
Proceedings of the 31st International Conference on Computational Linguistics, pages 8399–8417
January 19–24, 2025. ©2025 Association for Computational Linguistics

8399

Rule-KBQA: Rule-Guided Reasoning for Complex Knowledge Base
Question Answering with Large Language Models

Zhiqiang Zhang1, Liqiang Wen1, Wen Zhao1,
1Peking University, Beijing, China

zhangzhiqiang@stu.pku.edu.cn, {wenlq,zhaowen}@pku.edu.cn

Abstract

Knowledge base question answering (KBQA)
is recognized as a challenging task, espe-
cially when parsing complex questions into
executable logical forms. Traditional semantic
parsing (SP)-based approaches exhibit inconsis-
tent performance in handling various complex
questions. As large language models (LLMs)
have exhibited exceptional reasoning ability
and language comprehension, recent studies
have employed LLMs for semantic parsing to
directly generate logical forms that can be ex-
ecuted on knowledge bases (KBs) to achieve
the desired results. However, these methods of
relying exclusively on LLMs to ensure gram-
maticality, faithfulness, and controllability may
diminish their effectiveness due to hallucina-
tions in the reasoning process. In this paper,
we introduce Rule-KBQA, a framework that
employs learned rules to guide the generation
of logical forms. The proposed method con-
tains two phases, an induction phase and a de-
duction phase. In the induction phase, we ini-
tially extract rules from the existing data and
then employ the Rule-Following Fine-Tuned
(RFFT) LLM to generate additional rules, ul-
timately constructing a comprehensive rule li-
brary. In the deduction phase, a symbolic agent,
guided by learned rules, explores the environ-
ment KB to incrementally construct executable
logical forms. Meanwhile, we leverage the dis-
criminative capability of LLMs to evaluate the
plausibility of candidate decisions. Extensive
experiments indicate that our method achieves
competitive results on standard KBQA datasets,
clearly demonstrating its effectiveness.

1 Introduction

Knowledge base question answering (KBQA) is a
crucial task aimed at accurately interpreting and
answering user inquiries using knowledge bases
(KBs) with extensive structured information, such
as Freebase (Bollacker et al., 2008) and Wikidata
(Tanon et al., 2016). Its wide-ranging application

potential across multiple fields has made it a fo-
cal point of both academic research and industrial
innovation. An important direction in KBQA is
parsing natural language questions as logical forms
(e.g., SPARQL), which can be directly executed on
the KG to yield answers.

Answering complex questions requires more in-
formation and even functional operations, such as
comparison, aggregation, and sorting. Semantic
parsing (SP) is regarded as an effective strategy
for understanding the compositional semantics of
complex questions, which converts an unstructured
question into its structured representation. Some
methods (Reddy et al., 2014; Hu et al., 2018a,b)
convert questions into semantic graphs using a
parser, which are subsequently transformed into
query graphs based on predefined rules. Free from
intermediate semantic graphs, in (Das et al., 2021;
Ye et al., 2022; Yu et al., 2023), the executable
logical forms can be directly generated through
pre-trained generative models to enable efficient
querying of structured knowledge bases.

The emergence of large language models
(LLMs), such as GPT-4 (Achiam et al., 2023) and
Llama (Touvron et al., 2023), has led to signifi-
cant advancements in various natural language pro-
cessing (NLP) tasks, driven by their exceptional
reasoning capability and language comprehension.
Therefore, leveraging LLMs to enhance KBQA sys-
tems is an intuitive and promising approach. These
methods (Li et al., 2023; Luo et al., 2023; Gu et al.,
2023; Sun et al., 2024; Xiong et al., 2024) integrate
LLMs with KBs, where KBs provide accurate and
comprehensive factual information in a triple for-
mat while LLMs offer advanced natural language
processing capabilities, thereby setting new bench-
marks in the KBQA domain.

Despite these advancements, there are still sev-
eral challenges to be addressed.

Complex questions handling. Complex ques-
tion answering often involves performing various

8400

reasoning operations, such as logical, comparative,
and quantitative reasoning, to extract the relevant
answers from KBs. Consequently, the generated
logical forms must integrate more complicated syn-
tax, often involving constructs like UNION, FILTER,
aggregation (e.g., MAX, COUNT) functions, and even
nested queries. The complexity of logical forms
results in huge search space, making it challeng-
ing to identify the correct logical form from a vast
number of candidates.

Inconsistent performance across various ques-
tions. The traditional SP-based approaches are
typically to train a single model to handle all com-
plex questions. However, complex questions may
exhibit diversity due to their inherent characteris-
tics. For instance, in the ComplexWebQuestions
dataset (Talmor and Berant, 2018), samples are cat-
egorized into four distinct types, with an uneven
distribution of data across these types. Further-
more, the difficulty levels of different questions
may vary. Therefore, such models often struggle
to find a global optimum in the parameter space
that fits all samples, leading to inconsistent perfor-
mance in answering different complex questions.

Overburdened large language models. While
the advent of LLMs has opened new avenues for en-
hancing KBQA systems, most existing approaches
overly shift the burden of performance improve-
ment onto the LLMs. Directly using LLMs to gen-
erate logical forms may be suboptimal (Gu et al.,
2023), as hallucination can undermine both gram-
maticality (i.e., compliance with SPARQL query
syntax) and faithfulness (i.e., executability within
the knowledge base). Additionally, autoregressive
generation with LLMs lacks fine-grained control
over reasoning.

To tackle these challenges, we propose the Rule-
KBQA framework, which consists of an induction
phase and a deduction phase. Our approach lever-
ages the rules acquired during the induction phase
to accurately guide the generation of logical forms
in the deduction phase. Specifically, in the induc-
tion phase, we formulate rules to describe diverse
logical forms, as regardless of the complexity of
their syntax, they can be decomposed into entities,
variables, values, relationships, and other built-in
properties. Subsequently, the rules can be extracted
from extant question-SPARQL paired datasets. Fur-
thermore, to enable LLMs to accurately generate
new rules, we employ the Rule-Following Fine-
Tuning (RFFT) technique (Hu et al., 2024) that ex-
plicitly incorporates rule generation guidelines into

the input, forcing LLMs to reference and follow the
necessary rules step by step during the reasoning
process. Ultimately, these rules constitute a com-
prehensive rule library that can guide the parsing
process for various questions, thereby ensuring per-
formance consistency. In the deductive phase, a
symbolic agent, guided by the learned rules, inter-
acts with the KB environment to propose candidate
decisions for the generation of logical forms. This
process guarantees both grammaticality and faith-
fulness of the generated logical forms. Due to the
huge search space, the agent is designed to search
in the environment and incrementally generate the
logical forms. Meanwhile, we utilize the discrimi-
native capability of LLMs to assess the plausibility
of each candidate decision, rather than relying on
their generative capability. This reduces the burden
on the LLMs and enhances the controllability of
the generative process.

We validate the efficacy of the proposed frame-
work through comprehensive experiments on
widely-used benchmark datasets. Experimental
results demonstrate that our method achieves com-
petitive performance compared to state-of-the-art
approaches for complex KBQA.

2 Related Work

Our KBQA method is closely related to the studies
on Semantic Parsing and Large Language Models.
Semantic Parsing (SP) for KBQA. SP-based
methods initially convert questions into logical
forms, subsequent to which they execute queries
against the knowledge base to extract the corre-
sponding answers. Early works (Yih et al., 2015;
Hu et al., 2018a,b) typically engage in semantic
parsing by generating query graphs, which are anal-
ogous to subgraphs within the knowledge base and
can be directly mapped to logical forms. Lan and
Jiang (2020a) integrate constraints within the query
graph, thereby efficiently reducing the search space
and enabling a more adaptable generation of query
graphs. To avoid producing noisy query graphs,
Chen et al. (2021b) optimize the process of candi-
date query generation by utilizing predictions of
query structure. As generative models gain promi-
nence, the executable logical forms can be directly
generated via them, thereby facilitating efficient
querying within knowledge bases. Several stud-
ies (Das et al., 2021; Ye et al., 2022; Yu et al.,
2023) initially extract key components like entities,
relations, subgraphs, or text from the knowledge

8401

1. Generate the empty rule
structure is generated.
2. Fil l the empty rule
based on the requi red
constraint type and rule
hop count .
3.1 If c = Basic, Iteratively
generate h basic triples in
the notUnion section of
rule.

c = Com, h = 3
1. generate empty rule
2. h = 3, only generate 3
triples in notUnion sections
2.1If c = Com, firstly generate
a comparison triple.
[Comparison,[var_1,>,val_0]]

 The related NL question is
“What zoo in Sydney,
Australia opened after 1972?”

