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Abstract

Document-level Relation Extraction (DocRE)
aims to extract relations from documents. Com-
pared with sentence-level relation extraction,
it is necessary to extract long-distance depen-
dencies. Existing methods enhance the out-
put of trained DocRE models either by learn-
ing logical rules or by extracting rules from
annotated data and then injecting them into
the model. However, these approaches can re-
sult in suboptimal performance due to incor-
rect rule set constraints. To mitigate this issue,
we propose Context-aware Differentiable Rule
Learning or CaDRL for short, a novel differ-
entiable rule-based framework that learns the
doc-specific logical rule to avoid generating
suboptimal constraints. Specifically, we utilize
Transformer-based relation attention to encode
document and relation information, thereby
learning the contextual information of the re-
lation. We employ a sequence-generated dif-
ferentiable rule decoder to generate relational
probabilistic logic rules at each reasoning step.
We also introduce a parameter sharing training
mechanism in CaDRL to reconcile the DocRE
model and the rule learning module. Extensive
experimental results on three DocRE datasets
demonstrate that CaDRL outperforms existing
rule-based frameworks, significantly improving
DocRE performance and making predictions
more interpretable and logical.

1 Introduction

In recent years, document-level relation extraction
(DocRE) has garnered significant attention from re-
searchers. Unlike sentence-level relation extraction
(RE) (Zeng et al., 2014; Zhang et al., 2017; Han
et al., 2018; Wang et al., 2021), DocRE presents
unique challenges: 1) capturing the complex re-
mote dependencies between entity pairs in doc-
uments. 2) The absence of logical frameworks
makes it susceptible to logical reasoning errors.

*Corresponding authors.

Document 1

[1] Sophia, a technical expert, was born in Berlin and later pursued her higher 

education at the University of Cambridge. [2]...she relocated to Berlin to take 

up a position at a leading German Technology Company. [3]...

Document 2

[1] John, born in New York, embarked on a distinguished career in diplomacy 

shortly after graduating from Georgetown University... [3] Currently, John 

works out of the U.S. Embassy in London...
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Figure 1: Example of a global rule in the DocRED
dataset that fails to apply correctly. While the rule holds
in Document 1, it produces an incorrect result in Docu-
ment 2, highlighting the need for domain-specific rules
for Document 2.

In response to the challenges, existing research
can primarily be divided into three categories: the
sequence-based model, the graph-based model,
and the rule constraints model. In sequence-based
and graph-based models, the focus is learning more
powerful implicit representations (Devlin et al.,
2019; Liu et al., 2019; Zeng et al., 2020; Zhou
et al., 2020). However, these methods lack logic
and transparency. Logical rules can effectively ad-
dress these issues. Rule learning is now widely
applied not only in knowledge graphs but also in
relation triples (Xu et al., 2023). The structured
nature of logical rules gives them an irreplaceable
advantage in mining implicit relations, circumvent-
ing the difficulties of capturing long-term depen-
dencies and using inherent correlations to explain
results. If models could automatically learn and
utilize these rules for prediction, we would achieve
better RE performance and greater interpretability.

The existing rule-constrained DocRE models in-
clude LogiRE (Ru et al., 2021) and MILR (Fan
et al., 2022). LogiRE first learns logical rules based
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on the output logits of a trained neural model. In
contrast, MILR first learns logical rules from anno-
tated data and then trains a model penalized by an
auxiliary loss to account for rule violations. How-
ever, these approaches may result in the unintended
consequence of erroneous rule set constraints. Us-
ing a static prior rule set, we predicted the relations
between the training and test sets on DWIE, treat-
ing cases that adhered to the rules as successes.
The failure rates were 12.9% in the training set
and 28.6% in the test set, highlighting the prob-
lem of incorrect constraints due to rule solidifi-
cation. In Figure 1, the rule nationality(X,Y)
← worksAt(X,Z) ∧ belongsTo(Z,Y) reflects spe-
cific logic in the prediction of relations in Docu-
ment 1, but this a priori rule does not apply to
Document 2, leading to incorrect results.

In this paper, we propose Context-aware
Differentiable Rule Learning or CaDRL for short,
a novel differentiable rule-based framework that
learns the doc-specific logical rule to avoid gen-
erating suboptimal constraints. Specifically, we
leverage Transformer-based relational attention to
encode both document and relation information,
enabling the model to capture the context of re-
lations. We employ a sequence-generated, differ-
entiable rule decoder to produce relation proba-
bilistic logic rules at each step. In training, we
introduce a parameter-sharing training mechanism
in CaDRL to integrate the DocRE model with the
rule learning module, facilitating more efficient
collaboration between the two components, to fur-
ther improve the performance. We experimented
CaDRL with four enhanced DocRE models, includ-
ing BiLSTM (Yao et al., 2019), GAIN (Zeng et al.,
2020), ATLOP (Zhou et al., 2021) and DREEAM
(Ma et al., 2023a). We further evaluated it on
large language models (LLMs), including ChatGPT
and GPT-4. Experimental results on three DocRE
datasets DWIE (Zaporojets et al., 2021), DocRED
(Yao et al., 2019), HacRED (Cheng et al., 2021)
demonstrate that the proposed CaDRL framework
is superior to the rule-based framework for DocRE.
Our main contributions are as follows:

• We propose a DocRE constraint framework
called CaDRL, which constrains the DocRE
model using a differentiable rule learning
module and employs parameter sharing for
joint training. As far as we know, this is the
first differentiable rule learning approach im-
poses logical rules on DocRE models.

• We introduced an encoder based on relational
attention and a differentiable rule decoder
based on sequence generation. We utilize the
TensorLog mechanism to obtain high-quality
RE results.

• Extensive experiments on three DocRE
datasets demonstrate that CaDRL consistently
achieves improvements across various back-
bones and further enhances RE performance.
The improvement on the test set is greater than
that on the validation set, which shows the su-
periority of CaDRL in the dynamic learning
of rules.

