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Abstract
Relation-based Argument Mining (RbAM) is
the process of automatically determining agree-
ment (support) and disagreement (attack) rela-
tions amongst textual arguments (in the binary
prediction setting), or neither relation (in the
ternary prediction setting). As the number of
platforms supporting online debate increases,
the need for RbAM becomes ever more ur-
gent, especially in support of downstream tasks.
RbAM is a challenging classification task, with
existing state-of-the-art methods, based on Lan-
guage Models (LMs), failing to perform satis-
factorily across different datasets. In this pa-
per, we show that general-purpose Large LMs
(LLMs), appropriately primed and prompted,
can significantly outperform the best perform-
ing (RoBERTa-based) baseline. Specifically,
we experiment with two open-source LLMs
(Llama-2 and Mistral) and with GPT-3.5-turbo
on several datasets for (binary and ternary)
RbAM, as well as with GPT-4o-mini on sam-
ples (to limit costs) from the datasets.

1 Introduction

Argument mining (AM) is the process of auto-
matically extracting arguments, their components
and/or relations amongst arguments and compo-
nents from natural language text (Lippi and Torroni,
2016; Lawrence and Reed, 2019). The general AM
problem can be split into three main tasks: 1) argu-
ment identification, involving segmenting text into
units and determining which are argumentative; 2)
identification of argumentative components, typi-
cally involving classifying claims and/or premises
of argumentative text; and 3) identification of ar-
gumentative relations, aiming at determining how
different texts are related within argumentative dis-
course.

As the number of platforms supporting online
debate increases, the need for AM becomes ever
more urgent (Lawrence and Reed, 2019). In this
paper, we focus on a specific form of AM, within

the third category, and matching the kind of de-
bate abstractions in platforms such as Kialo1 and
ArguCast2 (Gorur et al., 2023), where arguments
(textual comments) are connected via support or
attack argumentative relations. Specifically, we
will focus on the form of AM framed as the
following (ternary) relation-based AM (RbAM)
task (Carstens and Toni, 2015; Cocarascu and Toni,
2017; Cocarascu et al., 2020):3

given a pair (A,B) of texts A and B,
determine whether A attacks, supports,
or has neither relation to B.

For example, take the three arguments, drawn from
the Debatepedia/Procon dataset (Cabrio and Villata,
2014), a1=‘Abortion should be legal’, a2=‘A baby
should not come into the world unwanted’, and
a3=‘Abortion increases the likelihood that women
will develop breast cancer’. In this example , a2
can be deemed to support a1, a3 to attack a1, and
a2 as being in neither relation with a3.

RbAM can be used to support several down-
stream tasks, for example, to gather evi-
dence (Carstens and Toni, 2015), to determine
which online arguments are acceptable (Bosc et al.,
2016), and to analyse divisive issues about new
regulations (Konat et al., 2016). However, it is a
challenging task, with different BERT-based mod-
els performing reasonably well on some datasets,
but individual baselines failing to perform well
across datasets (Cocarascu et al., 2020; Ruiz-Dolz
et al., 2021).

In this paper, we focus on deploying general-
purpose LLMs, with appropriate priming and
prompting, to address the RbAM task uniformly
across several datasets. In doing so we draw in-
spiration from recent works showing that LLMs

1www.kialo.com
2www.argucast.herokuapp.com/
3We experiment with both the binary version (without the

neither label, also experimented with in (Cocarascu et al.,
2020)) and ternary version (as in the definition given).

https://www.kialo.com
https://argucast.herokuapp.com/
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perform significantly better than existing baselines
on other AM tasks (Chen et al., 2024; Zubaer et al.,
2023; van der Meer et al., 2022) (see §2).

Overall, our contributions are as follows: We
provide a novel method for performing RbAM ef-
fectively with chat-based LLMs, appropriately, but
simply, primed and prompted (see §3). We demon-
strate empirically, with a wide-ranging evaluation
on eleven datasets from the literature (see §4), that
our LLM-based method for RbAM outperforms
the state-of-the-art RoBERTa baseline for binary
RbAM (Ruiz-Dolz et al., 2021) (see §5.1). We also
demonstrate empirically, on four of the datasets,
that LLMs for RbAM outperforms state-of-the-art
RoBERTa baseline for ternary RbAM (see §5.2).
Further, we show that our approach is robust to dif-
ferent primers in ablation studies (see §6) and that
it performs well on the recently proposed ARIES
benchmark (Gemechu et al., 2024) (see §7).

The code for all experiments is available at
github.com/dnzggg/Can-LLMs-Perform-RbAM.

2 Related Work

2.1 Relation-Based Argument Mining

The field of RbAM has received significant atten-
tion in recent years (Cabrio and Villata, 2018). Hou
and Jochim (2017) introduced a Joint Inference
model and compared it against baseline methods
of logistic regression, attention-based LSTMs, and
the EDITS method from Cabrio and Villata (2012),
which recognises textual entailment by calculat-
ing the distance between arguments. Their method
outperformed the baselines with an F1 score of
65, on the Debatepedia/Procon dataset (Cabrio and
Villata, 2014), which we also use (but note that
we include the Procon debates that they exclude).
Cocarascu and Toni (2017) used a deep learning ar-
chitecture with two separate LSTMs on the embed-
dings of the two arguments in each pair, concatenat-
ing the outputs using a softmax layer. Their method
achieved an F1 score of 89 on the Web-Content
dataset (Carstens and Toni, 2015) that we also use.
Cocarascu et al. (2020) used four deep learning
architectures with different types of embeddings
and compared them against baselines of Random
Forests and SVMs. Their method achieved a best
macro F1 score of 54, which performed similarly
to the baselines, on ten datasets, most of which we
also use4. Another relevant work is by Trautmann

4 We do not use AIFdb (https://corpora.aifdb.org/)
as it is not obvious how to map it univocally onto RbAM.

et al. (2020), who experimented with several vari-
ants of LSTMs, CAM-Bert, and TACAM-BERT,
achieving the best F1 score of 80 on the UKP cor-
pus (Stab et al., 2018) that we also use. Mean-
while, Jo et al. (2021) used Logical Mechanisms
and Argumentation Schemes, with baselines such
as TGA Net, Hybrid Net, BERT, BERT+Latent
Cross, and BERT+Multi-task Learning. Their best
model achieved an F1 score of 77 with a dataset
also collected from the online debate site Kialo as
one of our datasets, and an F1 score of 80 on a
similar dataset to Debatepedia/Procon (Cabrio and
Villata, 2014) that we use (but, again, we include
the Procon debates that they excluded). Ruiz-Dolz
et al. (2021) evaluated various BERT-based mod-
els against LSTMs, achieving an F1 score of 70
with RoBERTa-large on the US2016 debate corpus
and the Moral Maze multi-domain corpus, both
from AIFdb (which we do not use4). Finally, the
recently introduced ARIES benchmark (Gemechu
et al., 2024) consists of eight diverse datasets and
three LM-based baselines for RbAM (DialoGPT,
T5, and RoBERTa, which we use as our baseline),
we consider these datasets for our experiments (see
§7).

