
Proceedings of the 31st International Conference on Computational Linguistics, pages 8242–8254
January 19–24, 2025. ©2025 Association for Computational Linguistics

8242

GEAR: A Simple GENERATE, EMBED, AVERAGE AND RANK Approach
for Unsupervised Reverse Dictionary

Fatemah Almeman1,2, Luis Espinosa-Anke1,3

1CardiffNLP, School of Computer Science and Informatics, Cardiff University, UK
2College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, KSA

3AMPLYFI, UK
Correspondence: almemanf@cardiff.ac.uk

Abstract

Reverse Dictionary (RD) is the task of obtain-
ing the most relevant word or set of words
given a textual description or dictionary defini-
tion. Effective RD methods have applications
in accessibility, translation or writing support
systems. Moreover, in NLP research we find
RD to be used to benchmark text encoders at
various granularities, as it often requires word,
definition and sentence embeddings. In this
paper, we propose a simple approach to RD
that leverages LLMs in combination with em-
bedding models. Despite its simplicity, this
approach outperforms supervised baselines in
well studied RD datasets, while also showing
less over-fitting. We also conduct a number of
experiments on different dictionaries and ana-
lyze how different styles, registers and target
audiences impact the quality of RD systems.
We conclude that, on average, untuned embed-
dings alone fare way below an LLM-only base-
line (although they are competitive in highly
technical dictionaries), but are crucial for boost-
ing performance in combined methods.1

1 Introduction

Reverse dictionary (RD), conceptual dictionary or
concept lookup is the task to returning a word or
set of suitable words given a text description or def-
inition (Zock, 2004; Zock and Bilac, 2004). This
NLP task broadly equates to the psycholinguistic
notion of “lexical access” and “tip of the tongue
problem” (Brown and McNeill, 1966), and is cru-
cial for better understanding of the mental lexicon,
i.e., how we as humans store meaning and ren-
der semantic representations into words (Wanner,
1996; Zock et al., 2010). In practical terms, RD sys-
tems are helpful assistants to writers and translators
(Yan et al., 2020), and can have significant impact
on the linguistic experience of language learners

1The code and data are available at https://github.com/
F-Almeman/GEAR_RD

with limited vocabulary (Zhang et al., 2020) or peo-
ple affected with anomic aphasia (Benson, 1979).
From an NLP perspective, RD serves as a tool for
fine-tuning and evaluating text encoders (Hill et al.,
2016; Pilehvar, 2019; Zhang et al., 2020; Chen and
Zhao, 2022) and, recently, as a probe for under-
standing Large Language Models’ (LLMs) internal
representations (Xu et al., 2024). Despite its use-
fulness, research in RD is currently limited in two
fronts. First, RD benchmarks are mostly sourced
from WordNet (Miller, 1995) and the Oxford Dic-
tionary, and little is known about the effectiveness
of RD methods on other resources or languages
- with a few notable exceptions such as the mul-
tilingual experiments in Yan et al. (2020). This
is problematic because the generalization ability
of models optimized for these two standard and
over-utilized resources might not reflect modern,
acquired, rare, evolving or technical terminologies.
And second, because there is a surprising lack
of work exploiting the generative capabilities of
LLMs to improve over embedding-only baselines.
While Tian et al. (2024) propose to leverage LLMs
for RD using prompt engineering and obtain good
results, their approach requires fine-tuning a text
generation model in the first stage, and the final set
of predicted terms may not correspond to the vo-
cabulary of the dictionary in question, making this
approach hard to apply on large-scale real-world
resources2.

In this paper, we make the following contribu-
tions. First, we propose GEAR (generate, embed,
average and rank), a novel lightweight and unsu-
pervised method for RD that utilizes an LLM for
generating a set of candidates given an input defi-
nition, and pools their corresponding embeddings

2At the time of writing this manuscript, the English Wik-
tionary has over 7.5M entries (with over 30M entries across all
languages), making embedding search a prerequisite on any
realistic RD method. https://en.wikipedia.org/wiki/
Wiktionary

mailto:email@domain
https://github.com/F-Almeman/GEAR_RD
https://github.com/F-Almeman/GEAR_RD
https://en.wikipedia.org/wiki/Wiktionary
https://en.wikipedia.org/wiki/Wiktionary

8243

into a vector used for KNN search. This fast and
highly scalable method outperforms heavily tuned
supervised baselines (including those leveraging
LLMs), setting a new state of the art in two (the two
that require generalization) out of three test sets in
Hill’s dataset (Hill et al., 2016). We also evaluate
GEAR, alongside other unsupervised baselines, on
a diverse set of dictionaries, from WordNet to Ur-
ban Dictionary3, and perform an in-depth analysis
of the strengths and weaknesses of these methods
as per the domain, register and target audience of
each dictionary.

2 Related Work

This paper is relevant to computational semantics,
and more concretely, on the interaction between
dictionaries and NLP. Therefore, we cover, first,
prominent work in this intersection (Section 2.1),
and second, we give an account of RD works (Sec-
tion 2.2).

2.1 Dictionaries and NLP

Dictionaries and NLP have a healthy relationship.
Indeed, dictionaries have proven to be suitable re-
sources for improving text processing pipelines at
different stages. For example, for improving Word
Sense Disambiguation (WSD) systems based on
BERT (Devlin et al., 2018) by fine-tuning them
on context-definition pairs (Huang et al., 2019),
or by combining into one loss function different
pre-training strategies, e.g., discriminating between
correct and wrong definitions via contrastive learn-
ing, or dictionary entry prediction (Yu et al., 2022;
Chen et al., 2022). Beyond BERT, Bevilacqua
et al. (2020) fine-tuned BART (Lewis et al., 2019)
on example-definition pairs, and reported high re-
sults in intrinsic benchmarks and, more importantly,
used their DM system for downstream NLP, specif-
ically WSD as well as word-in-context (Pilehvar
and Camacho-Collados, 2019) classification. This
strategy was further adopted to add an interpretabil-
ity layer to semantic change detection via definition
generation (Giulianelli et al., 2023). Other exam-
ples of successfully marrying dictionaries and NLP
systems include training a unified vector space of
words, definitions and “mentions in context” (Gajb-
hiye et al., 2024), which were successfully used for
ontology completion; or fine-tuning an LLM such
as LLAMA2 (Touvron et al., 2023) on WordNet’s
semantic relations and definitions, which then can

3https://www.urbandictionary.com/

be flexibly used in several lexical semantics tasks
(Moskvoretskii et al., 2024).

