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Abstract

Reinforcement learning has shown great
promise in aligning language models with
human preferences in a variety of text gen-
eration tasks, including machine translation.
For translation tasks, rewards can easily be
obtained from quality estimation (QE) models
which can generate rewards for unlabeled data.
Despite its usefulness, reinforcement learning
cannot exploit the gradients with respect to the
QE score. We propose QE-EBM, a method
of employing quality estimators as trainable
loss networks that can directly backpropagate
to the NMT model. We examine our method
on several low and high resource target
languages with English as the source lan-
guage. QE-EBM outperforms strong baselines
such as REINFORCE and proximal policy
optimization (PPO) as well as supervised
fine-tuning for all target languages, especially
low-resource target languages. Most notably,
for English-to-Mongolian translation, our
method achieves improvements of 2.5 BLEU,
7.1 COMET-KIWI, 5.3 COMET, and 6.4
XCOMET relative to the supervised baseline.

1 Introduction

Reinforcement learning with human feedback
(RLHF) has been used to successfully align lan-
guage models with human preferences. By assign-
ing a high reward to responses that exhibit certain
characteristics, such as lack of harmful content,
we can steer the model towards generating these
types of responses in various types of text genera-
tion tasks. For machine translation, reinforcement
learning has been used to improve general transla-
tion quality by using quality estimation (QE) mod-
els trained on human feedback as the reward model
(He et al., 2024; Ramamurthy et al., 2023; Ramos
et al., 2023).

Quality estimation is the task of assigning a
translation score to a provided source and target-
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side prediction pair, without referring to a gold
reference. Over the last few years, quality esti-
mation has developed rapidly, with the correlation
of model ratings and human ratings of translations
rising to a level at par with reference-based trans-
lation metrics (Zerva et al., 2022; Freitag et al.,
2023). Quality estimators in the widely used
COMET translation evaluation framework, such
as XCOMET-QE and COMET-KIWI, use a cross-
lingual encoder with a prediction head that is re-
gressed on datasets composed of translation pairs
and human ratings (Rei et al., 2022; Guerreiro
et al., 2023).

Although reinforcement learning methods can
use QE scores as rewards to produce better trans-
lations compared to vanilla fine-tuning, they fail to
exploit a crucial piece of information QE scores
contain: gradients. More specifically, they lose
the gradients of the translation model’s parameters
with respect to the QE score by treating the score
as a scalar value. Energy-based training, on the
other hand, can take advantage of these gradients
by treating the score as a form of energy loss that
can be backpropagated.

We propose QE-EBM, a method of training a
translation model by using the QE score of the
model-generated translations as an energy loss.
Compared to RL methods, energy-based training
enables more informative distillation of knowledge
from the QE model to the translation model. This
method is especially useful for boosting the transla-
tion quality of low resource target languages, that
do not have sufficient bilingual corpora paired with
English sentences. With only the translations from
the translation model, the QE model can generate
scores that are a rich source of knowledge the trans-
lation models can in turn exploit through the en-
ergy loss.

There are two variants of our method: QE-
STATIC and QE-DYNAMIC. In QE-DYNAMIC,
the energy network’s parameters are updated via
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contrastive learning, while in QE-STATIC, they re-
main fixed. The motivation for fine-tuning the en-
ergy model in QE-DYNAMIC is so that the QE
model remains relevant even as the NMT model
produces increasingly more natural translations
similar in quality to references.

We test our method on both high resource
and low-resource target languages with English
as the source language. Our methods outperform
supervised fine-tuning as well as REINFORCE
and proximal policy optimization (PPO), show-
ing an increase of 2.5 BLEU, 7.1 COMET-KIWI,
5.3 COMET, and 6.4 XCOMET for English-to-
Mongolian translation (Sutton et al., 1999; Schul-
man et al., 2017).