Overall, while advancements in RbAM have
clearly been made, our aim is to explore whether
LLMs’ linguistic abilities can set the bar higher in
this task.

2.2 Argument Mining via LLMs

Recently, the exceptional performance of LLMs
across a variety of NLP tasks has led to investiga-
tions into their performance in a number of AM
tasks. Chen et al. (2024) tested the capabilities
of LLMs on: claim detection, evidence detection,
stance detection5, evidence type classification, and
argument generation. They used GPT-3.5-turbo,
Flan-UL2, and Llama2-13B models, demonstrating
that the LLMs perform well in these tasks. Thor-
burn and Kruger (2022) fine-tuned GPT Neo, a
pre-trained LLM, to generate, by prompting, natu-
ral language arguments supporting or attacking a
topic argument. Promising results were found in
a study of LLMs’ potential for generating counter-
narratives to counteract online hate speech when
supplemented by argumentative strategies and anal-
ysis (Furman et al., 2023). Here, the argumentative
information, provided by either fine-tuning or prim-

5This deals with classifying the stance of arguments to-
wards topics, whereas RbAM deals with classifying the rela-
tion between (two) arguments.

https://github.com/dnzggg/Can-LLMs-Perform-RbAM
https://corpora.aifdb.org/
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ing, was shown to improve the quality of the gener-
ated counter-narratives in both English and Spanish.
LLMs’ potential for AM was also seen by van der
Meer et al. (2022), who used LLMs for argument
quality prediction, amounting to classifying the va-
lidity and novelty of a given argument, comprising
a premise and a conclusion. They achieved best per-
formance using a few-shot learning priming strat-
egy for the validity task and a Transformer-based
model fine-tuned for the novelty task.

Despite these successes, work is still to be done
before LLMs can be deemed to reason argumenta-
tively, a finding echoed by Hinton and Wagemans
(2023). Further challenges are pointed out by Ruiz-
Dolz and Lawrence (2023), who attempted to use
LLMs to detect argumentative fallacies but showed
that LLMs did not surpass the performance of the
RoBERTa-based Transformer model. Meanwhile,
Zubaer et al. (2023) focused on the classification of
argument components in the legal domain with the
GPT-3.5 and GPT-4 models, using a bespoke a few-
shot prompting strategy and showing that the LLMs
did not surpass the domain-specific BERT-based
baseline. Recently, Saadat-Yazdi and Kökciyan
(2024) explored the use of LLMs for argument
canonicalisation, which involves rephrasing argu-
ments into standard forms. They found that LLMs
underperform compared to humans.

Importantly, to the best of our knowledge, no
study to date considered the use of LLMs for
RbAM, which we study in this paper.

3 LLMs for RbAM

Our method for utilising LLMs to tackle RbAM is
outlined in Figure 1. We adopt a modular approach
that includes few-shot priming, which has been
shown to perform well with LLMs without the need
for fine-tuning (Brown et al., 2020), followed by
the task definition and prompting.

The primer includes labelled examples of attack,
support, and, for ternary RbAM, neither relations
between arguments, followed by an unlabelled ex-
ample in the prompt for the LLM to classify as
attack, support, or, for ternary RbAM, neither. The
primer can be adjusted to include n ∈ Z+ attack,
p ∈ Z+ support, and q ∈ Z+ neither relation exam-
ples. We will refer to different primers by the num-
ber of attack/support/neither examples, using the
format nApSqN (e.g. in our main ternary RbAM
experiments, we use one attack, support, neither ex-
amples, denoted as 1A1S1N). For the experiments,

the primers were fixed and were randomly drawn
from primer seeds from the datasets. The labelled
examples in the primer comprise of a parent ar-
gument (Arg1), a child argument (Arg2), and the
classification of the relation from the child to the
parent argument as either attack, support, or, for
ternary RbAM, neither, as shown in the top, pink
part of the rounded rectangle in Figure 1. The task
definition explains what the LLMs should output
and the definitions for each output, as shown in
the middle, yellow part of the rounded rectangle in
Figure 1. Finally, the prompt consists of a pair of
arguments presented as the examples in the primer,
but without indicating the relation, as shown in the
bottom, turquoise part of the rounded rectangle in
Figure 1. Here, blue text was added only if the
task was ternary RbAM.6 We conducted prelim-
inary experiments on a subset of the datasets to
decide which primer to use, as well as whether to
include the task definition and instruction template
(for the open-source models) (see Appendix A for
the preliminary experiments).

For the main binary RbAM experiments we used
a 2A2S-shot primer and for the ternary RbAM ex-
periments we used a 1A1S1N-shot primer. Addi-
tionally, the open-source models support the use of
an instruction template ([INST]. . . [/INST]) within
the prompt. We conducted preliminary experiments
to determine whether incorporating the instruction
template into LLMs was beneficial.

4 Experimental Set-up

In this section, we describe the datasets used (§4.1);
the baseline we compare against (§4.2); and the
LLMs we experiment with (§4.3).7

4.1 Datasets
We used eleven existing datasets, as follows (see
Appendix D for additional information, including
statistics). Note that the datasets labelled * are
those where we fully adapted the dataset to fit the
RbAM task. The dataset labelled † is an extension
of a dataset already fitting the RbAM task definition
to include additional relations between sentences
and topics. These datasets were originally given
for different tasks, such as determining relations
between sentences and topics or between premises
and claims. We adapted them to fit the RbAM task,
as will be discussed below.

6Some example prompts are given in Appendix C.
7All our experiments are executed with two RTX 4090

24GB on an Intel(R) Xeon(R) w5-2455X.
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Figure 1: Experimental (modular) pipeline for RbAM
with the few-shot learning primer, task definition, and
the prompt template P(A,B). The blue text is added for
ternary RbAM. The first and second examples are from
the Kialo dataset, and the third example is from the UKP
dataset. (The examples in the primers were not used in
our experiments.)

Some of these RbAM datasets only contain sup-
port/attack relations and are therefore suitable only
for the binary RbAM task. Other datasets, which
contain support/attack/neither relations, can be
used for both RbAM tasks (ignoring any relations
other than attack and support for binary). Datasets
that are suitable for both binary and ternary RbAM
tasks are labelled ‡.

Table 1 shows the number of support, attack,
neither relation instances in each dataset. This
information is important when the F1 scores are
calculated, especially for the baseline, as when
RoBERTa is fine-tuned on these datasets one can
easily see how balanced the datasets are.

Persuasive essays* (Essay) (Stab and Gurevych,
2017) is a corpus of 402 persuasive essays anno-
tated with argumentation structures. The initial
dataset is composed of major claims that embody
the author’s viewpoint on the topic, which is then
either supported or attacked by claims, which in
turn can be supported or attacked by premises. For
the purpose of the RbAM task, we have utilised the

Datasets #Support #Attack #Neither Total#
Essays* 4841 497 - 5338

Microtexts 322 121 - 443
Nixon-Kennedy‡ 356 378 1173 1907

Debatepedia/Procon 319 261 - 580
IBM-Debater* 1325 1069 - 2394

ComArg† 640 484 - 1124
CDCP 1284 0 - 1284
UKP*‡ 4944 6195 14353 25492

Web-content‡ 1348 1316 1394 4058
M-Arg‡ 384 120 3600 4104

Kialo 68549 65355 - 133904

Table 1: Number of support/attack/neither relations in
each dataset. A dash (-) in the #Neither column indicates
that the dataset does not contain the neither label.

text from the claims, major claims, and premises.
Microtexts (Mic) (Peldszus and Stede, 2015) is

a corpus of 112 short texts on controversial issues,
with 576 arguments. They were originally written
in German and have been professionally translated
to English.