2.2 Reverse Dictionary
Concerning RD, this is a task with a long tradition
in lexical semantics, with early methods exploiting
hand-crafted rules (Bila et al., 2004; Shaw et al.,
2011) for extracting textual features. It was Hill
et al. (2016) who introduced RNNs as suitable ar-
chitectures that complemented bag of words rep-
resentations, as well as a dataset specific to RD
sourced from different resources, such as Word-
Net, Webster’s Dictionary and Wiktionary, among
others. From here, the usage of neural networks
first, and more specific, pre-trained transformer en-
coders like BERT later, have dominated the RD
landscape. Among the former, let us highlight, e.g.,
Pilehvar (2019), who integrates WordNet senses
and supersenses as an additional signal, improving
over text-based embeddings alone. Further, Zhang
et al. (2020) propose a multi-channel model com-
prising a sentence encoder based on BiLSTMs and
multiple linguistically motivated predictors such as
word category (using WordNet’s taxonomy), mor-
pheme or sememe prediction, whereas Chen and
Su (2021) directly replaces word embeddings with
synset embeddings, optionally leveraging examples
of usage. An immediate limitation of the above
works is their reliance on a sense inventory such
as WordNet, which has proven to work very well
for modeling in-domain terminologies, less so for
enabling generalization (cf. Table 2).

Other works have exploited multiple but re-
lated tasks in the broad “embedding a dictionary”
paradigm, e.g., by combining definition generation
and RD with reconstruction tasks via autoencoders
(Chen and Zhao, 2022), or have fine-tuned T5 (Raf-
fel et al., 2020) with excellent results (Mane et al.,
2022). More recently, LLMs have unexpectedly
been introduced into RD. For example, in a two-
stage approach where a fine-tuned LLM first gen-
erates a set of candidates which are then passed in
a subsequent prompt to a generator for outputting
the final set of predictions (Tian et al., 2024). Fi-
nally, from a more “probing” perspective, RD has
been used to gain insights into LLMs representa-
tions via conceptual inference, showing that they
encode information about object categories as well
as fine-grained features (Xu et al., 2024).

As we can see from the above survey, dictio-
naries play an important role in NLP today, and
RD is a suitable probe for pre-training and eval-

https://www.urbandictionary.com/

8244

uating text encoders as well as LLMs. However,
as we mentioned in Section 1, there has been little
work in expanding existing benchmarks beyond
Hill’s dataset, especially in terms of different do-
mains and registers. Moreover, no works have ex-
plored the seemingly simple generate-then-embed
approach, so that many of the practical drawbacks
of LLMs (hallucinations and context length limita-
tions, to name a few) could be alleviated, but still
using their ability to generate suitable candidate
embeddings for KNN search.

3 The GEAR Method

In this section, we give a brief description of
GEAR, a novel, very simple, lightweight, and,
more importantly, unsupervised method for RD.
We denote any dictionary as D = {(di, Ti)|i =
1, . . . , N}, where di is a definition, Ti =
{ti1, ti2, . . . , tiki} is the set of corresponding
terms4 (i.e., entries in the dictionary), and ki ≥ 1
the number of terms associated with di. From
here, GEAR consists on four simple steps. First,
generate, where, given an input definition di, an
(LLM) generates a set of possible terms G =
{g1, g2, . . . , gm}. All throughout this paper, we
use GPT-4O-MINI (Achiam et al., 2023)5, which
we prompt in three different ways to thoroughly
explore any differences in performance that might
arise from deeper descriptions of the task. The
full details for these prompts can be found in Ap-
pendix A), however, at a high level, they can be
summarized as follows:

• Base prompt 1 (bp1): includes a short de-
scription of the resource: such as Given the
definition {definition}, generate a ranked list
of {k} terms, with the first term being the most
related to the definition, assuming they are
from the {resource} dictionary. {resource} is
{resource description}.

• Base prompt 2 (bp2): the same as bp1 but
it also includes a sample of terms and defini-
tions from the specified resource to help the
model understand the type of terms it should
generate: such as These are some examples of
definitions and terms in this dictionary: {ex-
amples}.

4It is important to account for a one-to-many relationship
at this point because we will be reporting experiments on
combinations of multiple resources.

5https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/.

• Reasoning prompt (rp): this final prompt ex-
tends bp2 by requesting the generation of ex-
amples alongside the terms to explore whether
having the LLM ’reason’ before answering
leads to improved results. Specifically, this
part is added: For each term, provide an ex-
ample usage in a sentence that matches the
style and scope of {dictionary}.

In the next embed step, a text encoder f :
V → Rn maps each term in G to a vector rep-
resentation in an n-dimensional space. We use
SBERT (Reimers and Gurevych, 2019) and the
Instructor model (Su et al., 2022) to obtain term
embeddings and evaluate their performance for
comparison (see Section 6). The resulting ma-
trix EG = [e1, e2, . . . , em]⊤ ∈ Rm×n, where
ei = f(gi), is then mean pooled (or averaged)
as follows: ē = 1

m

∑m
i=1 ei. Finally, in the rank

step, given T =
⋃N

i=1 Ti, which denotes the set
of all unique terms in D, we perform KNN search
via cosine similarity over T with ē. The perfor-
mance of GEAR, just like any other search-based
approach, can be evaluated using Information Re-
trieval metrics that account for different scenarios,
e.g., the rank of the first correct term with Mean
Reciprocal Rank (MRR), or the proportion of cor-
rect terms at different cutoffs with Precision at k
(P@k).

4 Data

In this paper we are concerned not only with ex-
ploring the usefulness of GEAR when compared
to existing baselines, we are also interested in de-
veloping an understanding of what kind of lexical
resource poses greater challenges to this method as
well as its components alone. For this reason, we
perform experiments on two distinct but comple-
mentary datasets.