2 Related Work

2.1 Document-level Relation Extraction
Previous research on DocRE has primarily focused
on improving representation learning. Advanced
neural network architectures, including attention
mechanisms (Yao et al., 2019; Zhou et al., 2021),
graph neural networks (Zhang et al., 2017; Zeng
et al., 2020), and pre-trained language models ((Jia
et al., 2019; Tang et al., 2020; Xu et al., 2021)),
have been employed as encoders to generate rep-
resentations of entity pairs. Several studies (Tan
et al., 2022; Ma et al., 2023a) adopt knowledge
distillation, where evidence information serves as a
supervisory signal to guide the attention module in
assigning higher weights to relevant evidence. In
addition, other researchers (Zhu et al., 2024; Xue
et al., 2024; Li et al., 2024) have explored the use of
prompt learning to enhance the generative capabil-
ities of LLMs, applying this approach to improve
performance in DocRE tasks.

2.2 Differentiable Rule Learning
Differentiable rule learning approaches based on
TensorLog (Cohen, 2016), are introduced to ad-
dress the limitations of symbolic-based methods
that mine rules discretely. Neural-LP (Yang et al.,
2017), a pioneering method, focuses on learning
probabilistic closed-path rules and simultaneously
optimizes both the parameters and structure of
these rules. Subsequent developments like DRUM
(Sadeghian et al., 2019) enhance the architectural
framework of Neural-LP, achieving superior per-
formance. Neural-Num-LP (Wang et al., 2020)
extends this concept to include numerical rules, pro-
viding significant insights into potential reasoning
patterns. Ruleformer (Xu et al., 2022) prioritizes
the selection of the most appropriate rule among
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various candidates. To broaden the scope of rule
diversity, Neural Logic Inductive Learning (NLIL)
(Yang and Song, 2019) addresses non-closed path
rules by integrating elementary statements.

2.3 Rule Constraint in the DocRE Model

To capture more complex interdependencies be-
tween entity pairs and enhance interpretability,
some studies have added logical reasoning frame-
works to GNN-based and attention-based methods
for constraints (Ru et al., 2021; Fan et al., 2022;
Liu et al., 2023; Qi et al., 2024). LogiRE (Ru et al.,
2021) treats logic rules as latent variables and in-
troduces them into the neural network via a rule
generator and a relation extractor, explicitly cap-
turing remote dependencies and obtaining better
explanations. MILR (Fan et al., 2022) statically
mines logic rules from the training set based on
confidence and then trains a DocRE model con-
strained by a training loss function. BCBR (Liu
et al., 2023) improves on the rule mining strategy of
MILR by modeling rules through beta distributions
and constructing bi-directional logical constraint
loss to regulate the output of the DocRE model.
JMRL (Qi et al., 2024) uses an end-to-end model
to constrain the neural model, which introduces
residual connections and auxiliary loss to unify the
DocRE model with the logical reasoning module.

However, these approaches can result in the prob-
lem of erroneous rule set constraints leading to sub-
optimal results. In contrast, our proposed CaDRL
framework employs a dynamic, differentiable rule
approach to learn the logical rules specific to each
document. This method achieves targeted and in-
dependent rule constraints, thereby reducing the
occurrence of suboptimal outcomes.

3 Preliminaries

3.1 Problem Formulation

Given a document D containing a set of named
entities ED = {ei}nd

i=1, the task of DocRE in-
volves predicting the relations r between entity
pairs (eh, et)h,t∈1,...,n,h ̸=t, where r ∈ R and R =
R ∪ NA. Here, R denotes a pre-defined set of
relation types, andNA stands for “no relation”, re-
spectively. An entity ei can be mentioned multiple
times in D as {mi

j}
Nei
i=1, where the existence of reteh

between eh and et is determined by the correspond-
ing mentions.

3.2 Atoms and Logical Rules

The atom (eh, r, et) or r (eh, et) is a binary vari-
able that indicates whether the relation r ∈ R ex-
ists between eh and et. If r exists, r (eh, et) = 1.
Otherwise r (eh, et) = 0.

First-order logic (FOL) is formed from constants,
variables and predicates with propositional connec-
tives ∧, ∨, ¬ and quantifiers. We focus on learning
the conjunctive paradigm ∧. A clause can be writ-
ten in the form of a rule: H ← B1 ∧ . . . ∧ Bk,
where H is called rule head and B1 . . . Bk is the
rule body. A FOL is referred to as a FOL-L if it
contains L body atoms. We define the set of FOLs
as R̃ ∈ R ∪ {r−1 | r ∈ R}.

4 The CaDRL Framework

To adopt doc-specific logical rule constraints for the
DocRE model, we propose a new rule-constrained
framework, named Context-aware Differentiable
Rule Learning, or CaDRL for short, as illustrated in
Figure 2. CaDRL initially employs a Transformer-
based relational attention mechanism to encode
document and relation information. Subsequently,
the document encoding is provided to the DocRE
model, and the relation encoding is supplied to a
sequence generation-based differentiable relation
decoder. We also introduce a parameter-sharing
method to jointly train the DocRE model and the
rule constraint module, achieving the objectives by
minimizing the original DocRE’s relational classi-
fication loss and rule constraint loss.

4.1 Relational Attention Encoder

CaDRL adopts a Transformer-based relational at-
tention encoder to aggregate contextual informa-
tion about relations. This encoder jointly encodes
document information and relational information,
feeding the relational encoding into a rule decoder
to learn relational context, thus generating higher-
quality rules. To enhance the results, relational
information is also integrated into the document
encoding, thereby optimizing the output of the
DocRE model.