NL Question SPARQL QueryExisting Dataset

Question:What language is spoken in the location that appointed
Michelle Bachelet to a governmental position speak?

Rule:{SELECT : [ans], WHERE : {
 notUnion: [[Basic,[var_0,rel_0,var_1],
 [Basic,[var_1,rel_2,ent_3]],
 [Basic,[var_0,rel_1,ans]]],
 union:[],
 subQuery:[]}
 orderBy: null}

Input：

Output：

Question:What language is spoken in the location that appointed
Michelle Bachelet to a governmental position speak?
Category: Basic_3_hop

Rule Mining by Rule Definition and Category

Template

SPARQL:SELECT DISTINCT ?x WHERE {
?c ns:governmental_jurisdiction.governing_officials ?k .
?k ns:government_position_held.appointed_by ns:m.03wws
?c ns:location.country.languages_spoken ?x .}

Rule Library
Rule1,Question1,

Category1

Rule2,Question2,
Category2...

Rule Generator

 LLM

Template Rule-Following
Fine-Tuning

Input:
Follow the rules step by
step to generate the rule:
Com_3_hop

 Rule Guidelines

3 . 6 I f c = O r d , f i l l t h e
orderBy section, and fill the
notUnion section with h-1
triples.
Finally, generate a related
NL question.
Output:

Input Question:
What are the governmental types in the country
whose national anthem is Tien Quan?

Retrieved Rule:
{ SELECT : [ans], WHERE:{notUnion:[[Basic,[var_0,rel_0,
var_1],[Basic,[var_1,rel_2,ent_3]],[Basic,[var_0,rel_1,an
s]],union:[],subQuery:[]} orderBy: null}

Rule Library

Retrieve

KB Environment Symbolic Agent
Interaction

Guide

SPARQL Query:
SELECT DISTINCT ?x WHERE {?c ns:location.country.
national_anthem ?k .?k ns:government.national_anthem
_of_a_country.anthem ns:m.01kvf8 . ?c ns:location.coun
try.form_of_government ?x .}

SPARQL Convert

Rule-Guide Reasoning

Induction Phase Deduction Phase

Figure 1: Overall architecture of our proposed method.

base, using them as supplementary data, before
generating executable logical forms directly via
pre-trained language models such as T5. Never-
theless, this method does not guarantee uniform
efficacy of the model across various questions, and
it exhibits a deficiency in the transparency of the
reasoning process.

Large Language Models (LLMs) for KBQA. Var-
ious methods have been proposed to unify KBs and
LLMs to solve the KBQA task, where KBs provide
accurate and comprehensive factual information in
a triple format while LLMs offer advanced natural
language processing capabilities. Some methods
(Li et al., 2023; Luo et al., 2023) directly treat
LLMs as semantic parsers that generate an initial
logical form corresponding to a given question,
followed by retrieving and replacing entities and re-
lations from the KB. In addition, recent approaches
conceptualize LLMs as agents that engage in multi-
turn interactions with a KB environment to derive
answers. Within this framework, Sun et al. (2024)
interactively explore relational paths in KBs step
by step and performs reasoning based on the re-
trieved paths. Xiong et al. (2024) propose an it-
erative, dialogue-based problem-solving process,
which enables semantic parsing and SPARQL gen-
eration by developing three generic APIs for KB
interaction. Nevertheless, relying solely on LLMs
to ensure grammaticality, faithfulness, and control-
lability may affect models’ effectiveness due to
hallucinations in the reasoning process. Therefore,
Gu et al. (2023) employ a symbolic agent to explore

the KB environment to propose valid plans and the
LLM only focuses on evaluating the plausibility of
the proposed plans. However, the agent struggles
to formulate effective plans when confronted with
complex questions that require various reasoning
operations.

3 Preliminaries

Logical Form. A logical form is a structured rep-
resentation of a natural language question. For
example, SPARQL usually serves as a logical form
to represent complex questions, which expresses
relationships between entities in a knowledge base
and utilizes constructs like SELECT, FILTER, and
ORDER BY to formalize the query structure.
Rule Definition. Since the logical forms (eg.,
SPARQL) can be represented as query graphs,
the rules describing them can similarly be for-
mulated as directed acyclic graphs, denoted by
Gr = (Vr, Er). where Vr is the set of labeled
vertices v ∈ {"Ans", "Var", "Ent", "Val"}; Er =
{e | e = ⟨v, v′⟩, v, v′ ∈ Vr} represents the set of
directed edges e ∈ {"Rel", "Ord", "Cmp", "Agg"}.
The more details are presented in Appendix A.
Task Formulation. This study explores a semantic
parsing (SP) approach for KBQA. A KB can be for-
mally represented as K = (E,R), where E is the
set of entities and R is the set of relations. Given a
question Q and a KB K, our goal is to generate an
executable SPARQL query S corresponding to the
question Q under the guidance of the learned rule
R. Based on the above definition, this task can be

8402

formalized as p(S|Q,R,K).

4 Methodology

4.1 Framework Overview

Figure 1 presents the overall architecture of our
approach, comprising two key phases: the induc-
tion phase and the deduction phase. In the induc-
tion phase, we initially mine rules from the extant
datasets based on rule definitions and categorize
them accordingly. Subsequently, we employ the
RFFT technique to enable LLMs to generate new
rules precisely. Ultimately, a comprehensive rule
library can be constructed to provide strong support
for the deduction phase. In the deduction phase, a
symbolic agent explores the KB environment un-
der the guidance of learned rules to incrementally
generate executable logical forms. Throughout this
process, LLMs are employed to assess the validity
of candidate decisions at each step.

4.2 Induction Phase

To establish a comprehensive rule library that
guides semantic parsing for various complex ques-
tions, we initially mine rules from extant datasets
and subsequently utilize an LLM-based rule gener-
ator to produce additional rules.

4.2.1 Rule Mining
Based on the rule definition, we can directly ex-
tract rules from existing question-SPARQL pairs
datasets. As shown in Figure 1, the rule can re-
flect the topology of the SPARQL query while its
vertices and edges are slots of categories without
instances. Moreover, the rule retains the syntax
construction of the SPARQL query. Each SPARQL
query corresponds to a unique rule, while a single
rule can map to multiple SPARQL queries. There-
fore, the rules can efficiently guide the generation
of various complex logical forms.

In addition, we conduct a detailed classification
of these rules to construct a systematic and hierar-
chical rule library. The classification criteria are
primarily based on the difficulty level of the rule
and the type of constraints involved. We define
the difficulty level as the count of edges in the
rule. Drawing on the structure of the rules, along
with the classes of their vertices and edges, we
define six types of constraints involved in rules, in-
cluding "Basic", "Bridge", "Union", "Comparison",
"Aggregation", and "Ordinal". Further details are
listed in Appendix B. Therefore, the category of

a rule can be collectively represented by its diffi-
culty level and type of constraint. In Figure 1, a
rule example is presented, with its category labeled
as "Basic_3_hop", indicating that it contains three
triplets and the constraint type is "Basic".