As a first evaluation set, we use the three test sets
from the Hill et al. 2016 dataset (Section 5.1) to
compare GEAR with other published RD methods:
the seen set, which includes 500 word-definition
pairs from the training set to evaluate recall; the
unseen set, containing 500 pairs where both the
words and definitions are excluded from training;
and the description set, consisting of 200 words
with with human-written descriptions. Both the
unseen and human description datasets are suitable
for determining the generalization ability of any
tested method. Secondly, we report performance on

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

8245

Definition Terms Sources

Alert and fully informed [knowing, knowledgeable] [WN, WN]

River in singapore [Geylang River, Singapore River] [WP, WP]

In the middle of the week [midweek] [Wik, CHA]

A type of shotgun [12 gauge, greener] [Urban, CHA]

An arsonist [arsonite, torchman, incendiary] [Wik, Urban, Mul]

Any supply that is running low [low supply, short supply] [Hei++, Hei++]

A term used to describe something so awesome the only way
it could be better is if it was between two slices of bread

[ass kicking sandwitch] [Urban]

An abnormal accumulation of air in the pleural space (the
space between the lungs and the chest cavity) that can result
in the partial or complete collapse of a lung

[Primary Spontaneous Pneumothorax] [Sci]

Table 1: 3D-EX examples. Note that one definition could map to more than one term, which in turn can come from
different dictionaries. Also note the range of styles and domains. (WordNet (WN), Wikipedia (WP), Wiktionary
(Wik), MultiRD (Mul), Sci-definition (Sci))

the different dictionaries included in 3D-EX (Alme-
man et al., 2023) (Section 5.2), a comprehensive
resource that integrates multiple dictionaries and or-
ganizes them into <word,definition> pairs and
<word,definition,example> triplets6. We con-
vert this dataset into a suitable RD format, namely
<definition, list of terms> and perform two
types of splits: a random split and a source split.
In the random split, the data is split randomly into
60% for training, 20% for validation, and 20% for
testing. In the source split, all definitions from
each source in the dataset are extracted into sep-
arate datasets, and then each dataset is split ran-
domly into training, validation, and test sets using
the same 60%, 20%, and 20% ratio. Despite the un-
supervised nature of our work, we still conduct all
our experiments on the test splits alone to enable
comparison in further iterations with supervised
methods. Table 1 shows examples of entries in
3D-EX in its new RD format, and illustrates the
diversity in register, domain and style within the
resource. For the benefit of the reader, we pro-
vide a brief description of each resource integrating
3D-EX below:

• WordNet: A lexical database that groups
words into synsets (synonym sets) with def-
initions, lemmas, examples, and word rela-
tions (Miller, 1995; Fellbaum, 2013). Word-
Net is commonly used as a sense inventory
in NLP (Agirre and Edmonds, 2007; Zhang
et al., 2022).

6While dictionary examples are a valuable resource for
improving text representations, we leave them out of our ex-
periments in order to limit the number of components to test.

• CHA: A dataset containing words, definitions,
and examples from the Oxford Dictionary
(Chang and Chen, 2019). It has been used for
dictionary modeling (Bevilacqua et al., 2020)
and to evaluate the quality of WordNet’s ex-
amples (Almeman and Espinosa-Anke, 2022).

• Wikipedia: A free online encyclopedia col-
laboratively created by contributors around
the world (Yano and Kang, 2016).

• Wiktionary: A web-based dictionary that pro-
vides detailed information on words, includ-
ing definitions, examples, and pronunciation
(Bajčetić and Declerck, 2022).

• Urban: A crowd-sourced platform that fo-
cuses on slang and informal language not usu-
ally covered in traditional dictionaries (Wilson
et al., 2020).

• CODWOE: The English dataset from the
CODWOE (Comparing Dictionaries and
Word Embeddings) SemEval 2022 shared task
(Mickus et al., 2022).

• Sci-definition: A dataset specifically created
to produce definitions for scientific terms with
different levels of complexity (August et al.,
2022).

• Webster’s Unabridged: A version of Web-
ster’s dictionary (Webster, 1900) available
through Project Gutenberg (Various, 2009),
offering definitions and additional notes for
English words.

8246

Model/Method
Seen Definition Unseen Definition Description

mr acc@k rv mr acc@k rv mr acc@k rv

OneLook 0 66/.94/.95 200 - - - 5.5 .33/.54/.76 332

BOW 172 .03/.16/.43 414 248 .03/.13/.39 424 22 .13/.41/.69 308

RNN 134 .03/.16/.44 375 171 .03/.15/.42 404 17 .14/.40/.73 274

RDWECI 121 .06/.20/.44 420 170 .05/.19/.43 420 16 .14/.41/.74 306

SuperSense 378 .03/.15/.36 462 465 .02/.11/.31 454 115 .03/.15/.47 396

MS-LSTM 0 .92/.98/.99 65 276 .03/.14/.37 426 1000 .01/.04/.18 404

Multi-channel 16 .20/.44/.71 310 54 .09/.29/.58 358 2 .32/.64/.88 203

BERT 0 .57/.86/.92 240 18 .20/.46/.64 418 1 .36/.77/.94 94

RoBERTa 0 .57/.84/.92 228 37 .10/.36/.60 405 1 .43/.85/.96 46

GEAR_bp1 0 .66/.84/.96 200.122 0 .70/.88/.97 180.955 0 .89/.99/.99 70.5334

GEAR_bp2 0 .71/.88/.97 170.451 0 .65/.82/.95 225.324 0 .93/.99/1 1.57314

GEAR_rp 0 .70/.87/.96 185.97 0 .66/.86/.96 190.8 0 .91/.99/1 1.7837

Table 2: GEAR results on the Hill’s dataset compared to competitor models (using the Instructor model for
embeddings, as it achieves the best performance), according to median rank (mr), accuracy@k (acc @ 1/100/1000),
and rank variance (rv). Baselines results are from Zhang et al. (2020) and Yan et al. (2020).