After embedding, D can be obtained as TD =
[t1, t2, . . . , tn, . . . , blank], where ti represents the
embedding of each token, including entity and men-
tioned embeddings. n is the number of tokens.
blank is a special embedding. Attention calcu-
lation is performed on the embedding of relation
r(eh,et,D) and the position i in the document, which
is shown in:
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Document

[1]Prince Harry gets engaged to actress Meghan Markle. [2]Britain's Prince Harry is engaged to 
his US partner Meghan Markle, his father Prince Charles has announced. [3]... and the couple 
are to live in Kensington Palace. 
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Figure 2: The overview of the proposed CaDRL framework.

ϕD
(r,i) =

(
r(eh,et,D)Q(eh,et,D)

r

) (
tiKD

i

)
√
dk + ϵ

, (1)

where Q(eh,et,D)
r is the query matrix for r(eh,et,D),

KD
i is the key matrix at i, dk is the dimension of
KD

i , ϵ is the smoothing factor. Then, the attention
ϕD(i,j) between the embeddings at positions i and j
in D is calculated:

ϕD
(i,j) =

(
tiQD

i

) (
tjKD

j +
∑|R|

r=1

(
r(eh,et,D)K(eh,et,D)

r

))
√
dk + ϵ

,

(2)

where |R| is the size of relation set. ϕD(r,i) and
ϕD(i,j) are subjected to SoftMax calculation.

The document encodings ψD
i and relation encod-

ings ψD
r are obtained by normalizing the products

of ϕD(r,i) and ϕD(i,j) with their respective value ma-
trices. The calculation process is identical for both
ψD
i and ψD

r , although only the derivation of ψD
r is

presented here. The corresponding formulas are as
follows:

ψD
i =

n∑
j=1

ϕD
(i,j)

tjVD
j +

|R|∑
r=1

r(eh,et,D)V(eh,et,D)
r

 ,

(3)

where V(eh,et,D)
r , VDj are the value matrices for r

and positions j, respectively. Finally, ψD
r is used as

the output of the encoder and input into the decoder
to generate rules, while ψD =

[
ψD
1 , ψ

D
2 , . . . , ψ

D
n

]

is used as the output of the document encoding and
input into backbone for RE.

4.2 Sequence Generation Rule Decoder

Existing studies use a priori rule sets, which may
yield suboptimal outcomes due to inappropriate
constraints. Therefore, CaDRL introduces a rule
decoder based on sequence generation and utilizes
TensorLog to render rule extraction a differentiable
process. TensorLog facilitates complex logical rea-
soning efficiently through matrix operations.

Let L be the maximum number of atoms in
each rule and R+ = R ∪ R− ∪ NA. R− repre-
sents the inverse relation. SupposeR = {ri}1≤i≤n,
then R− = {ri}n+1≤i≤2n. The decoder uses NA
as rh in FOL-L and generates the relation with
the highest probability at each step until the se-
quence output achieves the predetermined rule
length L. Following this, cross-attention compu-
tation with ψD

r yields an intermediate vector. To
determine S(eh,et,D)

r,L , MLP (Taud and Mas, 2018)
is employed to calculate the probability ωr

l of
S
(eh,et,D)
r,l in step l. S

(eh,et,D)
r,l with the highest

ωr
l is selected and incorporated into next step. If
r
(eh,et,D)
l+1 is a maximum probability relation, then

S
(eh,et,D)
r,l+1 =

[
S
(eh,et,D)
r,l , r

(eh,et,D)
l+1

]
. After repeat-

ing L times, the rule is obtained. The rule with
lengths less than L is populated using the NA in
the relation set.
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The quality of generation should be evaluated
using the probability of r corresponding to Bi. We
multiply the probabilities of Bi in their ωl to obtain
the score:

Θ(eh,et,D)
r =

L∏
l=1

ωmax
l . (4)

However, unlike the sequence generation task in
machine translation, CaDRL lacks labels to ver-
ify whether the generated relations are the optimal
choice. We draw on the idea of TensorLog to ob-
tain predictions of relation labels. Specifically, we
represent ei as a one-hot vector vei ∈ {0, 1}|E|,
|E| being the size of the entity set, and repre-
sent the extracted relation as an adjacency matrix
Mrk ∈ {0, 1}|E|×|E|. If Mrk

ij = 1, it means that ei
and ej have relation rk, k = 1, . . . , n, otherwise
Mrk

ij = 0. The tail entities ej can be obtained as
follows:

v
ej
(ei,rk)

= v
eiMrk , (5)

where v
ej
(ei,rk)

is a one-hot vector containing infor-
mation about multiple entities. The triples obtained
at each step constitute Bi, allowing the current Bi

to be organized into an adjacency matrix Mrk . This
rule obtains the tail entity through multiplication
with the L step adjacency matrix Mri . See the
Appendix B for the detailed derivation process.

Sequence generation can be formalized into a
differentiable process for training. For the triple
(eh, r, et), r is used as H to verify Bi and to con-
struct the loss function. Bi atoms at step l are
derived as follows:

ξ
(ei,rk,D)
l = ξ

(ei,rk,D)
l−1 ×

|R|∑
n=1

ωn
l M

rn , (6)

where ξl−1, ξl ∈ R|E|×1 are the representations of
the entities in steps l−1 and l, respectively. The re-
sult ξ(ei,rk,D)

L is obtained after L steps of reasoning.
The reasoning score is derived from the similarity
between ξ(ei,rk,D)

L and the target entity’s one-hot
vector v:

Ψ(et | eh, r) = v · log
[
ξ
(ei,rk,D)
L , γ

]
+
, (7)

where
[
ξ
(ei,rk,D)
L , γ

]
+

denotes the maximum value

of each element in ξ(ei,rk,D)
L for γ, γ is a stabilizing

constant. The loss function of the differentiable
rules is as follows:

J (eh,et,D)
rule =

∑
(eh,r,et)∈D

(1−Ψ(et | eh, r)). (8)