4.2.2 LLM-based Rule Generator
Relying exclusively on existing data to extract rules
is inadequate for constructing a comprehensive
and diverse rule library. To address this limita-
tion, we develop an LLM-based rule generator to
produce new rules. We utilize the RFFT technol-
ogy (Hu et al., 2024) to fine-tune LLMs, enhancing
the reasonableness and accuracy of the generated
rules. As shown in Figure 1, we construct the train-
ing data using the rules extracted from existing
datasets. Based on the definitions of rule categories
mentioned above, we provide a detailed descrip-
tion of the rule generation guidelines in the input.
These guidelines can be used to direct the genera-
tion of various category rules. We then fine-tune
the LLMs incrementally to adhere to the rule gen-
eration guidelines. Specifically, the LLMs must
explicitly recite the guidelines used at each step
and update the intermediate variables after each
application. More details of the fine-tuning pro-
cess are described in Appendix C. By employing
the rule generator, we can generate a diverse set of
rules to cover various complex logical forms.

4.3 Deduction Phase

To accurately parse complex questions into exe-
cutable logical forms (eg., SPARQL query), we
employ a symbolic agent to perform step-by-step
reasoning in the KB environment guided by the re-
trieved relevant rules. Throughout the rule-guided
reasoning process, we also utilize the discrimina-
tive capability of LLMs to evaluate the plausibility
of each candidate decision at every step.

4.3.1 Rule Retrieval
After constructing a rule library encompassing var-
ious categories of rules and their corresponding
natural language questions, it becomes crucial to
accurately retrieve the relevant rules. Drawing in-
spiration from (Gao et al., 2024), we achieve this
by utilizing information from both the questions
and the rules. For the question similarity retrieval,
we first mitigate the impact of domain-specific in-
formation by replacing topic entities and values
in all questions with a mask token. Subsequently,
we use a pre-trained language model to embed the

8403

[Basic,[var_1,rel_2,Tien Qua]]

music.lyricist.lyrics_written;
music.recording.song;
dataworld.gardening_hint.y;
national_anthem_of_a_country.anthem;
.....

Action
QueryRel(rel_2)

Observation:
Step 1

Given Question:What are the governmental types in the country
whose national anthem is Tien Quan ?

[Basic,[var_0, rel_0, var_1]]

government.national_anthem.national_
anthem_of;
location.country.national_anthem;
music.artist.concert_tours;
.....

Action
QueryRel(rel_0)

Observation:
Step 2

[Basic,[var_0, rel_1, ans]]

location.country.form_of_government;
location.country.fifa_code;
biology.breed_origin.breeds_originatin
g_here;
.....

Action
QueryRel(rel_1)

Observation:
Step 3

{ SELECT : [ans], WHERE:{
 notUnion: [[Basic,[var_0,rel_0,var_1],
 [Basic,[var_1,rel_2,ent_3]],
 [Basic,[var_0,rel_1,ans]],
 union:[],subQuery:[]}orderBy: null}

Retrieved Rule:

Figure 2: An example of the rule-guided reasoning.

masked example questions in the rule library and
the masked target question. After that, we rank the
candidates by calculating the Euclidean distance
between the embeddings of the example questions
and the target question. For the rule similarity re-
trieval, we employ a preliminary model to generate
an approximate rule corresponding to the target
question. Then we calculate the Jaccard similarity
between candidate rules and the predicted rule as
their rule similarity. Finally, the retrieval criterion
prioritizes the ranked candidates based on question
similarity, provided that the rule similarity exceeds
a predefined threshold θ. In this way, we enable a
more precise retrieval of the rule corresponding to
the target question.

4.3.2 Rule-Guided Reasoning

During the rule-guided reasoning process, the sym-
bolic agent explores the KB environment to make
decisions that generate valid logical forms, while
LLMs are used to assess the validity of each can-
didate decision at each step. Figure 2 presents an
illustrative example of the reasoning process.

To handle the large search space, the agent casts
the logical form generation as a step-wise decision-
making problem. Specifically, the agent usually
initiates reasoning from the topic entity of the
given question and selects relevant rule compo-
nents containing entity-type vertices (e.g., "[Basic,
[var_1, rel_2, Tien Quan]]") for guidance. The
entity can be obtained using off-the-shelf entity
linkers (Li et al., 2020). At step t, the agent,
following the relevant rule, takes actions to inter-
act with the KB environment, generating a series
of observations that serve as candidate decisions.
These actions refer to retrieving relevant relations

by executing SPARQL queries on the KB. Con-
sider the example in Figure 2 at step 1, guided by
the rule "[Basic, [var_1, rel_2, Tien Quan]]", the
agent executes a SPARQL query on the KB, specif-
ically "SELECT ?rel_2 WHERE {var_1, rel_2,
ns:m.01kvf8.}", to find all relevant relations as can-
didate decisions. Subsequently, the LLM distin-
guishes the most suitable relation for the current
step (ie., "national_anthem_of_a_country.anthem").
At step 2, based on the previous reasoning re-
sult and the corresponding rule "[Basic, [var_0,
rel_0, var_1]]", the agent takes an action to exe-
cute a SPARQL query "SELECT ?rel_0 WHERE
{var_1, ns:national_anthem_of_a_country.anthem,
ns:m.01kvf8. var_0, rel_0, var_1.}", and the KB
environment returns the relevant relations. The
executable logical form can be incrementally gen-
erated throughout the reasoning process, guided by
the relevant rule.

Inspired by (Gu et al., 2023), we leverage the
discriminative capability of LLMs to evaluate the
plausibility of candidate decisions proposed by the
agent, thereby assisting its reasoning process. The
evaluation process can be understood as seman-
tic matching performed by LLMs in combination
with contextual information. Specifically, we first
construct a prompt text.

Prompt = {Inst, R,Q} (1)

where Inst is the evaluation instruction description;
R denotes the relevant rule; Q is the given question.
At step t, we let the LLM evaluate candidate deci-
sions Ct based on the Prompt and the interaction
history Ht to select the most suitable relation rt.
This procedure is scheduled as follows:

rt = LLM({Prompt, Ht, Ct}) (2)

8404

The details are described in Appendix D. In this
way, we safeguard the LLM from having to han-
dle a large search space in order to generate valid
logical forms.

5 Experiment

5.1 Dataset

To evaluate the effectiveness of the proposed
method, we conducted experiments on three
public datasets, including WebQuestionsSP (We-
bQSP) (Yih et al., 2016), ComplexWebQuestions
(CWQ)(Talmor and Berant, 2018), and KQA Pro
(Cao et al., 2022a). Table 1 shows the statistics of
the three datasets. We give a detailed description
of each dataset in Appendix E.

Table 1: Statistics of the experiment datasets.

Dataset Train Dev Test Program Type
WebQSP 3,098 - 1,639 SPARQL

CWQ 27,639 3,519 3,531 SPARQL
KQA Pro 94,376 11,797 900 SPARQL

5.2 Baselines

Our baselines encompass a wide coverage of re-
lated models, which can comprehensively evaluate
our approach. These methods can be divided into
three categories: (1) SP-based methods, including
QGG (Lan and Jiang, 2020b), ReTraCk (Chen et al.,
2021a), BART-SPARQL(Cao et al., 2022a), RnG-
KBQA (Ye et al., 2022), Program Trans (Cao et al.,
2022b), DecAF (Yu et al., 2023). (2) Prompting
methods with GPT-4, including IO (Brown et al.,
2020), CoT (Wei et al., 2022), SC (Wang et al.,
2023b). (3) LLMs+KBs methods, including KB-
BINDER (Li et al., 2023), StructGPT (Jiang et al.,
2023), Pangu (Gu et al., 2023), KD-CoT (Wang
et al., 2023a), ToG (Sun et al., 2024), Inter-KBQA
(Xiong et al., 2024). The details of each baseline
are described in Appendix F.

5.3 Evaluation Metrics

Following previous works, we use F1 and Hits@1
as the evaluation metrics. F1 considers the cover-
age of all answers, which balances the precision
and recall of the predicted answers. Hits@1 typi-
cally indicates the accuracy of the top one among
predicted answer entities. It’s worth noting that
our method returns unordered answers. Therefore,
we randomly select one answer per question as the

top-ranked answer and then calculate the average
Hits@1 result by repeating this process 100 times.

