Given Prompt:
Debug my python code. a=100
b=1
c=0
print(d=a*b/c)

Extract Background Settings:
1.Code to debug:
```python
a=100
b=1
c=0
print(d=a*b/c)
```

Extract Objectives:
1.Debug the given Python code.

Extract Constraints:
N/A

—

Given Prompt:
At 30, Anika is 4/3 the age of Maddie. What would
be their average age in 15 years?

Extract Background Settings:
1.age of Anika = 30
2.age of Anika = 4/3 x age of Maddie

Extract Objectives:
1.Calculate the average age of Anika and Maddie
in 15 years.

Extract Constraints:
N/A

—

Given Prompt:
{{ prompt }}

B.2 Diversification

During the diversification of the original seed, we
use the following prompt to let GPT-4o generate
another three different instructions for a given seed.
**For the provided prompt, we detail the following
elements:**

1.**Background Settings:** This section presents
the background information relevant to the prompt,
including pertinent facts and motivations. If the
prompt lacks background settings, this section will
be labeled as ’N/A’.
2.**Objectives:** This section outlines the main
tasks associated with the prompt.

867

3.**Constraints:** This lists any specific require-
ments or limitations tied to the objectives. If there
are no constraints, this section will be labeled as

’N/A’.

Given Prompt:
{{ prompt }}

{{ extracted }}

Based on the information provided, your
task is to:

1.Develop ten new objectives to replace the
original **Objectives** of the prompt. Each new
objective should be diverse and maintain the same
level of difficulty as the original.
2.For each new objective, craft a corresponding
prompt that mimics the tone and style of the
original prompt. Ensure to vary the **Background
Settings** and **Constraints** while making sure
each prompt is reasonable and answerable.

Format each new objective and prompt as
follows,do no provide corresponding background,
objectives, and constraints:

New Objective 1:
[Describe the new diverse objective.]

New Prompt 1:
[Present the new prompt based on the objective.]
...

B.3 Depth Evolution

Based on a prompt’s existing background, ob-
jectives, and constraints, increase its difficulty
using ONLY one of the following methods: 1.If
the prompt primarily involves reasoning, such
as solving a mathematical problem, enhance
its complexity by introducing an additional
background element. Also, modify the existing
background elements to ensure the task remains
logical and solvable.
2.Otherwise, introduce one additional reasonable
constraint to ONLY one of the objectives of the
given prompt to increase its difficulty.

Please respond using the format provided in
the examples below. You can only change either the
Background Settings: or the **Constraints:**.
Do not change both.

Ensure your response contains the following
four sections even if they are empty: **Prompt:**,
Background Settings:, **Objective:** and
Constraints:
—

Original

Prompt:
At 30, Anika is 4/3 the age of Maddie. What would
be their average age in 15 years?

Background Settings:
1.age of Anika = 30
2.age of Anika = 4/3 x age of Maddie

Objectives:
1.Calculate the average age of Anika and Maddie
after 15 years

Constraints:
N/A

Rewritten

Prompt:
At 30, Anika’s age is twice the age of Adam, and
Maddie’s age is the average of Anika’s and Adam’s
ages. What would be the average age of Anika and
Maddie in 15 years?

Background Settings:
1.age of Anika = 30
2.age of Anika = 2 x age of Adam
3.age of Maddie = (age of Anika + age of Adam) / 2

Objectives:
1.Calculate the average age of Anika and Maddie
after 15 years

Constraints:
N/A

—

Original

Prompt:
Could you write me an android application that
has a login page and can connect to a server?
Please also list all prior knowledge I need to know

868

to understand your code.

Background Settings:
N/A

Objectives:
1.Write an Android application.
2.List all prior knowledge that is required to
understand the code.

Constraints:
1.Include a login page in the application.
2.Enable the application to connect to a server.

Rewritten

Prompt:
Could you write me an android application that
has a login page, can connect to a server, and
encrypts all communications with the server.
Please also list all prior knowledge I need to know
to understand your code.

Background Settings:
N/A

Constraints:
1.Include a login page in the application.
2.Enable the application to connect to a server.
3.Encrypt all communications with the server.

—

Original

Prompt:
{{ prompt }}

{{ extracted }}

B.4 Task Fusion

Based on the prompt’s existing background,
objectives, and constraints, your task is to act as
a Prompt Fusion Specialist. Your target is to fuse
Given Prompt A and **Given Prompt B** into
a single, cohesive **Fused Prompt**, following
the two steps below:
1.Merge the elements in the background, objectives,
and constraints of both **Given Prompt A**
and **Given Prompt B** respectively, make sure
the objectives are dependent to each other and

solvable. Do not compress multiple elements into
a single one.
2.Based on the integrated background, objectives,
and constraints, fuse the **Given Prompt A** and
Given Prompt B into a new prompt. Mimic the
tone and style of the original prompts. Make sure
the new prompt is coherent and solvable

—

Example Given Prompt A:
I have to pick up my son. Write a short SMS to my
supervisor asking for leaving. In 20 words. Be
polite.

Background Settings:
1.The user needs to pick up his son.

Objectives:
1.Write an SMS.

Constrains:
1.The SMS should be short.
2.The SMS should ask the supervisor’s permission
to leave.
3.The SMS should be polite.
4.The SMS should not exceed 20 words.

Example Given Prompt B:
I am planning to give you a voice, and communi-
cate through the speech medium. I need a speech
recognizer, a wake call detector, and a speech
synthesizer for your voice. Suggest a python script
utilizing existing libraries to achieves the goal.

Background Settings:
1.The user is planning to give a voice to a system
and communicate through speech.
2.The user needs a speech recognizer, a wake call
detector, and a speech synthesizer.

Objectives:
1.Suggest a Python script using existing libraries
to achieve the goal.

Constraints:
N/A

Fused Background Settings:
1.The user needs to pick up his son.
2.The user is planning to give a voice to a system
and communicate through speech.

869

3.The system requires a speech recognizer, a wake
call detector, and a speech synthesizer.

Fused Objectives:
1.Suggest a Python script using existing libraries
that enables a system to recognize speech, detect
wake calls, and synthesize speech.
2.Use this system to compose and send an SMS.

Fused Constraints:
1.The SMS should be short.
2.The SMS should ask the supervisor’s permission
to leave.
3.The SMS should be polite.
4.The SMS should not exceed 20 words.
5. The SMS should be composed by the system and
sent to the user’s supervisor.

Fused Prompt:
Suggest a Python script utilizing existing libraries
that includes a speech recognizer, a wake call
detector, and a speech synthesizer to enable
communication through speech for a system I am
planning to implement. Use this system to send
a short, polite SMS to my supervisor asking for
permission to leave early because I have to pick up
my son. The message should not exceed 20 words.
Be Polite.

—

Please respond using the format provided in
the example above. Give the merged background,
objectives, and constraints respectively, then fuse
the two given prompts into a new one incorporating
your new background, objectives, and constraints.

Given Prompt A:
{{ prompt1 }}

{{ extracted1 }}

Given Prompt B:
{{ prompt2 }}

{{ extracted2 }}

	Introduction
	Approach
	Background
	Instruction Decomposition
	Task-Centred Instruction Evolution
	Data Statistic

	Experiments
	Experimental Settings
	Result Analysis
	Ablation Study

	Related Work
	Instruction Tuning
	Instruction Evolution

	Conclusion
	Data Analysis
	Diversification
	Uncertainty Shift

	Prompt Templates
	Instruction Decomposition
	Diversification
	Depth Evolution
	Task Fusion