4.3 Joint Training
The DocRE model F calculates a logit
F (eh, et,D) ∈ Rn+1 for each entity pair
(eh, r, et)h,t∈{1,...,n},h ̸=t,r∈R, where n = |R|,
[F (eh, et,D)]i denotes the logit for a normal
relation for all 1 ≤ i ≤ n and [F (eh, et,D)]n+1

denotes the logit for NA.
The input of the DocRE model is the document

information encoding that contains relation, ψD =[
ψD
1 , ψ

D
2 , . . . , ψ

D
n

]
. A DocRE model utilizes the

logsumexp pooling method (Jia et al., 2019) to
compute the embedding of ei. The model is typi-
cally trained by minimizing either the binary cross-
entropy (BCE) loss (Yao et al., 2019; Zeng et al.,
2020) or the adaptive thresholding loss (ATLoss)
(Zhou et al., 2021). During inference, the set of pre-
dicted facts {(eh, r, et) | [σ(F(eh, et,D))]r > δ}
is derived by applying a threshold to the predicted
probabilities for each entity pair, where δ represents
the given threshold and σ is an activation function
such as the sigmoid or softmax function. φ(eh,et,D)

r

= [F(eh, et,D)]r is the final predicted logit. We
use ATLoss as the DocRE model’s loss:

J (eh,et,D)
cls = −

∑
r∈RD

p

log
exp(φ

(eh,et,D)
r )∑

r′∈RD
p ∪{NA} exp(φ

(eh,et,D)

r′ )

− log
exp(φ

(eh,et,D)
r )∑

r′∈RD
n ∪{NA} exp(ϕ

(eh,et,D)

r′ )
, (9)

whereRD
p = r | (eh, r, et) ∈ D, r ∈ R andRD

p =
r | (eh, r, et) /∈ D, r ∈ R. RD

p and RD
n are posi-

tive and negative examples respectively.
Parameter Sharing. To enhance the mutual

promotion between the DocRE model and the rule
learning module, we adopted the concept of multi-
task learning (Zhang and Yang, 2021), allowing the
two modules to share parameters. This enables the
rules to guide the DocRE model better while mini-
mizing suboptimal results caused by erroneous con-
straints. CaDRL forms D’s corresponding knowl-
edge graph by predicting triples and implements
parameter sharing by updating the ruleset through
TensorLog. After continuous updates, it returns the
RE results and a high-quality ruleset. CaDRL is
trained by minimizing the total loss:

J =
∑
i∈D

∑
(eh,et)∈Ci,eh ̸=et

J (eh,et,D)
cls +λ·J (eh,et,D)

rule , (10)

where λ is a hyper-parameter to trade off the two
losses.
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Method Dev Test

Ign F1 F1 Logic Ign F1 F1 Logic

ChatGPT (zero-shot) - - - - 20.00 -
ChatGPT (5-shot) - - - - 26.72 -

BiLSTM (Yao et al., 2019) 32.14 39.66 52.24 33.88 43.54 60.53
+LogiRE (Ru et al., 2021) 32.39(+0.25) 40.32(+0.66) 69.24(+17.00) 34.21(+0.33) 43.95(+0.45) 73.13(+12.60)
+MILR (Fan et al., 2022) 34.05(+1.91) 41.22(+1.56) 74.62(+22.38) 35.09(+1.21) 44.65(+1.11) 73.92(+13.39)
+BCBR (Liu et al., 2023) 36.15(+4.01) 42.10(+2.44) 76.47(+24.23) 39.85(+5.97) 47.90(+4.36) 74.65(+14.12)
+CaDRL (our work) 38.26(+6.16) 44.02(+4.36) 78.35(+26.11) 42.77(+8.89) 51.43(+7.89) 75.98(+15.45)

GAIN (Zeng et al., 2020) 58.89 63.81 85.25 61.36 67.45 86.85
+LogiRE (Ru et al., 2021) 58.98(+0.09) 64.90(+1.09) 91.25(+6.00) 61.58(+0.22) 68.71(+1.26) 91.71(+4.86)
+MILR (Fan et al., 2022) 61.25(+2.36) 65.85(+2.04) 93.77(+8.52) 62.76(+1.40) 69.23(+1.78) 91.92(+5.07)
+BCBR (Liu et al., 2023) 62.35(+3.46) 65.20(+1.39) 91.50(+6.25) 63.40(+2.04) 69.70(+2.25) 92.15(+5.30)
+CaDRL (our work) 63.51(+4.62) 66.49(+2.68) 96.27(+11.02) 66.63(+5.27) 70.22(+2.77) 94.74(+7.89)

ATLOP (Zhou et al., 2021) 63.37 69.87 86.14 67.29 75.13 88.62
+LogiRE (Ru et al., 2021) 64.54(+1.17) 70.66(+0.79) 90.33(+4.19) 68.13(+0.84) 75.67(+0.54) 91.42(+2.80)
+MILR (Fan et al., 2022) 67.18(+3.81) 72.05(+2.97) 94.85(+8.71) 69.84(+2.55) 76.51(+1.38) 93.16(+4.54)
+BCBR (Liu et al., 2023) 67.42(+4.05) 72.28(+2.41) 93.72(+7.58) 70.02(+2.73) 76.64(+1.51) 93.27(+4.65)
+CaDRL (our work) 68.32(+4.95) 74.02(+4.15) 95.03(+8.89) 71.52(+4.23) 78.36(+3.23) 93.82(+5.20)

DREEAM (Ma et al., 2023a) 64.06 70.63 87.18 68.41 77.15 90.17
+LogiRE (Ru et al., 2021) 64.95(+0.89) 71.22(+0.59) 87.69(+0.51) 68.94(+0.53) 77.86(+0.71) 90.87(+0.70)
+MILR (Fan et al., 2022) 67.81(+3.75) 72.67(+2.04) 93.28(+6.10) 69.55(+1.14) 77.56(+0.41) 94.09(+3.92)
+BCBR (Liu et al., 2023) 68.02(+3.96) 72.85(+2.22) 93.91(+6.73) 70.10(+1.69) 77.90(+0.75) 94.15(+3.98)
+CaDRL (our work) 69.03(+4.97) 74.52(+3.89) 95.66(+8.48) 72.07(+3.66) 78.83(+1.68) 94.29(+4.12)

Table 1: Main results on DWIE (%). (The underlined statistics pass a t-test for significance with p-value < 0.01.)