5.4 Implementation Details
In the induction phase, we use the open-source
Llama-3-8B as the LLM-based generator. By ex-
tracting rules from existing datasets and generating
additional ones using a rule generator, we have
built a rule library comprising 1056 rules, which
comprehensively covers the various questions in
the current test dataset. In the deduction phase,
our study invokes the OpenAI GPT4-Turbo API
to evaluate candidate decisions at each step. For
rule retrieval, we first take the n-gram matching to
replace entities with "<e>" and values with "<v>".
Then, we embed the masked questions using all-
mpnet-base-v2 (Song et al., 2020) to calculate their
similarities. Simultaneously, for rule similarity, we
utilize HGNet (Chen et al., 2023) as the preliminary
model to predict the approximate rule. Moreover,
the rule similarity threshold θ is set as 0.85. For
executing SPARQL queries during the reasoning
process, Virtuoso1 serves as the underlying graph
query engine.

Table 2: Experimental results on WebQSP and CWQ.
"-" indicating that no results are reported in the original
papers. Bold font denotes the best performance.

Model
WebQSP CWQ

F1 Hits@1 Hits@1

SP-based

QGG 72.2 71.9 44.1
ReTraCk 74.7 74.6 -
RnG-KBQA 75.6 - -
Program Trans 76.5 74.6 58.1
DeCAF 78.8 82.1 -

Pompting CoT w/GPT-4 - 67.3 46.0

LLMs+KGs

KB-BINDER 74.4 - -
StructGPT 63.7 72.6 54.3
Pangu w/Codex 68.3 - -
KD-CoT 52.5 68.6 55.7
ToG w/GPT-4 - 82.6 69.5
Ours 81.9 84.1 73.5

5.5 Main Results
We present the experimental results for the We-
bQSP, CWQ, and KQA Pro datasets in Table 2
and Table 3, respectively. The results demonstrate

1https://github.com/openlink/
virtuoso-opensource

https://github.com/openlink/virtuoso-opensource
https://github.com/openlink/virtuoso-opensource

8405

Table 3: Experimental results (F1) on the sampled test set of KQA Pro. We copy the results of baselines from
(Xiong et al., 2024)

Model
KQA Pro

CT QA QAQ QN QR QRQ SA SB VF Overall
SP-based BART-SPARQL 37 44 37 36 67 33 49 78 58 48.78

Pompting
IO w/GPT-4 27 23 36 40 25 50 11 69 73 39.33
CoT w/GPT-4 22 26 35 34 18 46 21 79 77 39.78
SC w/GPT-4 25 28 33 38 22 51 19 86 75 41.89

LLMs+KGs
Inter-KBQA 74 83 64 73 73 59 80 61 80 71.89
Ours 82 87 79 82 84 75 87 88 86 83.33

the significant superiority of our method. Table
2 presents the performance of various models on
WebQSP and CWQ datasets. First, SP-based meth-
ods perform well on the WebQSP dataset, while
their performance declines significantly on the com-
plex CWQ dataset. This is because the SPARQL
queries corresponding to complex questions in-
volve more intricate syntax (e.g., MAX, Count), mak-
ing it challenging for trained models to directly gen-
erate accurate SPARQL queries. However, our ap-
proach can iteratively generate accurate SPARQL
queries for complex questions under the guidance
of learned rules, achieving a 15.4% improvement
on the more complex CWQ dataset compared to the
best SP-based method. Secondly, although LLMs
are highly powerful, the overall performance re-
mains suboptimal even when utilizing GPT-4 di-
rectly, particularly manifesting a significant perfor-
mance gap on the CWQ dataset. This indicates that
relying solely on LLMs to address complex ques-
tions remains difficult. Therefore, some methods
integrate external KBs to enhance LLMs in ad-
dressing complex questions. Although these meth-
ods demonstrate promising results, our approach
achieves competitive advancements, yielding an
average improvement of 2.8% across two datasets
compared to the best-performing method, ToG.

As shown in Table 3, we compare the perfor-
mance of our proposed model with other existing
approaches on the sampled test set of KQA Pro. As
we can see, our approach achieves a significant im-
provement of an average of 11.4 percentage points
over the best-performing method, Inter-KBQA. In
addition, the experimental results demonstrate that
our method can consistently achieve superior per-
formance for nine types of complex questions in
the KQA Pro dataset. Unlike previous methods,
our approach is not constrained by question type,

thereby making it more robust.

Table 4: Ablation study results on WebQSP and CWQ.

Model
WebQSP CWQ

F1 Hits@1 F1 Hits@1
Ours 81.9 84.1 70.2 73.5
w/o RFFT 80.2 82.9 68.6 72.3
w/o Ques_sim 79.4 82.2 67.8 71.7
w/o Rule_sim 78.1 80.4 66.9 70.2
w/o Rule Guide 67.8 70.2 52.9 57.5

5.6 Further Analysis

5.6.1 Ablation Study.
To evaluate the contribution of each component in
our proposed framework, we conduct a series of
ablation experiments on the WebQSP and CWQ
datasets. The results are presented in Table 4.

w/o RFFT. Instead of using RFFT, we utilize
the PEFT method (Xu et al., 2023) to fine-tune the
LLM for directly generating rules. However, this
does not enable the LLM to learn how to generate
a variety of rules step-by-step. As a result, the rule
generator may produce incorrect rules, failing to
accurately guide the reasoning process. The perfor-
mance of the ablation models declines consistently
across both datasets. Additionally, we conduct a
case comparison of the fine-tuning methods in Ap-
pendix G.

w/o Ques_sim and w/o Rule_sim. For rule re-
trieval, we achieve this by measuring question sim-
ilarity and rule similarity. Experimental results
clearly show that the absence of either component
leads to a significant decrease in model perfor-
mance. Therefore, it is essential to simultaneously
consider both question and query information for

8406

Table 5: Case Study. Two typical questions from the CWQ dataset.

Question I What country speaks Germanic languages with a capital called Brussels? Right
Inter-KBQA SELECT ?x WHERE {m.04306rv language.countries_spoken_in ?x .?x

country.official_language m.04306rv .?x country.capital m.0177z. }
Yes

Ours SELECT ?x WHERE {m.04306rv language.countries_spoken_in ?x .?x
country.official_language m.04306rv .?x country.capital m.0177z. }

Yes

Question II What country is located in the Greenwich Mean Time Zone that is the
main trading partner of China?

Right

Inter-KBQA SELECT ?x WHERE{{ m.0d05w3 statistical_region. places_exported_to
?x} UNION{ m.0d05w3 statistical_region.places_imported_from ?x}}

No

Ours SELECT ?x WHERE{{ m.0d05w3 statistical_region.places_exported_to
?y . ?y imports_and_exports.exported_to ?x . } UNION {m.0d05w3
statistical_region.places_imported_from ?y . ?y imports_and_exports.
imported_from ?x .}?x location.time_zones m.03bdv . }

Yes

the accurate retrieval of relevant rules.
w/o Rule Guide. Rather than the rule-guided

incremental reasoning approach, we feed the given
question and the relevant rule into the LLM (i.e.,
GPT-4) to directly generate the SPARQL query.
The experimental results significantly illustrate the
significant contribution of rule-guided reasoning
to the model’s performance, resulting in a notable
performance gap between the ablation model and
the original model.

WebQSP CWQ KQA Pro80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

ac
c

Ours
MQS
QRS

Figure 3: The accuracy of rule retrieval .

5.6.2 Rule Retrieval Effectiveness Study
In this experiment, we explored the effectiveness of
our rule retrieval. Figure 3 presents a comparison
of rule retrieval accuracy between our approach
and two other methods, MQS (Guo et al., 2023)
and QRS (Nan et al., 2023), evaluated across the
WebQSP, CWQ, and KQA Pros datasets. The ex-
perimental results demonstrate that our approach
consistently outperforms the other two methods
across all datasets. This superiority is attributed to
the fact that MQS considers only question informa-
tion, while QRS focuses solely on rule information.