• MultiRD: A dataset developed by (Zhang
et al., 2019) to evaluate a reverse dictionary
model, using the English dictionary data from
Hill et al. (2016).

• Hei++: A dataset created by Bevilacqua
et al. that pairs human-made definitions with
adjective-noun phrases, based on the test split
of the HeiPLAS dataset (Hartung, 2015).

5 Main Experiments

5.1 GEAR on Hill’s dataset
We introduce two sets of experiments on Hill’s
dataset. The first one uses an LLM alone to perform
RD by directly generating terms from input defini-
tions. The second experiment integrates the LLM
with embedding models to form GEAR, which en-
hances performance across the board. For evalua-
tion, we compare GEAR results with the following
baselines: (1) OneLook, which is the most popular
commercial RD system (Zhang et al., 2020); (2)
BOW and RNN with rank loss (Hill et al., 2016),
which are neural models where BOW uses a bag-
of-words approach and RNN employs Long Short-
Term Memory (LSTM); (3) RDWECI (Morinaga
and Yamaguchi, 2018), which improves BOW by
adding category inference; (4) SuperSense (Pile-
hvar, 2019), which advances BOW by using pre-
trained sense embeddings; (5) MS-LSTM (Kartsak-
lis et al., 2018), which enhances RNN with Word-

Net synset embeddings and a multi-sense LSTM;
(6) Multi-channel (Zhang et al., 2020); and (7)
BERT and RoBERTa (Yan et al., 2020), which are
trained to generate the target word for the RD task.
We use three evaluation metrics based on previous
work: median rank of target words (lower is better),
accuracy of target words in the top K results (higher
is better), and rank variance (lower is better). Table
2 shows that GEAR outperforms all baselines on
both the unseen definition set and the description
set. We can also observe that MS-LSTM performs
effectively on the seen definition set but not on
the description set, showing its limited ability to
generalize (Zhang et al., 2020).

5.2 GEAR on 3D-Ex

Despite the new SoTa established on Hill’s dataset,
we are also interested in exploring core components
such as LLMs or embeddings on other resources.
To this end, and taking 3D-Ex as a test bed, we
apply the same set of experiments as described in
Section 5.1 and introduce a new experiment that
uses only different text embeddings (without the
generate step). This will serve as a baseline to what
extent GEAR can provide an improvement over
these basic and untuned approaches.

In terms of experimental setup, unless otherwise
specified, we always evaluate a fixed-length ranked
list of k terms for a given definition, which are
then compared to the gold terms. As for evaluation

8247

metrics, we use two different metrics:

• Mean Reciprocal Rank (MRR), which mea-
sures the position of the first correct result in
a list of outcomes, is defined as

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(1)

where Q is a sample of experiment runs and
ranki refers to the rank position of the first
relevant outcome for the ith run.

• Precision @ k (P@k), which calculates the
precision of relevant items within the top kk
positions of a ranked list, is defined as follows:

Precision@k =
1

k

k∑
i=1

reli (2)

where reli is 1 if the item at position i is rele-
vant and 0 otherwise. We now introduce the
different embedding models we use in our ex-
periments.

Embeddings We evaluate the performance of dif-
ferent embedding models, which we select con-
sidering factors such as adoption among the com-
munity, performance in open benchmarks such as
MTEB (Muennighoff et al., 2023), availability in
the HuggingFace7 hub, as well as being of manage-
able size. These models are:

• SBERT (Reimers and Gurevych, 2019)
models, namely all-MiniLM-L6-v2,
all-distilroberta-v1 and all-mpnet-base-v2.

• Jina Embeddings (Günther et al., 2023)
which is a language model that has
been trained using Jina AI’s Linnaeus-
Clean dataset that contains query-document
pairs. We use jina-embedding-b-en-v1 and
jina-embedding-l-en-v1.

• General Text Embeddings (GTE) model (Li
et al., 2023) which is trained on a large-scale
corpus of relevance text pairs from different
domains. In this work we use gte-large.

• Instructor (Su et al., 2022). It generates text
embeddings for different tasks (such as clas-
sification or retrieval) and domains (such as

7https://huggingface.co/

science or finance) based on task instructions.
We use instructor-large. We examined three
different variants of instructions for encod-
ing terms and definitions: (1) no instructions
provided; (2) using a general description for
the target text (i.e., “Represent the sentence:”
and “Represent the word:”); and (3) applying
dictionary-specific instructions for the target
texts (i.e., “Represent the dictionary defini-
tion:” and “Represent the sentence: the dictio-
nary entry:”).

• Universal AnglE Embedding (Li and Li,
2023), another instruction-based encoder, and
which we use with the same configurations as
Instructor. We use UAE-Large-V1.

6 Results and Analysis

6.1 Hill’s dataset

Table 3 shows how the performance improves with
the GEAR method. In the first part of the table,
where candidates are evaluated without any embed-
dings, the likelihood of having the target term in the
top 5 candidates is low. Among the models tested
with GEAR, the Instructor model, which encodes
terms as dictionary entries based on instructions,
performs best, which gains of above 10% on the
seen and unseen splits, but negligible differences
on the human descriptions (presumably because
these already get a good sentence embedding from
sentence BERT, on one hand, and also because they
might not be accurately described as dictionary re-
sources, which is what we used as an instruction
for Instructor). For prompt effectiveness, we found
that adding the requirement to generate a dictionary
example, and despite its usefulness in other settings,
does not improve over base prompt 2, which simply
provides as input a few exemplars.