Nixon-Kennedy debate‡ (NK) (Menini et al.,
2018) is a corpus from the 1960 Nixon-Kennedy
presidential campaign covering five topics: Cuba,
disarmament, healthcare, minimum wage, and un-
employment.

Debatepedia-Procon (DP) (Cabrio and Villata,
2014) is a corpus extracted from two online debate
platforms: Debatepedia8 and Procon9, where users
of both systems discuss a set of topics highlighting
whether their arguments are in favour of (support)
or against (attack) the topic or other users’ argu-
ments.

IBM-Debater* (IBM) (Bar-Haim et al., 2017) is
a dataset containing debates from 55 controversial
topics. These debates have been collected from
the debate motions database at the International
Debate Education Association (IDEA) website10.
The dataset includes topic texts and claims that
support or attack them. For the RbAM task, we
used both the topic texts and their claims.

ComArg† (Boltuzic and Snajder, 2014) is a cor-
pus of user comments collected from Procon9 and
IDEA10 platforms. It contains comments on two
topics, “Under God in Pledge” and “Gay Marriage”,
where each argument has a stance for or against one
of two topics. For our experiments, we extended
the dataset so that the parent argument is the topic
(predefined arguments as named in Boltuzic and
Snajder (2014)), which can be either "The words
‘under god’ should be in the U.S. pledge of Alle-
giance" or "Gay marriage should be legal". Also,

8https://idebate.net/resources/debatabase
9https://www.procon.org/

10https://idebate.net/

https://idebate.net/resources/debatabase
https://www.procon.org/
https://idebate.net/
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we set both explicit and vague/implicit attacks to
be attacks and both vague/implicit and explicit sup-
ports to be supports.

CDCP (Park and Cardie, 2018) is a corpus an-
notated with only support relations containing 731
user comments on Consumer Debt Collection Prac-
tices from the eRulemaking platform.

UKP*‡ (Stab et al., 2018) is a corpus of ar-
guments obtained from Web documents (includ-
ing news reports, editorials, blogs, debate forums,
and encyclopedias) over eight controversial topics:
abortion, cloning, death penalty, gun control, mari-
juana legalisation, minimum wage, nuclear energy,
and school uniforms. We adapted the parent argu-
ment for each topic to follow the format ‘topic is
good’ (e.g. for the topic of abortion, the parent
argument would be ‘abortion is good’).

Web-Content‡ (Web) (Carstens and Toni, 2015)11

contains arguments, adapted from the Argument
Corpus (Walker et al., 2012) extracted from an
online debate platform. It also includes arguments
from news articles, movies, debates of ethics, and
politics.

M-Arg‡ (Mestre et al., 2021) is a multimodal
dataset for argument mining, sourced from the US
2020 presidential debates and annotated through
crowd-sourcing. While the dataset includes both
audio and text, our study in this paper is concerned
with text-based LLMs. The dataset covers a wide
range of eighteen different topics from the debates,
some of the most common topics include COVID,
Racism, Climate change, and Economy.

Kialo is a dataset collected from the online de-
bate platform Kialo. Debates were scraped from
Kialo (in 2022) covering topics related to Politics,
Law, and Sports, and then filtered to include the
English-only debates.

4.2 Baseline
We opted to fine-tune RoBERTa, given its perfor-
mances in (Ruiz-Dolz et al., 2021). We fine-tuned
it with 75% of each dataset separately for 50 epochs
(25% of the datasets were kept for validation), us-
ing a batch size of 8, and a learning rate of 1e-5.
For each dataset, we selected the best model (over
the 50 epochs), i.e. that which achieved the highest
F1 score on the validation set. We then used these
candidate models (one for each dataset) to perform
inference on the other datasets and selected the best
(which turned out to be the one trained on the DP

11To access the dataset, see: https://www.doc.ic.ac.
uk/~oc511/ACMToIT2017_dataset.xlsx

dataset) as the baseline (for performances of all
these models, see §5.1 and §5.2).

4.3 Large Language Models

We chose three families of LLMs, where two were
open-source (in the sense that their architectures
and parameters are publicly available). Given the
large number of parameters and GPU space re-
quired by LLMs, there have been attempts to re-
duce their size by compressing them. Bitsandbytes
quantisation (Dettmers et al., 2023) is one such
technique that reduces the bit size of each weight
in the LLM. So, for all three open-source LLMs
considered, we experimented with 4bit quantisation
(so each weight is stored in 4 bits on the GPU).

For all models, we constrained the output to the
labels we consider for the task. Hyperparameters
for every model are set to the default selection of
temperature=0.7, top_p=1, do_sample=False, and
max_new_tokens=10, except for the closed-source
model where max_new_tokens=1.

Llama 2 Model The Llama 2 models (Touvron
et al., 2023) have been pre-trained with 2 trillion
tokens and are generally good at causal language
modelling. In our experiments, we decided to use
the Llama2-70B (4bit quantised, as the base model
needs nearly 140GB of GPU space), which has
70 billion parameters and is the best performing
Llama 2 model.

Mistral.AI Models The Mistral-7B model
(Jiang et al., 2023) is a 7 billion parameter pre-
trained and fine-tuned LLM. It is claimed that this
model performs better than any other open-source
LLM with 13 billion parameters, including the
Llama2-13B model (Jiang et al., 2023).

The Mixtral-8x7B model (Jiang et al., 2024)
builds on the Mistral-7B model by using 8 in-
stances of Mistral-7B: for each token, the model
selects two of the Mistral-7B models to produce
an output, which are then combined (Jiang et al.,
2024). Its performance is claimed to be equal to
the Llama2-70B model (Jiang et al., 2024). In our
experiments, we used the Mistral-7B model (4bit
quantised to ensure consistency across all models)
and the Mixtral-8x7B model (4bit quantised as the
base model needs nearly 95GB of GPU space).

OpenAI model The GPT-3.5-turbo model is
an LLM developed by OpenAI and has demon-
strated high performance in a wide range of natural
language processing tasks (Ye et al., 2023). We

https://www.doc.ic.ac.uk/~oc511/ACMToIT2017_dataset.xlsx
https://www.doc.ic.ac.uk/~oc511/ACMToIT2017_dataset.xlsx
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chose the GPT-3.5-turbo-0125 version as it had the
best performance/cost trade-off among the closed-
source LLMs.

5 Results

5.1 Binary RbAM
Baselines Table 2 shows the results for the base-
lines in the binary RbAM task, i.e. RoBERTa fine-
tuned on each dataset and then evaluated on the
remaining datasets.