In contrast, our approach incorporates both, en-
abling more accurate retrieval of relevant rules.

5.6.3 Case Study
To better showcase the advantages of our method,
we conducted a case comparison of our method
with Inter-KBQA in Table 5. As observed, the
Inter-KBQA method successfully generates the cor-
rect SPARQL query for Question I but fails to do
so for the more complex Question II. This failure
arises because the SPARQL query for Question II
involves a more intricate syntactic structure, such
as UNION, which semantic parsing by LLMs alone
cannot ensure in terms of grammaticality, faithful-
ness, and controllability. In contrast, our approach,
guided by learned rules, is capable of accurately
generating the corresponding SPARQL queries for
both questions.

6 Conclusion

In this paper, we introduce Rule-KBQA, a novel
framework that utilizes rules learned during the
induction phase to accurately guide logical form
generation in the deduction phase. In the induc-
tion phase, We establish rules to describe diverse
logical forms and use REFT to fine-tune LLMs for
generating new rules, building a comprehensive
rule library. In the deduction phase, we employ a
symbolic agent to engage in interacting with the
KB environment, guided by the learned rules, to
incrementally generate executable logical forms.
Meanwhile, we utilize the LLM to evaluate the
plausibility of each candidate decision at every
step. Extensive experiments conducted on three
benchmark datasets clearly demonstrate the effec-

8407

tiveness of the proposed model, which surpasses
state-of-the-art approaches.

Limitations

In our work, we construct a comprehensive rule
library by mining rules from existing data and
generating new ones using large language mod-
els. We then retrieve relevant rules from this li-
brary to guide the semantic parsing of various ques-
tions. Although this approach yields satisfactory
results, the entire process is relatively redundant
and complex. Therefore, in future work, we plan
to explore the development of a rule generator that
can precisely generate corresponding rules given a
question, thereby simplifying our framework and
making it more straightforward.

Acknowledgments

This work was supported by the National Key Re-
search and Development Program of China under
Grant No.2023YFC3304404.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Freebase: a
collaboratively created graph database for structuring
human knowledge. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 1247–1250. ACM.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Shulin Cao, Jiaxin Shi, Liangming Pan, Lunyiu Nie,
Yutong Xiang, Lei Hou, Juanzi Li, Bin He, and Han-
wang Zhang. 2022a. KQA pro: A dataset with ex-
plicit compositional programs for complex question

answering over knowledge base. In Proceedings of
the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 6101–
6119. Association for Computational Linguistics.

Shulin Cao, Jiaxin Shi, Zijun Yao, Xin Lv, Jifan Yu,
Lei Hou, Juanzi Li, Zhiyuan Liu, and Jinghui Xiao.
2022b. Program transfer for answering complex
questions over knowledge bases. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8128–8140, Dublin, Ireland. Association for
Computational Linguistics.

Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin,
Jian-Guang Lou, and Feng Jiang. 2021a. Retrack:
A flexible and efficient framework for knowledge
base question answering. In Proceedings of the 59th
annual meeting of the association for computational
linguistics and the 11th international joint conference
on natural language processing: system demonstra-
tions, pages 325–336.

Yongrui Chen, Huiying Li, Yuncheng Hua, and Guilin
Qi. 2021b. Formal query building with query struc-
ture prediction for complex question answering over
knowledge base. In Proceedings of the Twenty-Ninth
International Conference on International Joint Con-
ferences on Artificial Intelligence, pages 3751–3758.

Yongrui Chen, Huiying Li, Guilin Qi, Tianxing Wu, and
Tenggou Wang. 2023. Outlining and filling: Hier-
archical query graph generation for answering com-
plex questions over knowledge graphs. IEEE Trans.
Knowl. Data Eng., 35(8):8343–8357.

Zi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jij-
nasa Nayak, and Lun-Wei Ku. 2019. Uhop: An
unrestricted-hop relation extraction framework for
knowledge-based question answering. In Proceed-
ings of NAACL-HLT, pages 345–356.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya God-
bole, Ethan Perez, Jay Yoon Lee, Lizhen Tan, Lazaros
Polymenakos, and Andrew Mccallum. 2021. Case-
based reasoning for natural language queries over
knowledge bases. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9594–9611.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models:
A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132–1145.

Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t gener-
ate, discriminate: A proposal for grounding language
models to real-world environments. In The 61st An-
nual Meeting Of The Association For Computational
Linguistics.

Chunxi Guo, Zhiliang Tian, Jintao Tang, Pancheng
Wang, Zhihua Wen, Kang Yang, and Ting Wang.

https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.18653/V1/2022.ACL-LONG.422
https://doi.org/10.18653/V1/2022.ACL-LONG.422
https://doi.org/10.18653/V1/2022.ACL-LONG.422
https://doi.org/10.18653/v1/2022.acl-long.559
https://doi.org/10.18653/v1/2022.acl-long.559
https://doi.org/10.1109/TKDE.2022.3207477
https://doi.org/10.1109/TKDE.2022.3207477
https://doi.org/10.1109/TKDE.2022.3207477
https://www.vldb.org/pvldb/vol17/p1132-gao.pdf
https://www.vldb.org/pvldb/vol17/p1132-gao.pdf

8408

2023. A case-based reasoning framework for adap-
tive prompting in cross-domain text-to-sql. CoRR,
abs/2304.13301.

Sen Hu, Lei Zou, Jeffrey Xu Yu, Haixun Wang, and
Dongyan Zhao. 2018a. Answering natural language
questions by subgraph matching over knowledge
graphs. IEEE Trans. Knowl. Data Eng., 30(5):824–
837.

Sen Hu, Lei Zou, and Xinbo Zhang. 2018b. A state-
transition framework to answer complex questions
over knowledge base. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 2098–2108. Association
for Computational Linguistics.

Yi Hu, Xiaojuan Tang, Haotong Yang, and Muhan
Zhang. 2024. Case-based or rule-based: How
do transformers do the math? Preprint,
arXiv:2402.17709.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Structgpt:
A general framework for large language model to
reason over structured data. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 9237–9251.

Yunshi Lan and Jing Jiang. 2020a. Query graph gen-
eration for answering multi-hop complex questions
from knowledge bases. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 969–974, Online. Association for
Computational Linguistics.

Yunshi Lan and Jing Jiang. 2020b. Query graph genera-
tion for answering multi-hop complex questions from
knowledge bases. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
969–974. Association for Computational Linguistics.

Belinda Z. Li, Sewon Min, Srinivasan Iyer, Yashar
Mehdad, and Wen-tau Yih. 2020. Efficient one-pass
end-to-end entity linking for questions. In Proceed-
ings of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6433–6441. Associa-
tion for Computational Linguistics.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023. Few-shot in-context learning
on knowledge base question answering. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6966–6980.

Haoran Luo, Zichen Tang, Shiyao Peng, Yikai Guo,
Wentai Zhang, Chenghao Ma, Guanting Dong, Meina
Song, Wei Lin, et al. 2023. Chatkbqa: A generate-
then-retrieve framework for knowledge base question
answering with fine-tuned large language models.
arXiv preprint arXiv:2310.08975.

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu
Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and
Dragomir Radev. 2023. Enhancing few-shot text-to-
sql capabilities of large language models: A study on
prompt design strategies. CoRR, abs/2305.12586.

Siva Reddy, Mirella Lapata, and Mark Steedman.
2014. Large-scale semantic parsing without question-
answer pairs. Trans. Assoc. Comput. Linguistics,
2:377–392.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2020. Mpnet: Masked and permuted pre-
training for language understanding. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Lionel M. Ni, Heung-
Yeung Shum, and Jian Guo. 2024. Think-on-graph:
Deep and responsible reasoning of large language
model on knowledge graph. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In NAACL-HLT, pages 641–651.