6.2 3D-EX Dataset

Table 4 presents the average MRR, P@1, P@3, and
P@5 for each prompt across different resources
in 3D-EX, comparing two methods: one without
embedding models and the other using the GEAR
method. As previously demonstrated in Hill’s re-
sults (Section 6.1), the GEAR method, particularly
with the Instructor model, achieves the best perfor-
mance, showing improvements in MRR and P@1
ranging from 3 to 6 points. Concerning the type of
prompt, interestingly, we found the sophistication
of the prompt to matter the most when combined

https://huggingface.co/

8248

Model Split Prompt ACC@1 ACC@5

-

S.
bp1 26.8 44.0
bp2 30.4 50.2
rp 29.2 46.8

U.
bp1 30.0 47.2
bp2 33.4 53.8
rp 33.4 49.8

D.
bp1 70.0 77.0
bp2 72.5 83.0
rp 72.0 81.5

SBERT

S.
bp1 57.8 68.2
bp2 62.4 73.0
rp 60.6 72.2

U.
bp1 59.0 70.8
bp2 63.8 77.0
rp 61.6 75.2

D.
bp1 90.5 96.5
bp2 93.5 97.5
rp 94.0 98.0

Instructor

S.
bp1 66.0 80.6
bp2 71.4 84.6
rp 70.4 84.0

U.
bp1 64.6 79.0
bp2 70.0 83.4
rp 66.4 82.4

D.
bp1 89.5 98.0
bp2 92.5 98.5
rp 91.5 99.0

Table 3: Performance comparison of LLMs (no embed-
dings models, top block) and GEAR methods (mid-
dle and bottom block) across various prompts in Hill’s
dataset. S.: Seen split, U.: Unseen split, and D.: human
description split. Prompt types are bp1 (Base Prompt
1), bp2 (Base Prompt 2), and rp (Reasoning Prompt).

Model Prompt MRR P@1 P@3 P@5

-
bp1 28.27 24.58 10.64 6.91
bp2 30.21 26.18 11.39 7.42
rp 30.99 26.98 11.70 75.89

SBERT
bp1 40.61 33.75 17.36 11.96
bp2 43.01 36.21 18.32 12.59
rp 44.21 37.09 18.92 12.99

Instructor
bp1 43.47 36.41 18.00 12.24
bp2 45.58 38.67 18.76 12.73
rp 46.37 39.31 19.09 12.98

Table 4: Performance comparison of LLMs (no em-
beddings models) and GEAR methods across different
models and prompts in 3D-EX, showing the average
score across different dictionaries.

with embedding models (where we see an improve-
ment of around 7% MRR from base to reasoning),
but only 2% when prompting alone is considered.

Table 5 shows the average MRR, P@1, P@3,
and P@5 for each embedding model mentioned in
Section 5.2. Results are much lower compared to

those achieved with the GEAR method, as well as
below prompting alone. In Figure 1, we illustrate
the performance across these different datasets, and
verify that Hei++ and Sci-definition datasets have
higher values, while Urban and CHA show lower
values. This variation is likely due to the nature of
the entries in Hei++ and Sci-definition, designed
to capture more specialized and unique terms. We
see, interestingly, that while Instructor embeddings
alone are consistently outperforming the rest, they
particularly shine in WordNet, which suggest that
WordNet embeddings may benefit from additional
context to the encoder, since it has been shown that
WordNet’s definitions and examples are perhaps
too short to be informative (Almeman and Anke,
2022; Giulianelli et al., 2023).

Model MRR P@1 P@3 P@5

Instructor (dict. - dict.) 24.88 19.80 9.82 6.73
Instructor (gen. - dict.) 24.81 19.40 9.96 6.78
Instructor (gen. - no) 24.73 19.72 9.78 6.68
Instructor (dict. - no) 24.51 19.55 9.68 6.60
Instructor (gen. - gen.) 24.32 19.17 9.68 6.65
Instructor (dict. - gen.) 24.15 19.05 9.55 6.61
Instructor (no - no) 24.03 19.23 9.45 6.47
Instructor (no - dict.) 23.92 18.91 9.51 6.50
Jina (large) 23.78 18.96 9.33 6.40
GTE (large) 23.47 18.18 9.38 6.56
Instructor (no - gen.) 23.24 18.31 9.20 6.37
UAE (gen. - gen.) 22.93 17.63 9.25 6.41
UAE (dict. - gen.) 21.99 16.96 8.77 6.16
UAE (gen. - dict.) 21.79 16.80 8.71 6.12
UAE (dict. - dict.) 20.90 15.87 8.45 5.94
Jina (base) 20.85 16.11 8.38 5.81
all-mpnet-base-v2 20.14 15.96 7.96 5.45
UAE (gen. - no) 18.91 14.48 7.66 5.36
UAE (dict. - no) 17.77 13.55 7.20 5.01
all-MiniLM-L6-v2 17.04 13.07 6.84 4.82
all-distilroberta-v1 16.55 13.05 6.54 4.50
UAE (no - gen.) 8.98 7.25 3.51 2.39
UAE (no - dict.) 8.10 6.50 3.16 2.15
UAE (no - no) 5.34 3.81 2.24 1.58

Table 5: Comparing different embedding models with-
out any support from an LLM-based generation step,
showing the average score across 3D-EX dictionaries.

7 Analyzing GEAR Components

Generation with Open Source LLM To ensure
that our approach is both effective across different
models and accessible for future research, we re-
peated the GEAR experiment on the Hill’s dataset
using Llama (Touvron et al., 2023), specifically
Llama 3.1-70B 8, an open-source, freely available,

8https://huggingface.co/meta-llama/Llama-3.
1-70B

https://huggingface.co/meta-llama/Llama-3.1-70B
https://huggingface.co/meta-llama/Llama-3.1-70B

8249

(a) MRR (b) P@1

(c) P@3 (d) P@5

Figure 1: Performance comparison for various embedding models across different metrics in 3D-EX

and highly capable language model. As demon-
strated in Table 6, our method continues to outper-
form the competitor systems in 2 out of 3 datasets.

Split Prompt ACC@1 ACC@10 ACC@100

S.
bp1 55.6 67.4 76.8
bp2 69.8 83.6 94.2
rp 76.2 89 97

U.
bp1 68.8 84.4 92.4
bp2 67.2 85 93.2
rp 69.8 87.8 95.2

D.
bp1 88 97.5 99.5
bp2 88.5 98.5 99.5
rp 91.5 100 100

Table 6: GEAR results using Llama for candidates
generation and Instructor model for embeddings across
different prompts in Hill’s dataset. S.: Seen split, U.:
Unseen split, and D.: human description split. Prompt
types are bp1 (Base Prompt 1), bp2 (Base Prompt 2),
and rp (Reasoning Prompt).