5 Experiments

5.1 Experimental Setups

We evaluate our approach on three datasets, DWIE
(Zaporojets et al., 2021), DocRED (Yao et al.,
2019), and HacRED (Cheng et al., 2021). We
provide detailed datasets in Appendix A.1. We
evaluate our method using three metrics: F1, Ign
F1, and Logic. The Ign F1 score excludes triplets
that are involved with either the train set or the dev
set, thus preventing information leakage from the
test set. Logic is used to assess the adherence of
our predictions to the golden rule. The detailed
description of the baseline model we used is pro-
vided in Appendix A.2. We also compared CaDRL
with LLMs such as ChatGPT (Han et al., 2023),
GPT-4 (Peng et al., 2023), and FLAN-UL2 (Peng
et al., 2023). We provide detailed hyperparameter
settings in Appendix A.3, with all parameters tuned
to maximize the Ign F1 score on the development
set. We utilized public repositories of backbone
models, including BiLSTM1,GAIN2, ATLOP3, and
DREEAM4, to conduct our experiments. The hy-
perparameter λ for loss balance was set to 1e-5 in

1https://github.com/thunlp/DocRED
2https://github.com/DreamInvoker/GAIN
3https://github.com/wzhouad/ATLOP
4https://github.com/YoumiMa/dreeam

all experiments.

5.2 Results & Discussions

We conducted experiments on three datasets, pri-
marily comparing the results on the DWIE dataset
with logical labels. The following is an analysis of
the results. We denote the enhanced models using
+CaDRL (resp. +LogiRE, +MILR or +BCBR).

5.2.1 Results on DWIE.
Table 1 displays the results on DWIE, showing
that when integrated with four different backbones,
CaDRL consistently surpasses both LogiRE and
MILR in terms of RE and logical consistency. This
underscores CaDRL’s generalizability and compat-
ibility across various backbones. The differentiable
rule learning employed by CaDRL enhances the
specificity of the rule sets, which in turn improves
its performance on the test set compared to Lo-
giRE and MILR. Notably, on the DREEAM dataset,
CaDRL achieves the best-recorded performance to
date, enhancing the Ign F1 score by 3.66%, the F1
score by 1.68%, and the Logic score by 4.12%.

Furthermore, we evaluated CaDRL against Chat-
GPT, which employs zero-shot and 2-shot contex-
tual learning (Han et al., 2023). Operating without
specific training, ChatGPT depends solely on its
general language capabilities and achieves lower in-

https://github.com/thunlp/DocRED
https://github.com/DreamInvoker/GAIN
https://github.com/wzhouad/ATLOP
https://github.com/YoumiMa/dreeam
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Method PLM DocRED HacRED

Ign F1 F1 Ign F1 F1

ChatGPT (2-shot) ChatGPT - 12.40 - 9.79
ChatGPT (5-shot) ChatGPT - 32.21 - 26.15
GPT-4 (2-shot) GPT4 - 27.90 - 20.56
FLAN-UL2 (2-shot) FLAN-UL2(20B) - 1.90 - -
FLAN-UL2 (fine-tuned) FLAN-UL2(20B) - 54.50 - -

ATLOP (Zhou et al., 2021) BERTbase 57.93 60.53 75.22 76.84
+LogiRE (Ru et al., 2021) BERTbase 58.62(+0.69) 60.71(+0.18) 75.63(+0.41) 77.39(+0.55)
+MILR (Fan et al., 2022) BERTbase 59.06(+1.13) 61.23(+0.70) 75.92(+0.70) 77.67(+0.83)
+BCBR (Liu et al., 2023) BERTbase 60.14(+2.21) 62.08(+1.55) 76.47(+1.25) 78.29(+1.45)
+CaDRL (our work) BERTbase 61.42(+3.49) 62.97(+2.44) 77.03(+1.81) 80.47(+3.63)

DREEAM (Ma et al., 2023a) BERTbase 59.12 60.91 75.53 77.28
+LogiRE (Ru et al., 2021) BERTbase 59.85(+0.73) 61.52(+0.61) 75.81(+0.28) 78.02(+0.74)
+MILR (Fan et al., 2022) BERTbase 60.07(+0.95) 61.79(+0.88) 76.42(+0.89) 78.35(+1.07)
+BCBR (Liu et al., 2023) BERTbase 61.03(+1.91) 62.35(+1.44) 77.18(+1.65) 79.05(+1.77)
+CaDRL (our work) BERTbase 62.78(+3.66) 64.02(+3.11) 79.63(+4.10) 81.07(+3.79)

Table 2: Main results on DocRED and HacRED (%). (The underlined statistics pass a t-test for significance with
p-value < 0.01.)
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Figure 3: Comparison results for different distances.

ference scores. The intricacy of the DocRE task sur-
passes ChatGPT’s capacity when untrained, high-
lighting the specialized demands of such tasks.