Thomas Pellissier Tanon, Denny Vrandecic, Sebastian
Schaffert, Thomas Steiner, and Lydia Pintscher. 2016.
From freebase to wikidata: The great migration. In
Proceedings of the 25th International Conference on
World Wide Web, WWW 2016, Montreal, Canada,
April 11 - 15, 2016, pages 1419–1428. ACM.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li,
Yunsen Xian, Chuantao Yin, Wenge Rong, and Zhang
Xiong. 2023a. Knowledge-driven cot: Exploring
faithful reasoning in llms for knowledge-intensive
question answering. Preprint, arXiv:2308.13259.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023b. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

https://doi.org/10.48550/ARXIV.2304.13301
https://doi.org/10.48550/ARXIV.2304.13301
https://doi.org/10.1109/TKDE.2017.2766634
https://doi.org/10.1109/TKDE.2017.2766634
https://doi.org/10.1109/TKDE.2017.2766634
https://doi.org/10.18653/V1/D18-1234
https://doi.org/10.18653/V1/D18-1234
https://doi.org/10.18653/V1/D18-1234
https://arxiv.org/abs/2402.17709
https://arxiv.org/abs/2402.17709
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/V1/2020.ACL-MAIN.91
https://doi.org/10.18653/V1/2020.ACL-MAIN.91
https://doi.org/10.18653/V1/2020.ACL-MAIN.91
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.522
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.522
https://doi.org/10.48550/ARXIV.2305.12586
https://doi.org/10.48550/ARXIV.2305.12586
https://doi.org/10.48550/ARXIV.2305.12586
https://doi.org/10.1162/TACL_A_00190
https://doi.org/10.1162/TACL_A_00190
https://proceedings.neurips.cc/paper/2020/hash/c3a690be93aa602ee2dc0ccab5b7b67e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c3a690be93aa602ee2dc0ccab5b7b67e-Abstract.html
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://doi.org/10.1145/2872427.2874809
https://arxiv.org/abs/2308.13259
https://arxiv.org/abs/2308.13259
https://arxiv.org/abs/2308.13259
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw

8409

Guanming Xiong, Junwei Bao, and Wen Zhao. 2024.
Interactive-kbqa: Multi-turn interactions for knowl-
edge base question answering with large language
models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, pages 10561–10582. Associa-
tion for Computational Linguistics.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui
Tao, and Fu Lee Wang. 2023. Parameter-efficient
fine-tuning methods for pretrained language mod-
els: A critical review and assessment. Preprint,
arXiv:2312.12148.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2022. RNG-KBQA: Generation
augmented iterative ranking for knowledge base ques-
tion answering. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6032–6043,
Dublin, Ireland. Association for Computational Lin-
guistics.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1321–1331.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui
Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Yang Wang, Zhiguo Wang, and Bing Xiang.
2023. Decaf: Joint decoding of answers and logical
forms for question answering over knowledge bases.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

https://aclanthology.org/2024.acl-long.569
https://aclanthology.org/2024.acl-long.569
https://aclanthology.org/2024.acl-long.569
https://arxiv.org/abs/2312.12148
https://arxiv.org/abs/2312.12148
https://arxiv.org/abs/2312.12148
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417

8410

Appendix

A Rule Definition

Following the work given in (Chen
et al., 2023), the vertex class denotes
{"Ans", "Var", "Ent", "Val"}, and the edge
class denotes {"Rel", "Ord", "Cmp", "Agg"}. The
specific meanings of these classes are as follows:
"Ans" represents the only answer node in the
query graph. "Var" represents variables, which
are placeholders for unknown vertices other
than the answer. "Ent" represents the entity
node in the query graph, such as m.03wws_.
"Val" represents the values, such as 1 and
1996− 01− 01. "Rel" denotes the relations in KB,
such as location.country.languages_spoken.
"Ord" denotes whether the ranking order is
ascending (i.e., ASC) or descending (i.e., DSC
), in ORDER BY clauses. "Cmp" denotes
{<,≤, >,≥,=, ̸=} that indicate numerical or
temporal comparison. In addition, we also add
During and Overlap to handle temporal intervals.
"Agg" denotes aggregation functions over the
variables or answers, including Count, Max,
Min, and Ask. The rule can reflect the topology
of the query graph while its vertices and edges are
slots of categories without instances.

select: [ans], where: {
notUnion: [],
union: [],
subQueries: []},

orderBy: null

Table 6: An Empty Rule Structure

In addition, the rule retains the syntax construc-
tion of SPARQL queries. Table 6 shows an empty
rule structure, where the "union" component cor-
responds to the UNION clause in SPARQL queries,
the "subQueries" component reflects the subquery
clause and the "orderBY" component aligns with
the ORDER BY clause. All other components are
categorized under the "notUnion" section. The con-
tent populated within the rule is represented in the
form of triples. Furthermore, we classify the types
of triples based on edge labels: the "Rel" class
corresponds to "Basic," "Agg" to "Aggregation,"
"Cmp" to "Comparison," and "Ord" to "Ordinal."

B Rule Constraint Type

We define six types of constraints involved in rules,
including "Basic", "Bridge", "Union", "Compari-
son", "Aggregation", and "Ordinal". Based on the
rule definition mentioned above, the classification
basis of each constraint type is described as fol-
lows:

"Basic" indicates that the vertex classes in the
rule include "Ent", "Ans", and "Var", with only one
vertex being of class "Ent". Additionally, all edge
classes are designated as "Rel." In the rule struc-
ture, all parts except for the "notUnion" section are
empty.

"Bridge" indicates that the vertex classes in the
rule include "Ent", "Ans", and "Var", with at least
two vertices being of class "Ent". Additionally,
all edge classes are designated as "Rel". In the
rule structure, all parts except for the "notUnion"
section are empty.

"Union" indicates that the vertex classes in the
rule include "Ent", "Ans", and "Var", with at least
two vertices being of class "Ent".Additionally, all
edge classes are designated as "Rel". In the rule
structure, the "notUnion" and "union" sections are
not empty, while the rest of the sections are empty.

"Comparison" indicates that the edge classes in
the rule include "Cmp", while all other edge classes
are designated as "Rel".

"Aggregation" indicates that the edge classes in
the rule include "Agg", while all other edge classes
do not include "Ord".

"Ordinal" indicates that the edge classes in the
rule contain "Ord".

Table 8 presents relevant rule examples for the
six types of constraints.

C Rule-Following Fine-Tuning Process

We fine-tune the LLM-based rule generator using
the set of rules mined from existing data. Addition-
ally, based on the definitions of rule categories men-
tioned above, we provide a detailed description of
the guideline for generating various category rules
in the input, teaching the LLM to progressively
refer to and follow the necessary rule generation
guidelines during its inference process. We list an
example of the input for rule-following in Table 9
and an example of the output in Table 10. There-
fore, the fine-tuned rule generator can accurately
produce various categories of rules along with cor-
responding natural language questions.

8411

D LLMs Evaluation Prompt

Table 7 shows the detail of LLMs evaluation
prompt.

Instruction Description: Based on the given
Question, the corresponding Rule, and the in-
teraction history, please retrieve relations (sepa-
rated by semicolon) to select the most suitable
relation to replace the rel in the rule triple. Please
state one relation, No need for an explanation.

In-Context Few-shot

Question: {The given Question}
Rule: {The corresponding Rule}
History: {The previous interaction history}
Candidates: {The current candidate relations}
Selected Relation:

Table 7: LLMs Evaluation Prompt

E Dataset

To evaluate the effectiveness of the proposed
method, we conducted experiments on three
public datasets, including WebQuestionsSP (We-
bQSP) (Yih et al., 2016), ComplexWebQuestions
(CWQ)(Talmor and Berant, 2018), and KQA Pro
(Cao et al., 2022a).