Different Pooling Methods In order to gain a
deeper understanding of the effect of the number
of candidates produced during the generation step
of our GEAR method, we plot the performance
metrics across different candidate values for all

three splits and for precision @ k. Figure 2 shows
that using just one candidate is not optimal, while
averaging over 2 or 3 candidates provides better
results, sometimes outperforming all the 5. These
results also suggest that while we could have tuned
the candidate number on a development set, with
the tools we tested (gpt-4o-mini; and Instructor
and SBERT), it seems proven that performance
plateaus at only a handful of generated terms.

Additionally, We explored the effectiveness of
max pooling instead of averaging the generated
term embeddings. These experiments did not pro-
vide any improvements over the averaging method
results shown in Table 2. As we can see in Table 7,
for the full GEAR method using bp1, the results
were around 1-2% worse for all 3 ks in accuracy @
k. Similarly, for the other two prompts, we found
a consistent under-performance when compared
with averaging, again between 1% and 2% below,
with the performance on Hill’s test set going further
below, up to 4%.

8 Conclusions and Future Work

We have introduced a very simple method for RD,
which is based on a simple pipeline where we use

8250

(a) Accuracy@1 (b) Accuracy@10

(c) Accuracy@100

Figure 2: A comparison of the performance on Hill’s splits, evaluating the number of candidates in the generate
step, which are then subsequently averaged to produce the input vector for KNN search.

Split Prompt ACC@1 ACC@10 ACC@100

S.
bp1 63.6 81.2 94.0
bp2 69.0 84.6 95.8
rp 65.6 83.4 4.6

U.
bp1 61.6 80.4 93.8
bp2 68.2 86.2 95.0
rp 66.6 85.2 95.2

D.
bp1 90.0 97.5 100
bp2 90.5 97.0 100
rp 90.5 98.0 100

Table 7: Max pooling results across different prompts
in Hill’s dataset using the Instructor model for embed-
dings. S.: Seen split, U.: Unseen split, and D.: human
description split. Prompt types are bp1 (Base Prompt
1), bp2 (Base Prompt 2), and rp (Reasoning Prompt).

LLMs to generate candidate terms given a defini-
tion, and embed them using some pooling tech-
nique (the best results are given by simple averag-
ing). This unsupervised method outperforms exist-
ing supervised methods on a well known dataset,
only falling short on the seen split by methods that
seem to overfit. In addition to this, we explored
different components of this method, and evaluated
its performance on various dictionaries and under
different evaluation settings. For the future, we
would like to explore more LLMs for the genera-

tion step, possibly developing a weighted average
approach, which would be task-specific, and that
could be learned via simple neural network archi-
tectures, similarly to Wang et al. (2021), who used
word classification datasets for tuning contextu-
alized word embeddings. We would also like to
expand our experiments to a multilingual setting,
and test the outputs of an effective RD method as
signal for pre-training general purpose embedding
models.

Limitations

We have identified some limitations in this work.
For instance, assuming that a single embedding
model is effective across different registers and
audiences might be an oversimplification. Con-
sidering various pre-training strategies could pro-
vide better insights into which dictionaries perform
better or worse in different contexts. Addition-
ally, although we have evaluated the performance
of GEAR on the 3D-EX dataset, comparing these
results with baseline RD models is needed for a
complete evaluation.

8251

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Eneko Agirre and Philip Edmonds. 2007. Word sense
disambiguation: Algorithms and applications, vol-
ume 33. Springer Science & Business Media.

Fatemah Almeman and Luis Espinosa Anke. 2022.
Putting wordnet’s dictionary examples in the con-
text of definition modelling: An empirical analysis.
In Proceedings of the Workshop on Cognitive Aspects
of the Lexicon, pages 42–48.

Fatemah Almeman and Luis Espinosa-Anke. 2022.
Putting wordnet’s dictionary examples in the con-
text of definition modelling: An empirical analysis.
In Proceedings of the Workshop on Cognitive Aspects
of the Lexicon, pages 42–48.

Fatemah Almeman, Hadi Sheikhi, and Luis Es-
pinosa Anke. 2023. 3D-EX: A unified dataset of
definitions and dictionary examples.

Tal August, Katharina Reinecke, and Noah A. Smith.
2022. Generating scientific definitions with control-
lable complexity. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 8298–8317,
Dublin, Ireland. Association for Computational Lin-
guistics.

Lenka Bajčetić and Thierry Declerck. 2022. Using
Wiktionary to create specialized lexical resources
and datasets. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
3457–3460, Marseille, France. European Language
Resources Association.

D Frank Benson. 1979. Neurologic correlates of anomia.
In Studies in neurolinguistics, pages 293–328. Else-
vier.

Michele Bevilacqua, Marco Maru, and Roberto Navigli.
2020. Generationary or “how we went beyond word
sense inventories and learned to gloss”. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7207–7221, Online. Association for Computational
Linguistics.

Slaven Bila, Wataru Watanabe, Taiichi Hashimoto,
Takenobu Tokunaga, and Hozumi Tanaka. 2004. Dic-
tionary search based on the target word description.

Roger Brown and David McNeill. 1966. The “tip of
the tongue” phenomenon. Journal of verbal learning
and verbal behavior, 5(4):325–337.

Ting-Yun Chang and Yun-Nung Chen. 2019. What does
this word mean? explaining contextualized embed-
dings with natural language definition. In Proceed-
ings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 6064–6070, Hong
Kong, China. Association for Computational Linguis-
tics.

Guowei Chen and Jianbo Su. 2021. Towards non-
ambiguous reverse dictionary. In 2021 IEEE 33rd
International Conference on Tools with Artificial In-
telligence (ICTAI), pages 1113–1120. IEEE.

Pinzhen Chen and Zheng Zhao. 2022. A unified model
for reverse dictionary and definition modelling. arXiv
preprint arXiv:2205.04602.