2 Related Work

2.1 Structured Energy Network as a Loss
(SEAL)

SEAL (Lee et al., 2022) was proposed as a train-
ing framework to use energy networks as train-
able loss functions for structured prediction. There
are two versions of the algorithm: SEAL-STATIC
and SEAL-DYNAMIC. In both versions, the task
net, the neural network responsible for perform-
ing a task (i.e. prediction), is trained through a
weighted sum of cross-entropy loss and energy
loss. The difference lies in whether the loss net,
the neural network that acts as the loss function,
is updated. In SEAL-DYNAMIC, the loss net is
fine-tuned with contrastive loss before each task
net update so that it is better suited to predicting
the energy landscape for the data samples at each
step. In SEAL-STATIC, the weights of the loss
net remain fixed. SEAL-DYNAMIC outperforms
SPENSs (Structured Prediction Energy Networks),
which refers to using energy models as inference
networks, as well as SEAL-STATIC in image seg-
mentation and semantic role labeling.

Our work can be viewed as an adaptation of
SEAL to the task of translation, retaining the en-
ergy loss and iterative update algorithm while
adding the following contributions: 1) we extend it
to semi-supervised learning by incorporating unla-
beled data, and 2) as the energy loss net, we plug in
a quality estimation model which has already been
fine-tuned with human annotations of translation
pairs. This guides the model towards human pref-
erences with minimal additional training and no ex-
tra data about human preference.

2.2 Energy Based Models for Text
Generation

Existing research on using energy based models for
text generation has formulated energy models as
residual energy based models (Deng et al., 2020;
He et al., 2021). Low energy samples are drawn
in two steps: sampling many generations from
a frozen language model, then importance sam-
pling through the energy model. Similarly, Bhat-
tacharyya et al. (2021) proposes training an energy
based model with a margin based loss proportional
to the difference in BLEU and using it to rerank
generations during inference.

Our method has an advantage over these works
in inference speed and distillation. These residual
EBM methods introduces latency during inference,
and do not pass the energy model’s knowledge to
the base language model. In contrast, we distill the
knowledge of the energy model to the base NMT
model during training so that we can achieve im-
provements even with simple greedy generation.
QE-EBM is also orthogonal to these methods in
that we can also use the energy network to rerank
samples during inference, although we report re-
sults of greedy generation for the evaluation sets,
since our method does not require sampling from
the energy model during inference.

2.3 Using Quality Estimators in NMT
Training

With the rapid development of quality estimation
models, a number of recent works have incorpo-
rated quality estimators into the training of transla-
tion models. Ramos et al. (2023) improves trans-
lation abilities of T5-based models by applying
PPO with COMET-QE as the reward model, find-
ing that filtering training data based on the re-
ward model is important. Using COMET-QE also,
He et al. (2024) improves the translation capabili-
ties of Llama and NLLB through RAFT (Reward
Ranked Fine-tuning), which involves generating
multiple candidates, ranking them with the reward
model, and learning from the best sample (Dong
et al., 2023; Touvron et al., 2023; Team et al.,
2022).

Gulcehre et al. (2023) introduces an efficient
grow-batch offline reinforcement learning algo-
rithm consisting of alternating Grow and Improve
steps. During the Grow step, samples are gener-
ated offline, and are added to the supervised batch
after applying a filter based on the reward model.
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During the Improve step, the translation model is
fine-tuned on the grown batch.

The aforementioned works of incorporating
quality estimators in NMT training use a form of
reinforcement learning. To the best of our knowl-
edge, we are the first to use a quality estimation
model as an energy based model and update the
NMT model with gradients with respect to the
score to enhance machine translation performance.

3 Method

A neural machine translation system models the
conditional distribution P4(y|x) of a target sen-
tence y given a source sentence X. NMT models
are trained to maximize this probability by mini-
mizing the cross-entropy loss function,

Ty
Lep(xy) == ) logPy(ylx) (1)
t=1

Energy-based models (EBMs) are parameter-
ized models that output a scalar value for each in-
put (Lecun et al., 2006). In this paper, we investi-
gate the use of quality estimators as EBMs, specif-
ically COMET-KIWI (Rei et al., 2022). Since
COMET-KIWTI outputs a scalar value that repre-
sents the quality of translation for each pair of
source and target sentence, the model can be repre-
sented as an energy function Eg(X,y) = —s(X,y)
where s is the COMET-KIWI score.