5.2.2 Results on DocRED and HacRED.

Table 2 illustrates the performance of models un-
der various logical constraints on the DocRED and
HacRED test sets. Notably, CaDRL has enhanced
the F1 score on the DocRED test set by 3.11% over
the previously leading MILR framework, which
was combined with the DREEAM model, and has
increased the Ign F1 score by 3.66%. In contrast,
LogiRE did not demonstrate significant improve-
ments on the DocRED dataset, largely due to the
high incidence of false negative labels. Previous
methods relied on rule sets derived from training set
labels, which often proved suboptimal for test and
development sets. CaDRL tackles this challenge by

generating unique rule sets for specific documents
where universal rules fall short, ensuring that the
rules applied in RE on the test sets are tailored to
the current document context. This approach is
clearly effective, as evidenced by CaDRL’s sig-
nificantly larger gains in the Ign F1 score, which
discounts the influence of the training set, com-
pared to the F1 score.

The accurate annotations in HacRED lead to
very few false negative labels, thereby minimiz-
ing noise introduced by rule constraints. However,
due to the limited number of relation categories in
HacRED, the potential benefits of rule specificity
are not fully realized, with generic rules predomi-
nantly used. Moreover, the paucity of relation types
means that CaDRL does not significantly enhance
the Ign F1 score, performing comparably to the F1
score.

Furthermore, we conducted a comparative anal-
ysis of CaDRL with LLMs such as ChatGPT, GPT-
4, and FLAN-UL2 (fine-tuning) (Han et al., 2023;
Peng et al., 2023). The results, detailed in Table
2, show that even when fine-tuned, LLMs exhibit
suboptimal performance on the DocRED and Ha-
cRED datasets. Additionally, the generative nature
of LLMs renders them less suitable for DocRE
tasks, which are fundamentally classification tasks.
See the Appendix C for more discussion.

5.2.3 Results on Long-range Dependencies.

Logical rules offer shortcuts to comprehension. To
determine if introducing logical rules aids in captur-
ing long-range dependencies between entity men-
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Document

[1]  Prince Harry gets engaged to actress Meghan Markle. [2]  Britain's Prince 

Harry is engaged to his US partner Meghan Markle, his father Prince Charles 

has announced. [3]  The wedding is due to take place in the spring of 2018 and 

the couple are to live in Kensington Palace. [4]  The Duke and Duchess of 

Cambridge, Harry's older brother Prince William and Kate Middleton, 

congratulated the couple. [5] "We are very excited for Harry and Meghan. [6]  lt 

has been wonderful getting to know Meghan and to see how happy she and 

Harry are together," Clarence House said in a tweet.[7] Harry spent 10 years in 

the army and has this year, with his elder brother William, promoted mental 

health strategies for armed forces in a joint initiative between their Royal 

Foundation and the Ministry of Defense. [8] Harry is Queen Elizabeth's 

grandson and fifth-in-line to the British throne.

live_in(X, Z) ← live_in(X, Y) ∧ sibling_of (Y, Z)

spouse_of(X, Z) ← engaged_to(X, Y) ∧ live_in(Y, Z) 

based_in(X, Z) ← spouse_of(X, Y) ∧ based_in(Y, Z)

General Logical Rules

✘

Doc-specific Logical Rules

head_of_state(X, Z) ←  head_of_gov(X, Y) ∧ sibling_of(Y, Z)

William 

Charles 

Britain
head_of_state

Figure 4: Case Study of ATLOP+CaDRL on DWIE. A check mark (✓) denotes the availability of a rule, while a
cross (✗) indicates that the rule is not applicable.

Dataset DWIE DocRED

IgnF1 F1 IgnF1 F1

L = 1 70.15 77.94 60.82 62.33
L = 2 71.52 78.36 61.42 62.97

Table 3: Comparison on hyper-parameters L.
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Figure 5: Analysis on the hyper-parameter λ.

tions, we categorized entity pairs into four groups
based on the distance between them, defined by the
minimum number of tokens separating their men-
tions within the document. Figure 3 illustrates the
comparative results on the DWIE dataset, where
ATLOP+CaDRL consistently surpasses all base-
line models across these groups. Redundant infor-
mation complicates semantic mapping and limits
the potential of representation-based methods. Our
approach addresses this by focusing on local logi-
cal units, ignoring background noise, and integrat-
ing higher-level conceptual connections to derive
answers.

5.2.4 Analysis on the impacts of L.

We performed an analysis to assess the impact
of the hyperparameters L on the performance of
DocRE. Specifically, we created several variants of
ATLOP+CaDRL with different values for L, and
evaluated their performance on the DWIE and Do-
cRED datasets. The results of these comparisons
are presented in Table 3.

Dataset Model Ign F1 F1

DWIE

CaDRL 72.07 78.83
-encoder 70.81(-1.26) 77.34(-1.49)
-decoder 69.57(-2.50) 75.79(-3.04)
-joint training 71.64(-0.43) 78.17(-0.66)

DocRED

CaDRL 62.78 64.02
-encoder 61.23(-1.55) 62.82(-1.20)
-decoder 60.37(-2.41) 61.28(-2.74)
-joint training 61.95(-0.83) 63.57(-0.45)

Table 4: Ablation study on the DocRED and DWIE
datasets (%).

5.2.5 Results on the Hyper-parameter λ.

We analyzed the hyperparameter λ used for balanc-
ing the loss and conducted experiments on the Do-
cRED dataset based on ATLOP+CaDRL. Figure 5
shows the comparison results. It can be observed
that within the λ range of 0 to 6e-5, both the F1-
score and the Ign F1-score fluctuate with changes
in λ, reaching their maximum values at λ = 1e-5.
Therefore, we set λ = 1e-5 in all our experiments.

5.3 Ablation study

We conducted ablation studies on the DWIE and
DocRED datasets using DREEAM as the DocRE
model, with results presented in Table 4. In this
table, "-encoder" indicates a substitution of the cur-
rent encoder module with that of a standard Trans-
former, "-decoder" signifies the removal of the de-
coder, and "-joint training" denotes the elimination
of the joint training mechanism. The results demon-
strate that our method consistently outperforms the
baseline, even when a component is omitted, un-
derscoring the robustness of these elements. The
effectiveness of these components is further evi-
denced by the critical roles played by the quality
of the rules and the logical constraints.
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5.4 Case Study

We conduct a sample study on DWIE, as shown in
Figure 4. It can be seen that for this document, the
general rules spouseOf(X,Y)← engagedTo(X,Z)
∧ liveIn(Z,Y) will produce incorrect reasoning
results in this document. It is necessary to extract
exclusive rules for the document and learn doc-
specific logical rules.