Qianglong Chen, Feng-Lin Li, Guohai Xu, Ming Yan,
Ji Zhang, and Yin Zhang. 2022. Dictbert: Dictionary
description knowledge enhanced language model
pre-training via contrastive learning. arXiv preprint
arXiv:2208.00635.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Christiane Fellbaum. 2013. Wordnet. In Carol Chapelle,
editor, The encyclopedia of applied linguistics, pages
6739–6746. Blackwell Publishing Ltd.

Amit Gajbhiye, Zied Bouraoui, Luis Espinosa Anke,
and Steven Schockaert. 2024. Amended: Modelling
concepts by aligning mentions, definitions and de-
contextualised embeddings. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalua-
tion (LREC-COLING 2024), pages 801–811.

Mario Giulianelli, Iris Luden, Raquel Fernandez, and
Andrey Kutuzov. 2023. Interpretable word sense rep-
resentations via definition generation: The case of se-
mantic change analysis. In The 61st Annual Meeting
Of The Association For Computational Linguistics.

Michael Günther, Louis Milliken, Jonathan Geuter,
Georgios Mastrapas, Bo Wang, and Han Xiao.
2023. Jina embeddings: A novel set of high-
performance sentence embedding models. Preprint,
arXiv:2307.11224.

Matthias Hartung. 2015. Distributional Semantic Mod-
els of Attribute Meaning in Adjectives and Nouns.
Ph.D. thesis.

Felix Hill, Kyunghyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016. Learning to understand
phrases by embedding the dictionary. Transactions of
the Association for Computational Linguistics, 4:17–
30.

Luyao Huang, Chi Sun, Xipeng Qiu, and Xuan-Jing
Huang. 2019. Glossbert: Bert for word sense disam-
biguation with gloss knowledge. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3509–3514.

https://aclanthology.org/2023.ranlp-1.8
https://aclanthology.org/2023.ranlp-1.8
https://doi.org/10.18653/v1/2022.acl-long.569
https://doi.org/10.18653/v1/2022.acl-long.569
https://aclanthology.org/2022.lrec-1.370
https://aclanthology.org/2022.lrec-1.370
https://aclanthology.org/2022.lrec-1.370
https://doi.org/10.18653/v1/2020.emnlp-main.585
https://doi.org/10.18653/v1/2020.emnlp-main.585
https://doi.org/10.18653/v1/D19-1627
https://doi.org/10.18653/v1/D19-1627
https://doi.org/10.18653/v1/D19-1627
https://arxiv.org/abs/2307.11224
https://arxiv.org/abs/2307.11224

8252

Dimitri Kartsaklis, Mohammad Taher Pilehvar, and
Nigel Collier. 2018. Mapping text to knowledge
graph entities using multi-sense LSTMs. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1959–1970,
Brussels, Belgium. Association for Computational
Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2019. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension.

Xianming Li and Jing Li. 2023. Angle-optimized text
embeddings. arXiv preprint arXiv:2309.12871.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023. Towards
general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281.

Sunil B Mane, Harshal Navneet Patil, Kanhaiya Bal-
aji Madaswar, and Pranav Nitin Sadavarte. 2022.
Wordalchemy: a transformer-based reverse dictio-
nary. In 2022 2nd International Conference on Intel-
ligent Technologies (CONIT), pages 1–5. IEEE.

Timothee Mickus, Kees Van Deemter, Mathieu Con-
stant, and Denis Paperno. 2022. Semeval-2022 task
1: CODWOE – comparing dictionaries and word em-
beddings. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022),
pages 1–14, Seattle, United States. Association for
Computational Linguistics.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Yuya Morinaga and Kazunori Yamaguchi. 2018. Im-
provement of Reverse Dictionary by Tuning Word
Vectors and Category Inference: 24th International
Conference, ICIST 2018, Vilnius, Lithuania, October
4–6, 2018, Proceedings, pages 533–545.

Viktor Moskvoretskii, Ekaterina Neminova, Alina
Lobanova, Alexander Panchenko, and Irina Nik-
ishina. 2024. Taxollama: Wordnet-based model for
solving multiple lexical sematic tasks. arXiv preprint
arXiv:2403.09207.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2023. Mteb: Massive text embedding
benchmark. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 2014–2037.

Mohammad Taher Pilehvar. 2019. On the importance of
distinguishing word meaning representations: A case
study on reverse dictionary mapping. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2151–2156.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. WiC: the word-in-context dataset for evalu-
ating context-sensitive meaning representations. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1267–1273,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Ryan Shaw, Anindya Datta, Debra VanderMeer, and
Kaushik Dutta. 2011. Building a scalable database-
driven reverse dictionary. IEEE Transactions on
Knowledge and Data Engineering, 25(3):528–540.

Hongjin Su, Jungo Kasai, Yizhong Wang, Yushi Hu,
Mari Ostendorf, Wen-tau Yih, Noah A Smith, Luke
Zettlemoyer, Tao Yu, et al. 2022. One embedder, any
task: Instruction-finetuned text embeddings. arXiv
preprint arXiv:2212.09741.

Sicheng Tian, Shaobin Huang, Rongsheng Li, and Chi
Wei. 2024. A prompt construction method for the re-
verse dictionary task of large-scale language models.
Engineering Applications of Artificial Intelligence,
133:108596.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Various. 2009. Webster’s Unabridged Dictionary.
Project Gutenberg.

Yixiao Wang, Zied Bouraoui, Luis Espinosa Anke, and
Steven Schockaert. 2021. Deriving word vectors
from contextualized language models using topic-
aware mention selection. In Proceedings of the
6th Workshop on Representation Learning for NLP
(RepL4NLP-2021), pages 185–194.

Leo Wanner. 1996. Lexical choice in text generation and
machine translation. Machine Translation, 11(1):3–
35.

Noah Webster. 1900. Webster’s unabridged dictionary
of the English language. Kikwansha.