RoBERTa fine-tuned with the DP dataset
achieved the highest micro F1 score of 76 and an F1

score better than other baselines in three datasets
(Kialo, M-Arg, and ComArg). Fine-tuning took
0.23 hours for the DP dataset.

RoBERTa fine-tuned with the Kialo and the IBM
datasets achieved a micro F1 score of 74 and 73, re-
spectively, which came close to the RoBERTa fine-
tuned with the DP dataset. RoBERTa fine-tuned
with Kialo achieved a better F1 score compared to
the other baselines in five datasets (NK, IBM, DP,
Web, and UKP). These datasets are larger than DP
and so fine-tuning took 53.73 hours for the Kialo
dataset and 0.96 hours for the IBM dataset12.

Large Language Models Table 3 shows the re-
sults. We can see that Mixtral-8x7B achieved the
highest micro F1 score of 82, outperforming all of
the baselines. Also, in eight of the datasets (IBM,
Essay, Kialo, M-Arg, Mic, Micro, Web, ComArg
and CDCP), it achieved the highest F1 score of all
LLMs (as well as better than all baselines in all of
these datasets except four). However, the inference
time of 0.75 seconds per argument pair for this
model is high compared to the baselines.

Llama2-70B performed almost as well as
Mixtral-8x7B, with a micro F1 score of 81. The av-
erage F1 score for the support labels was the same
for Llama2-70B but the average F1 score for the
attack labels a point lower. However, it achieved
the highest F1 scores in three datasets (NK, DP,
and UKP). Its inference time was even a higher
1.18 seconds per argument pair.

Mistral-7B performed well given that it is
smaller than the other LLMs used, achieving a mi-
cro F1 score of 75, which was close to the best
performing baseline. However, it did not outper-
form any other LLMs in any dataset. Mistral-7B
was also the fastest, with an inference time of 0.19
seconds per argument pair.

12 For all of the baseline models, a single inference took
0.005 seconds for each test sample.

GPT-3.5-turbo did not perform as well as we
expected; it was the worst performing LLM in the
binary RbAM task, achieving a micro F1 score of
71 (which still surpassed eight of the baselines).
We also tested GPT-4o-mini in a small subset of
the datasets (4000 samples randomly drawn from
the combination of the datasets), achieving a micro
F1 score of 78, i.e. better than GPT-3.5-turbo but
not Mixtral-8x7B.

In conclusion, Llama2-70B and Mixtral-8x7B
surpassed the baselines, including the state-of-the-
art RoBERTa model, with the latter outperforming
the former and also bringing the upsides of fast
inference time and fewer GPU requirements.

5.2 Ternary RbAM

Baseline The left side of Table 4 shows the re-
sults for the baselines in the ternary RbAM task,
i.e. RoBERTa fine-tuned on each dataset and then
evaluated on the remaining datasets.

RoBERTa fine-tuned with the UKP dataset
achieved the highest micro F1 score of 59, out-
performing other baselines in only the Web dataset.
Fine-tuning took 1.95 hours for the UKP dataset.

RoBERTa fine-tuned with the NK dataset
achieved a micro F1 score of 57, closely match-
ing the performance of the UKP fine-tuned model.
It also surpassed other baselines in two datasets
(M-Arg and UKP). The NK dataset is smaller than
UKP, so its fine-tuning took only 0.28 hours12.

Large Language Models The right side of Ta-
ble 4 shows the results for the LLMs on the ternary
RbAM task.

We can see that Mixtral-8x7B achieved the high-
est micro F1 score of 68, outperforming all of the
baselines and the other LLMs. Also, in three of the
datasets (M-Arg, UKP, and NK), it achieved the
highest F1 score of all LLMs (as well as better than
all baselines in all of these datasets except M-Arg).
However, the inference time of 0.83 seconds per
argument pair for this model is higher than that of
the baselines.

Mistral-7B performed well given that it is
smaller than the other LLMs, achieving a micro
F1 score of 64, which still outperformed all the
baselines. However, it did not outperform the other
LLMs in any dataset. Mistral-7B was also the
fastest LLM, with an inference time of 0.19 sec-
onds per argument pair.

GPT-3.5-turbo achieved a micro F1 score of 60,
which surpassed all of the baselines. However, it
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RoB NK RoB IBM RoB Essay RoB Kialo RoB DP RoB M-Arg RoB Micro RoB Web RoB UKP RoB ComArg RoB CDCP
NK - / - / - 60 / 55 / 58 65 / 0 / 49 56 / 67 / 63 65 / 31 / 54 65 / 7 / 49 64 / 1 / 48 46 / 48 / 47 54 / 46 / 50 65 / 4 / 49 65 / 0 / 49

IBM 72 / 26 / 59 - / - / - 76 / 37 / 65 85 / 82 / 83 82 / 78 / 80 71 / 11 / 56 60 / 33 / 50 68 / 17 / 53 58 / 69 / 64 87 / 83 / 86 71 / 0 / 55
Essay 95 / 5 / 90 89 / 41 / 81 - / - / - 85 / 38 / 75 90 / 42 / 83 94 / 9 / 88 79 / 14 / 66 56 / 16 / 42 71 / 25 / 58 94 / 45 / 90 95 / 0 / 91
Kialo 68 / 14 / 53 74 / 73 / 73 70 / 18 / 56 - / - / - 79 / 71 / 76 68 / 6 / 52 67 / 3 / 51 61 / 36 / 51 46 / 63 / 56 74 / 52 / 66 68 / 0 / 51

DP 72 / 23 / 59 84 / 82 / 83 75 / 34 / 64 90 / 89 / 89 - / - / - 71 / 1 / 55 71 / 0 / 55 61 / 43 / 54 62 / 67 / 64 85 / 78 / 82 71 / 0 / 55
M-Arg 76 / 29 / 64 77 / 50 / 69 87 / 3 / 76 74 / 52 / 66 87 / 60 / 80 - / - / - 87 / 11 / 77 62 / 37 / 53 60 / 47 / 54 87 / 35 / 79 86 / 0 / 76
Micro 83 / 3 / 71 77 / 52 / 69 85 / 28 / 76 73 / 53 / 65 83 / 51 / 75 82 / 11 / 70 - / - / - 60 / 34 / 50 52 / 44 / 48 83 / 33 / 72 84 / 0 / 73
Web 67 / 15 / 52 65 / 60 / 63 68 / 13 / 53 67 / 67 / 67 65 / 59 / 62 61 / 43 / 54 61 / 40 / 53 - / - / - 51 / 67 / 61 69 / 32 / 58 67 / 0 / 51
UKP 61 / 28 / 49 73 / 75 / 74 67 / 42 / 58 68 / 81 / 76 68 / 75 / 72 59 / 42 / 52 51 / 47 / 49 58 / 38 / 50 - / - / - 74 / 67 / 71 61 / 0 / 44

ComArg 72 / 2 / 57 73 / 71 / 72 76 / 36 / 65 71 / 74 / 73 82 / 73 / 78 71 / 20 / 57 72 / 5 / 57 72 / 3 / 57 59 / 62 / 60 - / - / - 73 / 0 / 57
CDCP 98 / - / 96 77 / - / 63 100 / - / 99 75 / - / 60 90 / - / 82 91 / - / 83 95 / - / 90 34 / - / 20 42 / - / 27 98 / - / 96 - / - / -

Mic Avg. 69 / 15 / 55 74 / 72 / 73 70 / 21 / 57 76 / 73 / 74 79 / 71 / 76 69 / 11 / 54 67 / 10 / 52 60 / 35 / 51 48 / 62 / 56 75 / 53 / 68 69 / - / 52
Train T. 0.29hr 0.96hr 2.14hr 53.73hr 0.23hr 0.19hr 0.18hr 1.07hr 4.47hr 0.45hr 0.52hr

Table 2: F1 scores (as a percentage) for support / attack / both (where both is the micro average) for various datasets
(rows) by the RoBERTa baselines, fine-tuned on the datasets (columns). Boldface font indicates the best performing
baseline for each dataset. The training time it takes for each RoBERTa model, fine-tuned on the datasets is given in
hours in the last row.