To leverage the power of EBMs during train-
ing, we train the NMT model in a multi-task setup,
where the loss consists of a standard cross-entropy
loss and the energy term (called energy loss here-
after). For each batch consisting of B; labeled
samples {(Xli,yll.)}fi’1 and B, unlabeled samples

{xy, i“l with N translations {95,{) jV: , sampled

from the NMT model for each unlabeled source
sentence X,,, the loss for the NMT model can be
expressed as

1 1
Lvur=a-— ) Lce(xy,y;,)+

1 By, 1 N
L - ()
e 2 D Eoran )
i= j=

a is a hyper-parameter that controls the magni-
tude of the cross entropy gradient, and is decreased
throughout training. S is a hyper-parameter that
controls the magnitude of the energy loss gradient,

2

and is increased throughout training. More details
about hyperparameters can be found in Appendix
A.

This hybrid loss function is one key difference
between QE-EBM and previous attempts to incor-
porate QE into translation model fine-tuning de-
scribed in Section 2.3. The supervised fine-tuning
and feedback training occur simultaneously, reduc-
ing the need to move back and forth between the
two stages or decide on arbitrary hyperparameters
such as the epoch number of each stage in each cy-
cle.

To update the NMT model with the energy loss,
we replace the regular softmax operation for the
output logits from the last hidden layer of the
NMT model’s decoder with the straight through
estimator (STE) (Bengio et al., 2013), following
Tu et al. (2020) which demonstrated success using
STE to distill knowledge from an autoregressive
energy network to a non-autoregressive inference
network.

The exact algorithm for QE-DYNAMIC is given
in Algorithm 1. The energy network’s parameters
6 are updated using the labeled batch and K transla-
tions sampled for each source sentence in the batch,
before each update of the NMT model’s parame-
ters ¢. The noise contrastive estimation (NCE) loss
used to train the energy network in QE-DYNAMIC
is given in Equation (3) (Ma and Collins, 2018).

B

1 _
Le-ncE = —E;[logcru(xli,ym
B | 3)
D log(1 = o (5(x1,, §35)))]
j=1
where 5(x,y) = —Eg(x,y) — log Pys(y|x), and

9;,’;) ~ Pg(-x;). o is the sigmoid function.

Through this loss, the energy model learns to
prefer the gold labels over the NMT model genera-
tions.

To improve the performance of QE-STATIC and
QE-DYNAMIC, we apply two data sampling tech-
niques to select labeled and unlabeled training
batches.

* Filter: Labeled data is filtered based on
COMET-KIWTI score, before training begins.
A labeled pair with higher COMET-KIWI
score consists of a source and target sentence
with higher alignment, and is likely to pro-
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Algorithm 1 QE-DYNAMIC Algorithm

Require: {(x;,,y;)}0",, {X, }24: Training Batch

Require: 6: QE model parameters
Require: ¢: NMT model parameters
fori=1— B;do
Si — I3 195 ~ Po(xi)YE,
end for
0 —60-VoLg_NCE
fori=1— B, do
Su — (9619 ~ PoClxu) Y
end for
¢ —¢—-VyoLymr

> Stepl: sample K translations for each x,

> Step2: update energy model
> Step3: sample N translations for x,,,

> Step4: update NMT model

vide more accurate guidance for the genera-
tion model.

* NN: We select the unlabeled batch to be
paired with each labeled batch by retrieving
the nearest neighbor based on embedding co-
sine similarity between the source sentences.
This is expected to reduce the mismatch in
gradient direction for the model parameters
that could occur as a result of training simul-
taneously with labeled and unlabeled data.

These data sampling techniques introduce some
computational overhead, but it is negligible com-
pared to the overall training time. A breakdown
of the computation time for data sampling tech-
niques and a single training step for each algorithm
is given in Appendix C.

4 Experiments

4.1 Models

NMT Model For the NMT model, we use
MBART, a Transformer encoder-decoder model
with roughly 610M parameters (Tang et al., 2021;
Vaswani et al., 2017). We use the weights that are
pretrained only on monolingual data and not fine-
tuned on any parallel data, allowing us to compare
regular supervised finetuning and energy-based
training.