Steven R. Wilson, Walid Magdy, Barbara McGillivray,
Venkata Rama Kiran Garimella, and Gareth Tyson.
2020. Urban dictionary embeddings for slang nlp ap-
plications. In International Conference on Language
Resources and Evaluation.

https://doi.org/10.18653/v1/D18-1221
https://doi.org/10.18653/v1/D18-1221
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2022.semeval-1.1
https://doi.org/10.18653/v1/2022.semeval-1.1
https://doi.org/10.18653/v1/2022.semeval-1.1
https://doi.org/10.1007/978-3-319-99972-2_44
https://doi.org/10.1007/978-3-319-99972-2_44
https://doi.org/10.1007/978-3-319-99972-2_44
https://doi.org/10.1007/978-3-319-99972-2_44
https://doi.org/10.1007/978-3-319-99972-2_44
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128

8253

Ningyu Xu, Qi Zhang, Menghan Zhang, Peng Qian, and
Xuanjing Huang. 2024. On the tip of the tongue: An-
alyzing conceptual representation in large language
models with reverse-dictionary probe. arXiv preprint
arXiv:2402.14404.

Hang Yan, Xiaonan Li, Xipeng Qiu, and Bocao Deng.
2020. BERT for monolingual and cross-lingual re-
verse dictionary. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
4329–4338, Online. Association for Computational
Linguistics.

Tae Yano and Moonyoung Kang. 2016. Taking advan-
tage of wikipedia in natural language processing.

Wenhao Yu, Chenguang Zhu, Yuwei Fang, Donghan Yu,
Shuohang Wang, Yichong Xu, Michael Zeng, and
Meng Jiang. 2022. Dict-bert: Enhancing language
model pre-training with dictionary. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1907–1918.

Guobiao Zhang, Wenpeng Lu, Xueping Peng, Shoujin
Wang, Baoshuo Kan, and Rui Yu. 2022. Word sense
disambiguation with knowledge-enhanced and local
self-attention-based extractive sense comprehension.
In Proceedings of the 29th International Conference
on Computational Linguistics, pages 4061–4070.

Lei Zhang, Fanchao Qi, Zhiyuan Liu, Yasheng Wang,
Qun Liu, and Maosong Sun. 2019. Multi-channel re-
verse dictionary model. Preprint, arXiv:1912.08441.

Lei Zhang, Fanchao Qi, Zhiyuan Liu, Yasheng Wang,
Qun Liu, and Maosong Sun. 2020. Multi-channel
reverse dictionary model. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 312–319.

Michael Zock. 2004. Word lookup as an ongoing dia-
logue between a user and a lexicon. In Proceedings
of the 10th Annual Meeting of the Association for
Natural Language Processing, pages 484–487.

Michael Zock and Slaven Bilac. 2004. Word lookup on
the basis of associations: from an idea to a roadmap.
In Proceedings of the workshop on enhancing and
using electronic dictionaries, pages 29–35.

Michael Zock, Olivier Ferret, and Didier Schwab. 2010.
Deliberate word access: an intuition, a roadmap and
some preliminary empirical results. International
Journal of Speech Technology, 13(4):201–218.

A Prompt Types

A.1 Base Prompt 1 (bp1):

Given the definition {definition}, generate a list of
{k} terms defined by that definition assuming they are
in {dictionary} dictionary. Only give me a list back,
do not generate any other text.
{dictionary} is {description}
The returned list should follow the following condi-
tions:

• Terms should be ranked, with the first term
being the most related to the definition.

• In a JSON object of the form { "terms":
["term_1", "term_2", . . .] }.

• All terms should be in lowercase.

Example:
INPUT: "A piece of furniture for sitting."
OUTPUT: { "terms": ["chair", "stool", "bench",
"sofa", "couch"] }

A.2 Base Prompt 2 (bp2):

Given the definition {definition}, generate a list of
{k} terms defined by that definition assuming they are
in {dictionary} dictionary. Only give me a list back,
do not generate any other text.
{dictionary} is {description}
These are some examples of definitions and terms in
this dictionary: {examples}
The returned list should follow the following condi-
tions:

• Terms should be ranked, with the first term
being the most related to the definition.

• In a JSON object of the form { "terms":
["term_1", "term_2", . . .] }.

• All terms should be in lowercase.

Example:
INPUT: "A piece of furniture for sitting."
OUTPUT: { "terms": ["chair", "stool", "bench",
"sofa", "couch"] }

https://doi.org/10.18653/v1/2020.findings-emnlp.388
https://doi.org/10.18653/v1/2020.findings-emnlp.388
https://arxiv.org/abs/1912.08441
https://arxiv.org/abs/1912.08441

8254

A.3 Reasoning Prompt (rp):

Given the definition {definition}, generate a list of
{k} terms defined by that definition assuming they are
in {dictionary} dictionary. Only give me a list back,
do not generate any other text.
{dictionary} is {description}
These are some examples of definitions and terms in
this dictionary: {examples}
For each term, provide an example usage in a sen-
tence that matches the style and scope of {dictio-
nary}.
The returned list should follow the following condi-
tions:

• Terms should be ranked, with the first term
being the most related to the definition.

• All terms and examples should be in lowercase.

• Return the terms and examples in a JSON ob-
ject of the form:

{ "terms": [{ "term": "term_1", "example": "exam-
ple_1" }, { "term": "term_2", "example": "exam-
ple_2" }, ...] }
Example:
INPUT: "A piece of furniture for sitting."
OUTPUT: { "terms": [{ "term": "chair", "example":
"he sat on the chair and opened his book." }, { "term":
"stool", "example": "she perched on the stool at the
bar." }, { "term": "bench", "example": "they rested
on the bench after their walk." }, { "term": "sofa",
"example": "the family gathered on the sofa to watch
TV." }, { "term": "couch", "example": "he stretched
out on the couch to take a nap." }] }

	Introduction
	Related Work
	Dictionaries and NLP
	Reverse Dictionary

	The GEAR Method
	Data
	Main Experiments
	GEAR on Hill's dataset
	GEAR on 3D-Ex

	Results and Analysis
	Hill's dataset
	3D-EX Dataset

	Analyzing GEAR Components
	Conclusions and Future Work
	Prompt Types
	Base Prompt 1 (bp1):
	Base Prompt 2 (bp2):
	Reasoning Prompt (rp):