WebQuestionsSP (WebQSP) (Yih et al., 2016)
is extensively utilized in KBQA research and com-
prises 4,937 natural language questions alongside
their corresponding SPARQL queries based on
Freebase. Following (Chen et al., 2019), the ques-
tions can be classified into 1-hop and 2-hop cate-
gories based on the length of the inferential relation
chain, i.e., the path from the topic entity to the an-
swer node.

ComplexWebQuestions(CWQ) (Talmor and
Berant, 2018) is a question answering dataset over
Freebase. Building upon WebQuestionsSP, it ex-
pands question entities or introduces answer con-
straints to formulate complex questions, which
comprise four types and necessitate up to four hops
of reasoning. These question types encompass com-
position, conjunction, comparison, and superlative.
CWQ also offers SPARQL annotations that can be
directly executed on the knowledge base.

KQA Pro (Cao et al., 2022a) is a dataset for
Complex KBQA, including 117,970 diverse natu-
ral language questions. For each question, it pro-
vides the corresponding SPARQL query executed

on the Wikidata. It features nine types of com-
plex questions, which include Count (Ct), Query-
Attr (QA), QueryAttrQualifier (QAQ), Query-
Name(QN), QueryRelation (QR), QueryRelation-
Qualifier (QRQ), SelectAmong (SA), SelectBe-
tween(SB), and Verify (VF).

Notably, for the KQA Pro dataset, we use the
sampled test dataset from (Xiong et al., 2024),
which can enhance the assessment of the model’s
capability in addressing various complex questions.
This dataset employs a unified sampling method for
each type of question, ensuring a balanced compo-
sition across different question categories. Specifi-
cally, the study samples 100 questions from each
category in KQA Pro.

F Baselines

Our baselines encompass a wide coverage of re-
lated models, which can comprehensively evaluate
our approach. These methods can be divided into
three categories: (1) SP-based methods, including
QGG (Lan and Jiang, 2020b), ReTraCk (Chen et al.,
2021a), BART-SPARQL(Cao et al., 2022a), RnG-
KBQA (Ye et al., 2022), Program Trans (Cao et al.,
2022b), DecAF (Yu et al., 2023). (2) Prompting
methods with GPT-4, including IO (Brown et al.,
2020), CoT (Wei et al., 2022), SC (Wang et al.,
2023b). (3) LLMs+KBs methods, including KB-
BINDER (Li et al., 2023), StructGPT (Jiang et al.,
2023), Pangu (Gu et al., 2023), KD-CoT (Wang
et al., 2023a), ToG (Sun et al., 2024), Inter-KBQA
(Xiong et al., 2024). The details of each baseline
are described as follows.

QGG (Lan and Jiang, 2020b) propose a modified
staged query graph generation method with more
flexible ways to generate query graphs and ranks
candidate query graphs using different features.

ReTraCk (Chen et al., 2021a) introduces a versa-
tile and efficient KGQA framework, which can gen-
erate well-formed but unnecessarily faithful pro-
grams by grammar-level constraints.

BART-SPARQL (Cao et al., 2022a) directly
learn a parsers using supervised learning by regard-
ing semantic parsing as a sequence-to-sequence
task.

RnG-KBQA (Ye et al., 2022) ranks candidate
logical forms using a contrastive ranker, then com-
poses the final logical form with a generation model
based on the question and top candidates.

Program Trans (Cao et al., 2022b) leverages the
valuable program annotations on the rich-resourced

8412

KBs as external supervision signals to aid program
induction for the low-resourced KBs.

DeCAF (Yu et al., 2023) jointly generates both
logical forms and direct answers and then combines
the merits of them to get final answers.

Prompting methods w/GPT-4. We compare the
efficacy of standard prompting (IO prompt) (Brown
et al., 2020), Chain-of-Thought prompting (CoT
prompt) (Wei et al., 2022), and the technique of
Self-Consistency (SC)(Wang et al., 2023b).

KB-BINDER (Li et al., 2023) uses LLMs to
create preliminary logical forms through demon-
stration imitation and then binds the draft to an
executable version through knowledge base inte-
gration.

KD-CoT (Wang et al., 2023a) proposes an inter-
active framework that utilizes a QA system to ac-
cess external knowledge and provide high-quality
answers to LLMs for solving knowledge-intensive
KBQA tasks.

StructGPT (Jiang et al., 2023) gathers relevant
evidence from structured data, allowing LLMs to
focus on the reasoning task using the acquired in-
formation.

Pangu (Gu et al., 2023) proposes using LLMs
for discrimination rather than generation in
grounded language understanding, combining sym-
bolic search with neural scoring in a novel way.

ToG (Sun et al., 2024) enables the LLM agent
to iteratively execute beam search on KG, discover
the most promising reasoning paths, and return the
most likely reasoning results.

Inter-KBQA (Xiong et al., 2024) proposes an
iterative, dialogue-based problem-solving process,
which enables semantic parsing and SPARQL gen-
eration by developing three generic APIs for KB
interaction.

G Case Comparison of Fine-Tuning
Methods

In Table 11, we present a case comparison between
our RFFT method and the traditional fine-tuning
approach (PEFT) to better demonstrate the advan-
tages of our method. As shown, for generating
rules of the Comparison_4_hop category, our RFFT
method produces a more reasonable rule compared
to the PEFT method. This is because our approach
trains the LLM to incrementally generate various
rules based on a rule generation guide, whereas the
PEFT method directly generates rules without such
guidance. An input-output example for the PEFT

method is provided in Table 12.

8413

Rule1(Basic_3_hop): {
select: [ans],
where: {

notUnion: [
[Basic,[var_0,rel_1,var_1]],
[Basic,[var_1,rel_2,ent_3]],
[Basic,[var_0,rel_0,ans]]

],
union: [],
subQueries: []

},
orderBy: null

}
Rule2(Bridge_3_hop): {

select: [ans],
where: {

notUnion: [
[Basic,[ent_3,rel_2,var_1]],
[Basic,[var_1,rel_1,ans]],
[Basic,[ans,rel_0,ent_2]]

],
union: [],
subQueries: []

},
orderBy: null

}
Rule3(Union_3_hop]): {

select: [ans],
where: {

notUnion: [
[Basic,[ans,rel_0,ent_1]]

],
union: [

[[Basic,[ent_2, rel_1, ans]]],
[[Basic,[ent_2, rel_2, ans]]]

],
subQueries: []

},
orderBy: null

}

Rule4(Comparison_3_hop): {
select: [ans],
where: {

notUnion: [
[Basic,[ent_3,rel_2,ans]],
[Basic,[ans,rel_1,var_1]],
[Comparison,[var_1,>,val_0]]

],
union: [],
subQueries: []

},
orderBy: null

}
Rule5(Aggregation_9_hop): {

select: [ans],
where: {

notUnion: [
[Basic,[ent_7,rel_5,var_5]],
[Basic,[var_5,rel_4,ans]],
[Aggregation,[ans,COUNT,var_0]],
[Comparison,[var_2,=,var_0]],
[Basic,[ans,rel_3,ent_9]]

],
union: [],
subQueries: [

{
select: [var_2],
where: {

notUnion: [
[Basic,[ent_7,rel_5,var_5]],
[Basic,[var_5,rel_4,ans]],
[Aggregation,[ans,COUNT,var_0]],
[Aggregation,[var_0,MAX,var_2]]],

union: [],
subQueries: []
},
orderBy: null

}
]

},
orderBy: null

}
Rule6(Ordinal_3_hop): {

select: [ans],
where: {

notUnion: [
[Basic,[ent_3,rel_2,ans]],
[Basic,[ans,rel_1,var_1]]

],
union: [],
subQueries: []

},
orderBy: [Ordinal,[var_1,DESC,val_0]]

}

Table 8: The relevant rule examples for the six types of constraints.