QE Model The COMET-KIWI quality estima-
tion model consists of a feedforward estimator on
top of a cross-lingual encoder. The weights of
the COMET-KIWI encoder were initialized with
the InfoXLM weights and finetuned along with the
feed-forward estimator on translations paired with
human ratings for the WMT22 Metrics Task (Chi
et al., 2021). COMET-KIWTI ranked first among

the reference-free metrics, and seventh among all
the metrics in terms of correlation with human eval-
uation (Zerva et al., 2022).

4.2 Datasets

We use the IWSLT2017 English-{German, Chi-
nese} and ML50 English-{Bengali, Azerbaijani,
Mongolian, Marathi, Kazakh} translation datasets
(Cettolo et al., 2017; Tang et al., 2020). In this pa-
per, we focus on only English to X directions. We
filter the training sets by total size and sentence
length. For high resource language pairs, we select
50K sentence pairs randomly, and filter out sen-
tences with more than 50 sub-word tokens in either
the source sentence or reference translation. For
low-resource language pairs, we only apply length-
based filtering. We will refer to this processed
training set as preprocessed data pool for conve-
nience. We construct the labeled subset by ran-
domly selecting 1/5 of the sentence pairs (source +
target sentence) in the preprocessed data pool. For
the unlabeled subset, we use all of the source sen-
tences in the preprocessed data pool.

4.3 Baselines

To the best of our knowledge, there are no previous
works that use quality estimators as trainable loss
functions to train translation models. Therefore,
in addition to the supervised baseline, we com-
pare our method against REINFORCE and PPO
as these reinforcement learning methods can also
utilize quality estimators as a reward. Both RL
baselines are trained in a multi-task setup as in QE-
EBM, with the same cross-entropy loss for the la-
beled batch and a separate loss using the QE score
for the unlabeled batch. The REINFORCE base-
line uses the vanilla policy gradient. The reward
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Figure 1: Diagram of QE model update process.
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Figure 2: Diagram of NMT model update process with
unlabeled samples.

is normalized through (1) scaling the reward be-
tween the running max and running min of the cur-
rent epoch and (2) subtracting the running average
of the current epoch. The PPO implementation is
taken from TRL (von Werra et al., 2020). For a
fair comparison across different approaches, we en-
sured an identical number of samples per source
sentence in each learning algorithm.

4.4 Training and Evaluation

We use an ADAM optimizer to update the en-
ergy model parameters and NMT model parame-
ters (Kingma and Ba, 2017). In QE-DYNAMIC,
for both the NMT model and QE model, we train
adapters instead of the full parameters (Pfeiffer
et al., 2020). In QE-STATIC, we do not attach
adapters to the QE model; instead we distill di-

rectly from the base model. All models were
trained for 10 epochs, with early stopping based on
COMET-KIWTI score on the validation set. Eval-
uation was conducted using the metrics Sacre-
BLEU, COMET-KIWI, COMET, and XCOMET
(Post, 2018; Guerreiro et al., 2023). COMET
is the reference-based counterpart to COMET-
KIWI, and XCOMET is an explainable metric that
provides error spans and categories as well as
sentence-level scores. More experimental details
can be found in Appendix B.

4.5 Results

We report results for QE-STATIC and QE-
DYNAMIC along with the supervised baseline
for low resource target languages (Bengali, Azer-
baijani, Mongolian, Marathi, Kazakh) in Table 1.
While the better-performing method varies among
the two QE- variants, these methods exhibit con-
sistent improvements over the baseline. For Mon-
golian, our method achieves improvements of 2.5
BLEU, 7.1 COMET-KIWI, 5.3 COMET, and 6.4
XCOMET relative to the supervised baseline.

We report results for QE-STATIC and QE-
DYNAMIC along with the supervised baseline
for high resource target languages (German and
Chinese) in Table 2. For both languages, QE-
DYNAMIC outperforms QE-Static and the super-
vised baseline in all four metrics. The amount of
improvement over supervised fine-tuning is larger
for lower resource languages.