6 Conclusion and Future work

In this paper, we propose a context-aware differ-
entiable rule learning framework named CaDRL,
aimed at enhancing the inference capabilities of
existing DocRE models. Notably, in CaDRL, we
introduce a new encoder and decoder module to
simulate the inference of logical rules and adopt a
parameter-sharing approach to jointly train the rule
constraint module with the DocRE model, thereby
learning doc-specific logical rules. Moreover, the
effectiveness of CaDRL is validated through exper-
imental results on three benchmark datasets. Future
work will employ logical rule constraints on LLMs
to enhance the capabilities of the rule-learning mod-
ule and extract more accurate rules.

Limitations

CaDRL may have a major limitation. Since
CaDRL needs to learn doc-specific rules, it will
incur a large time complexity. Therefore, CaDRL
needs a golden rule set for the training set to reduce
its time loss by filtering out the documents with in-
correct constraints. We will make up for the above
shortcomings in future work to better learn logical
rules and constrain the DocRE model.

Ethics Statement

CaDRL is a rule-constrained, interpretable scheme
for DocRE tasks. However, employing CaDRL
in DocRE tasks could potentially expose personal
privacy. To mitigate this risk, we restrict our evalu-
ations to public benchmark datasets, which do not
contain personally identifiable information.
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A Experimental Setups

A.1 Datasets
To validate the effectiveness and generalization
of the DocRE model, the researchers constructed
datasets from various domains. Initially, the
datasets used to evaluate the DocRE model mainly
include TACRED, MUC6, and C77, etc. These
datasets have limitations in terms of scale, applica-
tion domain, and applicability, and they are more
limited in terms of the type and number of re-
lations, which makes it difficult to adapt to the
needs of DocRE in complex application scenar-
ios. To further promote the research progress of

DocRE, it is necessary to establish large, high-
quality benchmark datasets for more effective train-
ing and evaluation of DocRE models. Currently
widely used datasets include DocRED, CDR, GDA,
CHR, SCIREX, HacRED, and DWIE. The dataset
statistics are shown in Table 5. A summary of the
DocRED, DWIE, and HacRED datasets used in
this paper is given below:

Statistics DWIE DocRED HacRED
#Train 602 3053 6231
#Dev 98 1000 1500
#Test 99 1000 1500
#Relations 65 97 27
Avg.# entities per Doc. 27.4 19.5 10.8
Avg.# relations per Doc. 24.4 12.5 7.4

Table 5: Statistics of the datasets in experiments.

A.1.1 DWIE
The DWIE (Deutsche Welle Information Extrac-
tion Corpus) is a newly developed document-level
multitasking information extraction dataset that in-
corporates four key subtasks: named entity recog-
nition, co-reference resolution, relation extraction,
and entity linking (Zaporojets et al., 2021). This
study utilizes the dataset solely for DocRE exper-
iments. DWIE is an entity-centered dataset de-
signed to explore entity interactions at the docu-
ment level, presenting a departure from the preva-
lent mention-driven approach that typically fo-
cuses on detecting and categorizing named entity
mentions within individual sentences. The DWIE
dataset, sourced randomly from Deutsche Welle’s
English-language online content, employs annota-
tion schemes that closely mirror the real content, of-
fering a more realistic setting compared to datasets
with predetermined annotation schemes and annota-
tions adjusted by non-uniform sampling. Addition-
ally, DWIE includes rule labels that are essential
for evaluating the logic of DocRE methods that op-
erate under rule constraints. For our experiments,
we exclusively used the dataset, which comprises
802 documents with 23,130 entities, allocating 702
documents for training and 100 for testing.

A.1.2 DocRED
To address the limitation of single-domain focus in
DocRE datasets, (Yao et al., 2019) developed a gen-
eralized domain dataset based on Wikipedia and
Wikidata. This dataset integrates manual annota-
tions with remote supervision, deriving its content
from Wikipedia text and Wikidata. The DocRED
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dataset comprises 101,873 documents obtained
through remote supervision and 5,053 documents
acquired via manual annotation, with 3,053 desig-
nated for training, 1,000 for validation, and 1,000
for testing. Moreover, DocRED encompasses a di-
verse array of 96 relation types (excluding "NA"),
spanning fields such as geography, art, and science.

A.1.3 HacRED
While some existing relation extraction methods
perform well on experimental datasets, their re-
sults are often less satisfactory in real-world ap-
plications. In response to these challenges, the
Data Science Laboratory at Fudan University in-
troduced HacRED (Cheng et al., 2021). The Ha-
cRED dataset utilizes a case-oriented construction
framework specifically designed to create challeng-
ing relation extraction datasets. Comprising 9,231
documents that encapsulate 65,225 relational facts
across various fields, HacRED is one of the largest
DocRE datasets in Chinese and has achieved an F1
score of 96% in terms of data quality.

A.2 Baselines
To assess the generalizability of our method as
a plugin model for DocRE, we select four back-
bone models: BiLSTM (Huang et al., 2015), GAIN
(Zeng et al., 2020), ATLOP (Zhou et al., 2021),
and DREEAM (Ma et al., 2023a). For fairness,
we utilize BERT-base-cased (Devlin et al., 2019)
as the pretraining model for GAIN, ATLOP, and
DREEAM. We compared our model with other
logic constraint DocRE models, namely LogiRE
(Ru et al., 2021), MILR (Fan et al., 2022) and
BCBR (Liu et al., 2023), simultaneously.