8414

Input:
Follow the rule generation guidelines step by step to generate the rule: Union_3_hop, and also create a
natural language question corresponding to the rule.
You need to generate an X-type rule with h hops. The rule should be in JSON format, with each part
consisting of a key and value pair.
1.The keys are select, where, orderBy, and question.
2.The value for select is fixed as ["ans"].
3.The value for where is also a JSON object containing three keys: notUnion, union, and subQueries.
3.1. The value of notUnion is a JSON list containing triples and their corresponding types.
3.2. Each triple is a list containing two nodes and an edge. Nodes can be either ent, var, ans, or val. In
addition, edges are represented by rel,cmp,agg, or ord.
3.3. Each triple has a type, which can be Basic, Comparison, Aggregation, or Ordinal.
3.4. Basic denotes a regular type with a relation of only rel. Comparison indicates a situation describing a
comparative relationship between variables and values, which may include relations such as <, ≤, >, ≥, =,
̸=, DURING, and OVERLAP. DURING and OVERLAP are used to handle time intervals. Aggregation
describes aggregation functions on variables or answers, such as COUNT, MAX, MIN, or ASK. Ordinal
indicates that the type of the edge in the triple is ord.
3.5. Triples in where must be connected nodes and cannot be isolated.
3.6. Each rule must contain at least one entity node and one ans node.
4.The structure of union is the same as notUnion. When there are multiple relations between two nodes,
these are placed in union.
5.The structure of subQueries is the same as notUnion.
6.The value for orderBy is a JSON list that includes the sorting method, the entity or variable being sorted,
and the type of the entity or variable. Sorting methods can be DESC or ASC, and the types of entities or
variables can be datetime, integer, or float.
7.Triples which can be Basic, Bridge, Union, Comparison, Aggregation, or Ordinal.
7.1. If X-type is Ordinal, it indicates that the rule graph contains edges with orderBy. Additionally, h-1
triples should be generated where the remaining edges do not include orderBy.
7.2. If X-type is Aggregation, it indicates that the rule graph contains edges with Aggregation, and the
remaining edges do not include orderBy. The triples include Basic, Comparison, and Aggregation types.
7.3. If X-type is Comparison, it indicates that the rule graph contains edges with Comparison. Comparison
type triples should be in the notUnion section, while the rest are Basic type triples added to the notUnion
section, excluding union, orderby, and subquery sections.
7.4. If X-type is Bridge, it indicates that the problem rule graph contains only edges of type Rel. The
triple types are only Basic. The graph has two or more vertices of entity type, and all other vertices,
except for ans, are of variable type. These should be added to the notUnion section, excluding union,
orderby, and subquery sections.
7.5. If X-type is Basic, it indicates that the problem rule graph contains only edges of type rel, and the
triple types are only Basic. These should be added to the notUnion section, excluding union, orderby, and
subquery sections.
7.6. If X-type is Union, it indicates that there are multiple edges connecting entity vertices with variable
nodes in the problem rule graph. Generate triples in the union section for entities and variables with
multiple edges, with the triple type being only Basic. The remaining triples should be added to the
notUnion section, excluding orderby and subquery sections.
8.Based on the generated rule, create a corresponding natural language question.

Table 9: Input for rule-following.

8415

Output:
1. According to the requirements, a basic rule structure can be generated.

{
select: [ans],
where: {

notUnion: [
]
union: [
]
subQueries: []

},
orderBy: null

}

2. To generate a 3-hop rule, you need to add 3 triples.
2.1 To generate a Union-type rule, first generate a triple for Basic:

[Basic, [ans, rel_0, ent_1]]
2.2 For the 2nd triple, select a variable node to serve as the intermediate node and generate 1 Basic type
triple:

[Basic, [ent_2, rel_1, ans]]
2.3 For the 3rd triple, select a variable node to serve as the intermediate node and generate 1 Basic type
triple:

[Basic, [ent_2, rel_2, ans]]
3. Based on the above rule, the generated natural language question is:

What sports team owned by Jerry Buss that played in the 2010 NBA Finals?
4. Add the generated triples to the notUnion and union fields respectively to obtain the final rule.

{
select: [ans],
where: {

notUnion: [
[Basic,[ans, rel_0, ent_1]],

]
union: [

[Basic,[ent_2, rel_1, ans]],
[Basic,[ent_2, rel_2, ans]],

]
subQueries: []

},
orderBy: null
question: What sports team owned by Jerry Buss played in the 2010 NBA Finals?

}

Table 10: Output for rule-following.

8416

Method Generated Rule
Traditional fine-tuning {

select: [ans],
where: {

notUnion: [
[Bridge,[ent_4,var_3,rel_3]],
[Bridge,[var_3,var_2,rel_2]],
[Comparison,[var_2,overlap,ans]],
[Bridge,[ans,var_1,rel_1]]

]
union: []
subQueries: []

},
orderBy: null

}

Rule-Following fine-tuning {
select: [ans],
where: {

notUnion: [
[Basic, [ent_4,rel_3, ans]],
[Basic, [ans,rel_2, var_1]],
[Basic, [var_1,rel_0, var_2]],
[Comparison, [var_2, <, val_0]]],

]
subQueries: []

},
orderBy: null

}

Table 11: Comparison_4_hop rule generated by two fine-tuning methods.

8417

Prompt:
You need to generate an X-type rule with h hops. The rule should be in JSON format, with each part
consisting of a key and value pair.
1.The keys are select, where, orderBy, and question.
2.The value for select is fixed as ["ans"].
3.The value for where is also a JSON object containing three keys: notUnion, union, and subQueries.
3.1. The value of notUnion is a JSON list containing triples and their corresponding types.
3.2. Each triple is a list containing two nodes and an edge. Nodes can be either ent, var, ans, or val. In
addition, edges are represented by rel,cmp,agg, or ord.
3.3. Each triple has a type, which can be Basic, Comparison, Aggregation, or Ordinal.
3.4. Basic denotes a regular type with a relation of only rel. Comparison indicates a situation describing a
comparative relationship between variables and values, which may include relations such as <, ≤, >, ≥, =,
̸=, DURING, and OVERLAP. DURING and OVERLAP are used to handle time intervals. Aggregation
describes aggregation functions on variables or answers, such as COUNT, MAX, MIN, or ASK. Ordinal
indicates that the type of the edge in the triple is ord.
3.5. Triples in where must be connected nodes and cannot be isolated.
3.6. Each rule must contain at least one entity node and one ans node.
4.The structure of union is the same as notUnion. When there are multiple relations between two nodes,
these are placed in union.
5.The structure of subQueries is the same as notUnion.
6.The value for orderBy is a JSON list that includes the sorting method, the entity or variable being sorted,
and the type of the entity or variable. Sorting methods can be DESC 7.Triples which can be Basic, Bridge,
Union, Comparison, Aggregation, or Ordinal.
8.Based on the generated rule, create a corresponding natural language question as the value for question.

Input:
Please generate a Union_3_hop type rule according to the prompt above, and also create a natural
language question corresponding to that rule.

Output:
{

select: [ans],
where: {

notUnion: [
[Basic,[ans, rel_0, ent_1]],

]
union: [

[Basic,[ent_2, rel_1, ans]],
[Basic,[ent_2, rel_2, ans]],

]
subQueries: []

},
orderBy: null
question: What team owned by Comcast Spectacor played in the 2010 Stanley Cup?

}

Table 12: An example of input-output for PEFT.

	Introduction
	Related Work
	Preliminaries
	Methodology
	Framework Overview
	Induction Phase
	Rule Mining
	LLM-based Rule Generator

	Deduction Phase
	Rule Retrieval
	Rule-Guided Reasoning

	Experiment
	Dataset
	Baselines
	Evaluation Metrics
	Implementation Details
	Main Results
	Further Analysis
	Ablation Study.
	Rule Retrieval Effectiveness Study
	Case Study

	Conclusion
	Rule Definition
	Rule Constraint Type
	Rule-Following Fine-Tuning Process
	LLMs Evaluation Prompt
	Dataset
	Baselines
	Case Comparison of Fine-Tuning Methods