Translation samples for Bengali, Marathi, Ger-
man, Chinese are given in Table 3. Samples for
Mongolian, Azerbaijani, and Kazakh are given in
Appendix D.
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Language Pair EN-BN Language Pair EN-DE
Data Size 4K Data Size 50K
Metric BLEU KIWI COMET XCOMET Metric BLEU KIWI COMET XCOMET
Supervised 5.76  65.46 65.72 39.64 Supervised 2424 77.23 79.01 92.07
QE-STATIC 6.22  66.66 65.86 42.33 QE-STATIC 2370 77.13 78.71 92.05
QE-DYNAMIC 6.04 67.14 67.06 41.43 QE-DYNAMIC 25.29 7797 79.66 92.20
Language Pair EN-AZ Language Pair EN-ZH
Data Size 5K Data Size 50K
Metric BLEU KIWI COMET XCOMET Metric BLEU KIWI COMET XCOMET
Supervised 5.61 68.17 71.95 59.34 Supervised 20.02  75.94 77.71 76.51
QE-STATIC 6.51 73.63 7517 63.03 QE-STATIC 20.01 76.29 77.73 76.14
QE-DYNAMIC 6.78 73.65 75.10 62.96 QE-DYNAMIC 20.10 76.35 77.88 76.54
Language Pair EN-MN
Data Size 7K Table 2: Main results for high resource language pairs
Metric BLEU KIWI COMET XCOMET (German, Chinese). All numbers represent the average
Supervised 416 6297  70.80 55.26 of three experiments with different seeds. EBM meth-
QE-STATIC 6.62 70.09 76.10 61.71 ods were run with both labeled data filtering and adja-
QE-DYNAMIC 6.64 69.83  75.85 61.44 cent unlabeled batch retrieval. The best result for each
Language Pair EN-MR metric in each dataset is highlighted in bold.
Data Size 9K
Metric BLEU KIWI COMET XCOMET
Supervised 6.43  54.61 57.64 31.98
QE-STATIC 622 5756 5837 33.16 monolingual data (-Mono), training with only un-
QE-DYNAMIC 645 5844 5845 33.26 labeled batch retrieval (NN) or labeled batch filter-
Language Pair EN-KA ing (FILTER), and training with neither NN nor
Data Size 12K FILTER.
Metric BLEU KIWI COMET XCOMET
Supervised 9.93 7247 73.92 64.64
Qgiii}fl\lﬁc gfzg’ ;gtgg ;jjgg git;g 5.1 Reinforcement Learning vs Energy-based
Training
Table 1: Main results for low resource language

pairs (Bengali, Azerbaijani, Mongolian, Marathi,
Kazakh). All numbers represent the average of three
experiments with different seeds. EBM methods were
run with both labeled data filtering and adjacent unla-
beled batch retrieval. The best result for each metric in
each dataset is highlighted in bold.

5 Analysis

In this section, we first present more comprehen-
sive experimental results for four languages (Ben-
gali, Marathi, German, Chinese) in Tables 4, 5
and 6. In addition to the supervised baseline
and EBM methods with both data filtering and re-
trieval, we report the results of reinforcement learn-
ing baselines and ablation experiments. Different
types of ablations were examined for each algo-
rithm. For the REINFORCE and PPO baselines,
we tried training without any additional monolin-
gual data, using the labeled data with different
shuffling as the unlabeled data (-Mono). (+Mono)
refers to the original setup of using the whole pre-
processed data pool as the unlabeled data. For QE-
DYNAMIC and QE-STATIC, we ran three types of
ablation experiments, training without additional

EBM methods outperform reinforcement learning
methods in all metrics. We hypothesize that this
superiority arises from the difference in the gran-
ularity of information the QE score holds in each
algorithm. RL methods treat the score given by the
quality estimation model as a simple scalar value,
while EBM methods treat it as a loss that can back-
propagate to update the translation model’s param-
eters. For REINFORCE or PPO, a reward is given
per sequence, meaning that it assigns the same re-
ward for all the tokens in the same sequence. Since
it is stripped of gradients when used as part of the
loss term, it holds no information other than the
quality of the translation pair relative to other trans-
lation pairs. The score value acts as only a “scal-
ing factor” for the gradients of the log probability
term (similar to cross-entropy) in the loss. Mean-
while, in the case of energy-based methods, the
score holds fine-grained information about each to-
ken’s contribution to the sequence-level quality es-
timation. The gradients with respect to the score
hold information about how each parameter of the
NMT model should be updated to produce a trans-
lation that is most compatible with the source sen-
tence.
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Target Language Bengali

Source Sentence

Gold Translation TN TR Witk I A T 4 Aol @G S AfT |

There are two ways, if we’re going to reduce things a little bit.