Llama2-70B Mistral-7B Mixtral-8x7B GPT-3.5-turbo Avg.
NK 70 / 68 / 69 67 / 43 / 58 69 / 34 / 58 51 / 70 / 63 62
IBM 92 / 91 / 92 86 / 85 / 85 93 / 92 / 93 85 / 85 / 85 89

Essays 90 / 44 / 84 84 / 32 / 74 91 / 44 / 84 87 / 35 / 78 80
Kialo 82 / 79 / 81 76 / 75 / 75 83 / 80 / 82 68 / 73 / 70 77

DP 94 / 93 / 93 89 / 87 / 88 91 / 89 / 90 84 / 83 / 83 89
M-Arg 77 / 60 / 71 72 / 57 / 66 81 / 60 / 75 75 / 56 / 68 70
Micro 78 / 48 / 69 75 / 47 / 66 81 / 50 / 72 71 / 46 / 62 67
Web 68 / 70 / 69 60 / 70 / 65 69 / 70 / 69 56 / 69 / 64 67
UKP 79 / 87 / 84 52 / 78 / 70 73 / 84 / 80 74 / 83 / 79 78

ComArg 75 / 73 / 74 69 / 71 / 70 80 / 76 / 78 58 / 70 / 65 72
CDCP 90 / - / 81 81 / - / 68 92 / - / 86 83 / - / 71 77

Mic Avg. 83 / 79 / 81 75 / 74 / 75 83 / 80 / 82 70 / 73 / 71 77

Inference T. 1.18s 0.19s 0.75s 0.43s

Table 3: F1 scores (as a percentage) for support / attack
/ both (where both is the micro average) relations in
various datasets (rows) for the models used (columns)
with 2A2S without task definition and without applying
instruction template. Boldface font indicates the best
performing model (for both relations) for each dataset.
The last row gives the time it takes for a single inference
for each model, in seconds.

also did not achieve better results than the other
LLMs in any dataset. We also tested GPT-4o-mini
in a small subset of the datasets (2000 samples ran-
domly drawn from the combination of the datasets),
achieving a micro F1 score of 63, i.e. better than
GPT-3.5-turbo but not Mixtral-8x7B or Mistral-7B.

Llama2-70B surprisingly, given its performance
in the binary RbAM task, achieved the lowest micro
F1 score of 54 for the ternary task.

To conclude, Mixtral-8x7B and Mistral-7B sur-
passed the baselines, including the state-of-the-art
RoBERTa, and the former outperformed the latter.

6 Ablation Studies

To validate the effectiveness of LLMs, we con-
ducted more experiments with different variations
of the main primer and prompt.

The main primer for the binary task is the 2A2S
primer. The variations considered for the ablation
studies were 2A1S, 1A2S, 1A1S primers, and zero-
shot (without primer). For zero-shot we included
the task definition for the (binary) RbAM task as
this gave better performance in the initial exper-

iments we conducted (see Appendix A). Table 5
shows the results13 for the ablation study on the bi-
nary RbAM task. For the open-source models, the
2A2S primer performed best. For GPT-3.5-turbo,
the zero-shot primer performed best, likely due to
the model’s ability to follow instructions (as in-
structions are included with zero-shot) rather than
primers.

For the ternary task the main prompt is 1A1S1N
primer. For the ablations we only considered the
variation without the primer (zero-shot). For zero-
shot we included instructions for the RbAM task
as, again, this gave better results in the initial ex-
periments we conducted (see Appendix A). Table 6
shows the results13 for the ablation study on the
ternary RbAM task. For most of the open-source
models, the 1A1S1N primer performs better (ex-
cept Llama2-70B, where the micro F1 scores are
equal). For GPT-3.5-turbo, the zero-shot primer
performed slightly better.

Overall, these results show that LLMs with
more (informative) examples perform better for
the RbAM task. However, even with imbalanced
primers or no primers, LLMs still perform close to
(and sometimes better than) the baselines.

7 Extra Ternary RbAM Datasets

We experimented with the recent14 ARIES bench-
mark (Gemechu et al., 2024) datasets, consisting of
seven datasets (AMP was not available). For these
datasets, we conducted experiments using the best
performing RoBERTa model (fine-tuned with the
UKP dataset) and the best performing LLM (the
Mixtral-8x7B model with 2A2S primer)15.

13For the results on individual labels, see Appendix B.
14The dataset was made available on 6/9/2024, which did

not give us enough time to run all the experiments.
15We also wanted to compare LLMs with the ARIES bench-

mark baselines; however, they reported macro F1 scores,
whereas we report micro F1 scores. In the future, we aim
to run their baselines to compare with LLMs for RbAM.
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Baselines LLMs for RbAM

RoB M-Arg RoB Web RoB UKP RoB NK Llama2-70B Mistral-7B Mixtral-8x7B GPT-3.5-turbo Avg.
M-Arg - / - / - / - 22 / 10 / 81 / 69 19 / 4 / 91 / 83 3 / 6 / 93 / 87 30 / 11 / 66 / 51 27 / 15 / 80 / 66 19 / 19 / 89 / 80 33 / 16 / 78 / 65 66
Web 0 / 0 / 51 / 34 - / - / - / - 24 / 14 / 55 / 40 3 / 1 / 51 / 35 53 / 54 / 55 / 54 44 / 44 / 56 / 49 30 / 37 / 58 / 48 47 / 51 / 58 / 53 51
UKP 0 / 0 / 72 / 56 38 / 55 / 2 / 33 - / - / - / - 10 / 14 / 72 / 56 59 / 58 / 53 / 56 52 / 64 / 76 / 68 52 / 64 / 76 / 69 57 / 59 / 66 / 62 64
NK 0 / 0 / 76 / 62 18 / 34 / 27 / 29 26 / 12 / 66 / 49 - / - / - / - 39 / 38 / 8 / 29 38 / 37 / 45 / 41 33 / 13 / 76 / 62 36 / 38 / 37 / 37 42

Mic Avg. 0 / 0 / 70 / 54 37 / 51 / 27 / 37 24 / 13 / 75 / 59 9 / 12 / 73 / 57 55 / 53 / 54 / 54 48 / 57 / 73 / 64 46 / 58 / 76 / 68 53 / 55 / 66 / 60 62

Time 0.07hr 0.58 1.95hr 0.28hr 1.3s 0.19s 0.83s 0.43s

Table 4: F1 scores (as a percentage) for support / attack / neither / all (where all is the micro average) relations in
various datasets (rows) for the baselines (left side columns) and models (right side columns) used with 1A1S1N with
task definition and without applying instruction template. RoB here stands for the RoBERTa baselines, fine-tuned
on the datasets (columns). Boldface font indicates the best performing baseline and model (for all relations) for
each dataset. The last row gives the time it took for fine-tuning for the baselines, in hours and the time it takes for a
single inference for each LLM, in seconds.