A.3 Hyper-parameter Details
To facilitate the reproduction of our results, we
have detailed the hyperparameter settings used in
our experiments in Table 6. This table outlines the
specific settings for various baseline models and
datasets, optimized to maximize the Ign F1 scores
on the development set.

A.4 Experimental environment
To make the experiment reproducible, we list the
experimental environment in Table 7.

B Proof of TensorLog

Given a document D containing a set of named
entities ED = {ei}nd

i=1, the task of DocRE in-
volves predicting the relations r between entity

pairs (eh, et)h,t∈{1,...,nd},h̸=t, where r ∈ R, and
R represents the set of possible relations, which
includes R (the set of known relations) and NA
(representing "No Relation").

Each entity ei is represented as a one-hot en-
coded vector vi ∈ {0, 1}|E|, where E is the set of all
entities, and the i-th entry is 1, with all other entries
being 0. TensorLog introduces an operator MRk

for each relation Rk, where MRk ∈ {0, 1}|E|×|E|

is a matrix that encodes the presence of a relation
r
(ei,ej)
D between entities ei and ej . Specifically, the

(ei, ej) entry of MRk is set to 1 if and only if the
relation r(ei,ej)D exists and belongs toR.

We now establish a connection between Tensor-
Log and logical rule inference. Consider a rule of
the form:

H(x, y)← B1(x, z1) ∧B2(z1, z2) ∧ . . . ∧Bk(zk−1, y),
(11)

where B1, B2, . . . , Bk are the body predicates.
Using the operators described above, we can ap-
proximate the rule inference by performing matrix
multiplications:

S =

L∑
l=1

αl

∏
k∈βl

MRkvx

 . (12)

In this formulation, the sum is over all possi-
ble rules indexed by l, where αl represents the
confidence associated with rule l, and βl is the or-
dered list of relations in that rule. The product∏

k∈βl
MRkvx computes the result of applying the

relations in the body of the rule to the head en-
tity x. The score vector S is the weighted sum of
these results, with weights αl corresponding to the
confidence of each rule.

Finally, the score for each entity ej is computed
as:

ΓD
ej = vT

ej · S, (13)

where vej is the one-hot encoded vector of entity
ej . The score ΓD

ej indicates how likely entity ej is
to be the correct tail entity for the given head entity
eh, based on the rule-based inference process.

C Discussion on LLMs

In this section, we discuss in detail the comparison
of CaDRL with current mainstream LLMs, includ-
ing ChatGPT, GPT-4, and FLAN-UL2. The com-
parison results on the DWIE and DocRED datasets
are presented in Table 1 and Table 2, where the
results for LLMs come from (Han et al., 2023;
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Hyper-parameter DWIE DocRED HacRED

BiLSTM GAIN ATLOP DREEAM ATLOP DREEAM ATLOP DREEAM

Maximum length L 2 2 2 2 2 2 2 2
Optimizer for training Adam AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Maximum training epoch 100 100 100 100 100 100 150 150
Learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 2e-5 2e-5
Batch size for training 4 4 4 4 4 4 4 4
Dropout rate 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1
λ for trading-off losses 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

Table 6: Comparison of hyper-parameters across different models.

Option Setting
OS Ubuntu 20.04
CUDA 11.8
GPU RTX 4090
GPU driver 525.85.12
System memory 256GB@40 cores
Language python 3.9
Deep learning framework PyTorch 2.0.1

Table 7: Experimental environment.

Peng et al., 2023). The results indicate that there
is a certain performance gap between LLMs and
DREEAM+CaDRL on both datasets. It is also ob-
served that the performance of FLAN-UL2 signifi-
cantly improves after fine-tuning on DocRED, sug-
gesting that LLMs with limited-sample in-context
learning (ICL) struggle to leverage the full do-
main knowledge in the training data. Furthermore,
even after fine-tuning FLAN-UL2 on the training
data, our method remains significantly superior
to FLAN-UL2. This is because, compared to the
CaDRL-enhanced DocRE model as a relation clas-
sification model, FLAN-UL2 cannot adapt to the
classification task of DocRE. There is a significant
gap between the generative training objectives and
discriminative training objectives of classification
tasks. Additionally, LLMs themselves have issues
with hallucinations, which may lead to unexpected
relations being predicted as the final outcome. This
problem currently cannot be fully resolved through
fine-tuning.

However, combining CaDRL with LLMs is a
prospective method for further improving perfor-
mance. LLMs’ few-shot ICL does not general-
ize well in information extraction tasks (Ma et al.,
2023b), but LLMs can solve some difficult cases.
Therefore, we can use existing DocRE models to
handle most simple cases and use LLMs for diffi-
cult cases that DocRE models cannot handle, allow-
ing a two-stage relation extraction process to help

CaDRL adapt to knowledge-intensive scenarios.
Additionally, LLMs can generate logical inference
rules by using relational paths as input. Thus, the
rules generated by LLMs can serve as a golden rule
set to initialize the rule constraint module. This can
help CaDRL learn more logical reasoning rules,
thereby achieving better convergence and perfor-
mance. To cope with dynamically changing en-
vironments in practical scenarios, LLMs’ genera-
tive capabilities can be used to update their knowl-
edge bases and serve as the rule set for the DocRE
model in real-time. This allows for continuous
learning from new data, adapting to environmental
changes, and improving decision-making accuracy
and adaptability.

D Discussion on More Applications

CaDRL is a differentiable rule learning framework
for jointly training specific neural models and logi-
cal rules. Therefore, we believe that CaDRL can
be used in more application scenarios that use
logical rules. For example, CaDRL can be ap-
plied to other information extraction tasks such as
document-level event extraction, document-level
aspect-level sentiment analysis, and document-
level event causal relationship identification. The
exploration of CaDRL in these applications is also
part of our future work.
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