Algorithm Model Translation BLEU
Supervised 9% TI STz A ST (6! S A | 9.6
REINFORCE QI 26 Toirar Siic, Wfir St gt ey 3t < f, izee foept shwman of | 20.2
PPO 98 Tl wivy, A Sl @G O 2 ST RFRST O A | 28.9
QE-STATIC S 23 B iy, T st bt S A | 31.8
QE-DYNAMIC O gf> Ty ST, ‘iffﬁwﬁﬁ@?ﬁﬁww | 31.8

Target Language Marathi

Source Sentence

Gold Translation (B9IT) HIT... (FIT) HIT AT H

(Laughter) Then —(Laughter) Then we’re going to go over to the fridge, to see if there’s anything new in there since 10 minutes ago.

T, T AT 90 i@ @ a1 &rer 99 At 3 &7, T TE.

Algorithm Model Translation BLEU
Supervised (§9IT) =¥ —(B9IT) AT AW - &7 %A I . IT = . ATehs SATIAT, I FTET TIH HAToA AR g0 e maL.  13.1
REINFORCE (B9IT) FT — (89T T ATYA - ATAT T - TATER[ET SAT9T - ATATST T < TaTEaTd S < - qTErer o fAfeas. 157
PPO (F9IT) FAT —(R79IT) FT ATqer AT R 9e¥  Ye¥  Ye¥  Ye¥ [ Je¥ [ Ya¥ [ qax i 16.1
QE-STATIC (F9TT) HIT. (F9T) HIT... (§9T) AIT... (F2M) HIT... (§T) HIT.. (F2T) HIT... (F2T) HT.. 223
QE-DYNAMIC (EIT) AT, (F9IT) FT.. (F9T) AT AT BT e AThd T AR ATH 30.6
Target Language German

Source Sentence But where would be the nearest AED to help this patient?

Gold Translation Aber wo wire der nachste AED, um diesem Patienten zu helfen?

Algorithm Model Translation BLEU
Supervised Aber wo wire die nidchstgelegene AED, um diesen Patienten zu helfen? 35.7
REINFORCE Aber wo wire das nichstgelegene AED, um diesem Patienten zu helfen? 67.0
PPO Aber wo wire das nichstgelegene AED, um diesem Patienten zu helfen? 67.0
QE-STATIC Aber wo wire der nichste AED, um diesen Patienten zu helfen? 76.1
QE-DYNAMIC Aber wo wire die nidchste AED, um diesem Patienten zu helfen? 76.1
Target Language Chinese

Source Sentence I am not my father.

Gold Translation AT ALE .

Algorithm Model Translation BLEU
Supervised BARIRES. 37.7
REINFORCE AR 51.5
PPO TR LR 86.7
QE-STATIC PRI 100
QE-DYNAMIC AR E . 100

Table 3: Translation samples for Bengali, Marathi, German, Chinese.

5.2 QE-STATIC vs QE-DYNAMIC:
Fine-tuning the QE model

Table 6 shows that on average, QE-DYNAMIC has
higher scores compared to QE-STATIC. In QE-
STATIC, Itis possible for the base task model, such
as our base translation model, to learn to optimize a
static reward model in a way that does not improve
the actual task performance.! In QE-DYNAMIC,
this can be avoided by continually update the qual-
ity estimation model to make its guidance more ro-
bust.