Llama2-70B Mistral-7B Mixtral-8x7B GPT-3.5-turbo

2A2S 0 2A1S 1A2S 1A1S 2A2S 0 2A1S 1A2S 1A1S 2A2S 0 2A1S 1A2S 1A1S 2A2S 0 2A1S 1A2S 1A1S

NK 69 64 59 60 65 58 63 62 61 59 58 64 68 53 58 63 68 64 52 63
IBM 92 86 91 75 80 85 72 85 86 88 93 84 95 89 91 85 86 86 76 89

Essays 84 82 90 73 70 74 78 76 74 77 84 81 84 83 78 78 86 77 77 82
Kialo 81 67 62 69 73 75 67 77 75 72 82 68 80 80 81 70 71 76 67 74

DP 93 84 87 84 85 88 83 87 86 88 90 86 92 90 90 83 88 86 78 87
M-Arg 71 73 78 40 51 66 71 55 55 68 75 70 71 70 73 68 75 68 64 67
Micro 69 63 67 55 59 66 62 63 66 71 72 70 70 72 73 62 70 61 62 67
Web 69 62 58 55 64 65 60 64 62 66 69 67 67 68 70 64 65 66 57 64
UKP 84 80 78 75 83 70 78 69 63 75 80 77 80 72 76 79 83 80 74 82

ComArg 74 73 77 64 70 70 72 75 65 70 78 73 82 72 76 65 79 70 46 64
CDCP 81 81 98 54 50 68 76 62 63 66 86 77 86 88 81 71 86 85 67 76

Mic Avg. 81 74 76 71 74 75 71 70 74 72 82 74 79 79 80 71 77 74 68 74

Table 5: Results from ablation studies for the binary RbAM task. Only the micro F1 score has been reported for
each dataset, model, primer combination. Boldface font indicates the best performing combination.

Llama2-70B Mistral-7B Mixtral-8x-7B GPT-3.5-turbo

1A1S1N 0 1A1S1N 0 1A1S1N 0 1A1S1N 0
M-Arg 51 49 66 76 80 68 65 67
Web 54 58 49 43 48 57 53 52
UKP 56 58 68 59 69 59 62 65
NK 29 20 41 51 62 47 37 25

Mic Avg. 54 54 64 61 68 58 60 61

Table 6: Results from ablation studies for the ternary
RbAM task. Only the micro F1 score has been reported
for each dataset, model, primer combination. Boldface
font indicates the best performing combination.

MTC AAEC CDCP ACSP AstRCT US2016 QT30
RoB 45 46 51 66 45 62 64

LLMs 62 56 63 61 63 62 66

Table 7: Micro F1 scores of the best baseline (RoBERTa
fine-tuned with the UKP dataset) compared with the best
combination of LLMs for RbAM (Mixtral-8x7B with
2A2S shot, excluding task definition and applying in-
struction template) on the ARIES benchmark. Boldface
font indicates the best performing model.

Table 7 presents the results from the experiments
on the ARIES datasets. It can be seen that Mixtral-
8x7B performed better in most datasets, except
ACSP. These results further indicate that LLMs are
effective at RbAM.

8 Conclusion and Future Work

We have introduced a method for the RbAM task
using general purpose LLMs, appropriately primed

and prompted. We showed, with experiments on
eleven datasets and four LLMs, that Llama2-70B
and Mixtral-8x7B surpassed the RoBERTa base-
line in the binary RbAM task, with the latter out-
performing the former and also having faster infer-
ence time and fewer GPU requirements. We also
showed, with experiments on four datasets and four
LLMs, that Mixtral-8x7B surpassed the RoBERTa
baseline in the ternary RbAM task. Further, we
demonstrated that our approach is robust to differ-
ent primers with ablation studies, where the results
show that more examples in the primer give better
results. Finally, we showed that LLMs perform
better than the RoBERTa baseline in the recently
proposed ARIES benchmark.

For future work, there are many potential av-
enues, including the following four. 1) We could
mask the entities in sentences to outline their ar-
gumentative structure, which is shown to improve
performance for the argument retrieval task (Ein-
Dor et al., 2020). 2) We plan to handle out-of-
distribution scenarios as in (Waldis et al., 2024).
3) We want to test whether taking context into ac-
count when LLMs are prompted for RbAM would
improve performance, as in (Mezza et al., 2024). 4)
We would like to consider RbAM alongside other
AM tasks, in the spirit of (Sun et al., 2024), and also
leverage on insights from argumentation theory.
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9 Limitations

There are some limitations of our work. First, even
though we test LLMs for RbAM on eleven datasets,
its generalisability to other domains not covered by
the datasets remains uncertain. Different domains
may present unique challenges where LLMs could
fail. Further, the datasets we used are in English:
we are not sure if LLMs will perform as well on
RbAM in other languages. GPU limitations affect
our selection of small/quantised models, and we
were not able to fine-tune any of the LLMs as it
was computationally infeasible.

10 Ethics Statement

There are potential risks of LLMs such as social
bias and generation of misinformation. In this
work, we only use LLMs to generate a single to-
ken which is support/attack/neither, so there are no
risks of generating biased or false information.
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Appendix

A Preliminary Experiments

In this section, we explain the preliminary exper-
iments that we have run to select the best primer
and hyperparameters.

A.1 2A2S and Zero-Shot for Binary RbAM

We have randomly selected four 2A2S primer
seeds, consisting of two support and two attack
relations from DebatepediaProcon dataset (except
seed 3, which was generated by us) as the baseline
trained with DP dataset has achieved the best accu-
racy. Then, we tested our prompt with these primer
seeds on 4000 randomly selected examples from
all the datasets using the Mistral-7B model. We
have also tested whether including task definition
and instruction template was beneficial.

Zero-Shot Seed 0 Seed 1 Seed 2 Seed 3
65 / 56 / 61 56 / 73 / 64 65 / 74 / 69 52 / 72 / 62 76 / 75 / 75
70 / 50 / 60 71 / 75 / 73 70 / 72 / 71 66 / 75 / 71 74 / 74 / 74
77 / 73 / 75 64 / 72 / 68 66 / 73 / 69 69 / 74 / 71 72 / 60 / 66
70 / 67 / 69 71 / 68 / 70 65 / 70 / 67 66 / 70 / 68 70 / 69 / 70

Table 8: Prompt selection for 2A2S: • First row without
task definition, without applying instruction template;
• second row with task definition, without applying tem-
plate, • third row without task definition, with applying
instruction template; • final row with task definition,
with applying template.

We have decided to include task definition and
not use instructions to zero-shot prompts as that
combination achieved the highest accuracy. For
2A2S primer we decided not to include task defi-
nition, not to apply instruction template, and use
seed 2.

A.2 2A1S and 1A2S for Binary RbAM

We have randomly selected five 2A1S and 1A2S
primer seeds, from the DebatepediaProcon dataset
(except seeds 3 and 4, which was derived from
the 2A2S primer). Again, we tested our prompt
with these primer seeds on 4000 randomly selected
examples from all the datasets using the Mistral-7B
model without applying instruction template and
without including task definition.

Seed 0 Seed 1 Seed 2 Seed 3 Seed 4

42 / 69 / 55 73 / 74 / 73 75 / 78 / 76 73 / 68 / 71 75 / 69 / 72

Table 9: Prompt selection for 2A1S primer.

We have found that seed 2 was better for the
2A1S primer. Therefore, seed 2 was used in the
ablation studies for 2A1S primer.

Seed 0 Seed 1 Seed 2 Seed 3 Seed 4

61 / 73 / 67 69 / 76 / 73 68 / 73 / 70 74 / 74 / 74 66 / 74 / 70

Table 10: Prompt selection for 1A2S primer.

For 1A2S primer seed 3 has achieved the highest
micro F1 score. Therefore, seed 3 was picked for
the ablation studies for 1A2S primer.

A.3 1A1S for Binary RbAM

We have selected four 1A1S primer seeds which
was derived from the 2A2S primer. Again, we
tested our prompt with these primer seeds on 4000
randomly selected examples from all the datasets
using the Mistral-7B model without applying in-
struction template and without including task defi-
nition.

Seed 0 Seed 1 Seed 2 Seed 3

71 / 69 / 70 75 / 68 / 72 70 / 72 / 71 70 / 73 / 71

Table 11: Prompt selection for 1A1S primer.

Seed 1 was the best performing seed, therefore,
in the ablation studies we have selected seed 1 for
1A1S primer.

A.4 Zero-Shot and 1A1S1N for Ternary
RbAM

We have selected three 1A1S1N primer seeds, con-
sisting of one support, one attack (where these re-
lations were derived from the 1A1S primer), and
one no relations randomly drawn from the UKP
dataset (as the baseline trained with UKP dataset
has achieved the best accuracy). Then, we tested
our prompt with these primer seeds on 2000 ran-
domly selected examples from all the datasets using
the Mistral-7B model. We have also tested whether
including task definition and instruction template
was beneficial.

We have decided to include task definition and
use instruction template for zero-shot prompts as
this combination achieved the highest accuracy. For
1A1S1N primers we decided to include task defi-
nition, not to apply instruction template, and use
seed 0.
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Zero-Shot Seed 0 Seed 1 Seed 2
40 / 37 / 55 / 48 46 / 35 / 58 / 50 39 / 46 / 39 / 41 38 / 45 / 34 / 37
52 / 8 / 72 / 54 51 / 56 / 74 / 65 39 / 54 / 74 / 62 32 / 50 / 75 / 61
48 / 49 / 61 / 56 47 / 31 / 72 / 58 47 / 39 / 75 / 61 47 / 46 / 73 / 62
51 / 26 / 73 / 58 44 / 55 / 75 / 64 40 / 48 / 76 / 62 31 / 44 / 75 / 59

Table 12: Prompt selection for 1A1S1N: • First row
without task definition, without applying instruction
template; • second row with task definition, without
applying template, • third row without task definition,
with applying instruction template; • final row with task
definition, with applying template.

B Full Results from the Ablation Studies

This section presents the full results from the abla-
tion studies.

B.1 Zero-Shot Experiments
B.2 2A1S-Shot Experiments
B.3 1A2S-Shot Experiments
B.4 1A1S-Shot Experiments
B.5 Zero-Shot Ternary Experiments

C Example Prompts

In this section we give example prompts gener-
ated from each dataset (except the Kialo and UKP
datasets as these datasets do not allow us to share
them), as seen from Figures 2,3,4,5,6,7,8,9.

Figure 2: An example prompt drawn from the Essays
dataset used in the RbAM experiments.

D Datasets

Number of average words and characters for each
dataset are given in Table 18. This kind of statistics

Figure 3: An example prompt drawn from the Micro-
texts dataset used in the RbAM experiments.

Figure 4: An example prompt drawn from the Nixon-
Kennedy dataset used in the RbAM experiments.



8531

Llama2-70B Mistral-7B Mixtral-8x7B GPT-3.5-turbo-0125

NixonKennedyDataset 63 / 65 / 64 61 / 65 / 63 67 / 61 / 64 70 / 67 / 68
IBMDebaterDataset 87 / 85 / 86 71 / 74 / 72 84 / 84 / 84 89 / 83 / 86

EssaysRelationDataset 87 / 32 / 82 83 / 29 / 78 85 / 37 / 81 91 / 40 / 86
KialoDataset 71 / 63 / 67 68 / 66 / 67 73 / 61 / 68 77 / 65 / 71

DebatepediaProconDataset 86 / 82 / 84 84 / 81 / 83 88 / 84 / 86 90 / 85 / 88
M-ArgDataset 78 / 59 / 73 75 / 57 / 71 74 / 59 / 70 80 / 60 / 75

MicrotextsDataset 71 / 42 / 63 71 / 37 / 62 77 / 53 / 70 79 / 47 / 70
WebDataset 62 / 62 / 62 58 / 62 / 60 64 / 70 / 67 65 / 64 / 65
UKPDataset 77 / 83 / 80 73 / 81 / 78 69 / 83 / 77 80 / 85 / 83

ComArgDataset 74 / 70 / 73 71 / 74 / 72 72 / 74 / 73 81 / 76 / 79
CDCPDataset 81 / 0 / 81 76 / 0 / 76 77 / 0 / 77 86 / 0 / 86

Avg. 72 / 65 / 69 69 / 67 / 68 74 / 64 / 70 78 / 67 / 74

Table 13: F1 scores (as a percentage) for support / attack / both (where both is the micro average) relations in
various datasets (rows) for the models used (columns) with zero-shot without task definition and without applying
instruction template. Boldface font indicates the best performing model (for both relations) for each dataset.

Llama2-70B Mistral-7B Mixtral-8x7B GPT-3.5-turbo-0125

NixonKennedyDataset 68 / 50 / 59 53 / 70 / 62 72 / 64 / 68 61 / 68 / 64
IBMDebaterDataset 93 / 90 / 91 85 / 84 / 85 95 / 94 / 95 86 / 86 / 86

EssaysRelationDataset 95 / 43 / 90 81 / 32 / 76 89 / 40 / 84 81 / 34 / 77
KialoDataset 74 / 49 / 62 75 / 78 / 77 80 / 80 / 80 76 / 76 / 76

DebatepediaProconDataset 89 / 85 / 87 87 / 86 / 87 93 / 92 / 92 87 / 85 / 86
M-ArgDataset 85 / 56 / 78 57 / 50 / 55 75 / 58 / 71 72 / 55 / 68

MicrotextsDataset 84 / 20 / 67 69 / 46 / 63 76 / 54 / 70 66 / 50 / 61
WebDataset 70 / 46 / 58 56 / 71 / 64 64 / 69 / 67 64 / 69 / 66
UKPDataset 79 / 77 / 78 56 / 79 / 69 73 / 85 / 80 74 / 84 / 80

ComArgDataset 81 / 72 / 77 74 / 77 / 75 82 / 81 / 82 69 / 72 / 70
CDCPDataset 98 / 0 / 98 62 / 0 / 62 86 / 0 / 86 85 / 0 / 85

Avg. 76 / 53 / 68 74 / 77 / 76 80 / 80 / 80 76 / 76 / 76

Table 14: F1 scores (as a percentage) for support / attack / both (where both is the micro average) relations in
various datasets (rows) for the models used (columns) with 2A1S without task definition and without applying
instruction template. Boldface font indicates the best performing model (for both relations) for each dataset.
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Llama2-70B Mistral-7B Mixtral-8x7B GPT-3.5-turbo-0125

NixonKennedyDataset 48 / 71 / 63 66 / 57 / 62 70 / 37 / 59 33 / 70 / 58
IBMDebaterDataset 72 / 78 / 75 86 / 85 / 86 89 / 88 / 89 73 / 79 / 76

EssaysRelationDataset 77 / 32 / 65 79 / 30 / 67 88 / 40 / 80 82 / 32 / 71
KialoDataset 63 / 76 / 71 76 / 74 / 75 81 / 78 / 80 60 / 73 / 68

DebatepediaProconDataset 83 / 85 / 84 87 / 85 / 86 91 / 89 / 90 77 / 81 / 79
MArgDataset 39 / 45 / 42 56 / 50 / 53 74 / 58 / 68 66 / 54 / 61

MicrotextsDataset 57 / 51 / 54 72 / 51 / 64 79 / 53 / 71 66 / 50 / 60
WebDataset 40 / 71 / 61 54 / 71 / 64 65 / 71 / 68 45 / 70 / 61
UKPDataset 66 / 83 / 77 46 / 77 / 68 61 / 81 / 74 65 / 82 / 76

ComArgDataset 59 / 71 / 66 63 / 69 / 66 72 / 73 / 72 32 / 65 / 54
CDCPDataset 54 / 0 / 37 63 / 0 / 46 88 / 0 / 79 67 / 0 / 50

Mic Avg. 63 / 76 / 71 74 / 73 / 74 80 / 78 / 79 62 / 73 / 68

Table 15: F1 scores (as a percentage) for support / attack / both (where both is the micro average) relations in
various datasets (rows) for the models used (columns) with 1A2S without task definition and without applying
instruction template. Boldface font indicates the best performing model (for both relations) for each dataset.

Llama2-70B Mistral-7B Mixtral-8x7B GPT-3.5-turbo-0125

NixonKennedyDataset 57 / 71 / 65 68 / 45 / 59 69 / 34 / 58 51 / 70 / 63
IBMDebaterDataset 78 / 81 / 80 89 / 86 / 88 92 / 91 / 91 89 / 88 / 89

EssaysRelationDataset 81 / 33 / 70 86 / 30 / 77 87 / 39 / 78 89 / 35 / 82
KialoDataset 68 / 77 / 73 75 / 67 / 72 82 / 80 / 81 74 / 73 / 74

DebatepediaProconDataset 84 / 85 / 85 89 / 86 / 88 91 / 89 / 90 88 / 86 / 87
MArgDataset 53 / 49 / 51 74 / 57 / 68 80 / 61 / 73 74 / 56 / 67

MicrotextsDataset 65 / 50 / 59 79 / 51 / 71 81 / 56 / 73 77 / 44 / 67
WebDataset 49 / 72 / 64 64 / 67 / 66 68 / 71 / 70 59 / 68 / 64
UKPDataset 78 / 87 / 83 68 / 80 / 75 64 / 82 / 76 78 / 84 / 82

ComArgDataset 67 / 72 / 70 72 / 68 / 70 78 / 74 / 76 54 / 70 / 64
CDCPDataset 66 / 0 / 50 79 / 0 / 66 90 / 0 / 81 87 / 0 / 76

Mic Avg. 70 / 77 / 74 76 / 68 / 72 81 / 79 / 80 75 / 74 / 74

Table 16: F1 scores (as a percentage) for support / attack / both (where both is the micro average) relations in
various datasets (rows) for the models used (columns) with 1A1S without task definition and without applying
instruction template. Boldface font indicates the best performing model (for both relations) for each dataset.

Llama2-70B Mistral-7B Mixtral-8x7B GPT-3.5-turbo-0125

M-ArgDataset 27 / 13 / 52 / 49 30 / 18 / 82 / 76 30 / 14 / 74 / 68 28 / 21 / 72 / 67
WebDataset 57 / 49 / 68 / 58 48 / 21 / 60 / 43 56 / 47 / 67 / 57 55 / 39 / 61 / 52
UKPDataset 52 / 55 / 60 / 58 51 / 33 / 73 / 59 54 / 57 / 62 / 59 56 / 60 / 71 / 65

NixonKennedyDataset 38 / 35 / 10 / 20 41 / 20 / 64 / 51 42 / 18 / 58 / 47 35 / 22 / 23 / 25
Mic Avg. 50 / 49 / 58 / 54 29 / 48 / 73 / 61 53 / 51 / 65 / 58 54 / 51 / 69 / 61

Table 17: F1 scores (as a percentage) for support / attack / neither / both (where both is the micro average) relations
in various datasets (rows) for the models used (columns) with zero-shot with task definition and with applying
instruction template. Boldface font indicates the best performing model (for both relations) for each dataset.
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Figure 5: An example prompt drawn from the Debate-
pedia/Procon dataset used in the RbAM experiments.

Figure 6: An example prompt drawn from the IBM-
Debater dataset used in the RbAM experiments.

Figure 7: An example prompt drawn from the ComArg
dataset used in the RbAM experiments.

Figure 8: An example prompt drawn from the CDCP
dataset used in the RbAM experiments.
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Figure 9: An example prompt drawn from the Web-
Content dataset used in the RbAM experiments.

help with understanding why all the models under-
performed on a specific dataset. For example, in
the Nixon-Kennedy dataset the average argument
is very long with 103.57 words per argument which
contains a lot more information for any model to
process and it can be seen that the accuracy is lack-
ing.

Datasets
Average #
of words

Average # of
characters

Essays 14.7 87.09
Microtexts 13.58 81.3

Nixon-Kennedy 103.57 539.21
Debatepedia/Procon 34.81 215.22

IBM-Debater 10.78 68.84
ComArg 56.81 318.55
CDCP 15.4 88.11
UKP 15.33 83.64

Web-content 19.87 112.94
Kialo 21.84 135.69

Table 18: Statistical features of each dataset.
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