The quality estimation model is also not explic-
itly trained to estimate the relative quality of sev-
eral translations given the same source sentence.
Instead, it is fine-tuned to regress on human rat-
ings on a dataset of translation pairs, and thus ranks
translations of different source sentences. Con-
trastive learning of the gold translation and model
translations can improve the quality estimator’s
ability to make fine-grained distinctions in quality

I'A similar phenomenon, dubbed "reward gaming’, was re-
ported in the reinforcement learning literature, and has been
shown to occur in conditional text generation (Pang et al.,
2023).

for a given source sentence.

5.3 Effect of Monolingual Data

When neither FILTER nor NN is applied to QE-
STATIC or QE-DYNAMIC, using monolingual
data (+Mono) performs worse than not using it (-
Mono). With the help of the data techniques, how-
ever, adding monolingual data surpasses not using
it. This demonstrates that our methods can exploit
a large amount of monolingual data in cases where
parallel data is scarce to attain higher quality trans-
lation, but require tactics that help reduce the dis-
crepancy between heterogeneous labeled and unla-
beled data and ensure that the quality of parallel
data is above a certain level.

5.4 Effect of Data Sampling Techniques

We investigate how the two data sampling tech-
niques, labeled data filtering and adjacent unla-
beled batch retrieval, contribute to the improve-
ment of translation quality for QE-EBM.

Table 4 shows the effect of applying (1) nearest
unlabeled batch retrieval, (2) labeled data filtering,
and (3) both for each algorithm on EN-BN and EN-
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EN-BN EN-MR
Mono  FILTER/NN | BLEU KIWI COMET XCOMET | BLEU KIWI COMET XCOMET

Supervised - - 576 6546  65.72 39.64 | 643 5461 5764 31.98

- FILTER 459 6248  62.96 39.33 310 4738 52.03 28.90

+Mono - 522 6402 64.03 3992 | 586 5281 5591 31.55

REINFORCE ) fono - 502 6253 63.07 3822 | 548 5153 5540 30.84
PO +Mono - 553 6443  65.09 4028 | 477 49.15 5398 29.93
-Mono - 403 6213 62.89 3886 | 477 4945 5439 29.88

- 556 6449 6494 39.17 | 547 5228  56.68 3047

Mono NN 579 6520  65.60 4029 | 592 5419 5701 31.77

QE-STATIC FILTER 556 6607  66.65 4124 | 631 5710 5846 32.72
FILTER & NN | 622 66.66  65.86 4233 | 622 5756 5837 33.16

-Mono - 562 6494  66.13 3989 | 584 5333 5662 31.59

- 604 6373 6621 3891 600 5414 5725 31.45

Mono NN 600 6617 6691 4078 | 659 5448 5775 31.92

QE-DYNAMIC FILTER 572 6643 6643 4159 | 644 5746  57.69 33.24
FILTER & NN | 6.04 6714  67.06 4143 | 645 5844 5845 33.26

-Mono - 6.05 6459 6565 4022 | 656 5463 5472 31.82

Table 4: Detailed results for Bengali, Marathi. All numbers represent the average of three experiments with
different seeds. EBM (+Mono) methods were run with all possible combinations of data-centric techniques. RL
baselines were run without any data-centric techniques. The best result for each metric is highlighted in bold, and
the second best is underlined.

EN-DE EN-ZH
Mono FILTER/NN | BLEU KIWI COMET XCOMET | BLEU KIWI COMET XCOMET
Supervised - - 2424 7723 79.01 92.07 20.02 7594 7171 76.51
- FILTER 23.50  77.11 78.73 92.01 19.42 7517 77.00 75.81
+Mono - 24.45 7721 79.07 91.92 20.00 75091 77.61 76.58
REINFORCE -Mono - 2457 7736  79.17 92.16 20.08 7582  77.54 76.08
PPO +Mono - 2541 7791 79.73 92.16 20.05 75.73 77.60 76.35
-Mono - 2536 78.16  79.85 92.27 20.16 75779  77.67 76.22
- 2431 77.30  79.10 92.11 19.90 75.74  77.51 76.04
+Mono NN 22.85 176.71 78.61 86.87 19.79 75776 7746 76.10
QE-STATIC FILTER 25.16 77.64  79.32 92.25 20.17 7638  77.88 76.60
FILTER & NN | 23.70 77.13 78.71 92.05 20.01 7629  77.73 76.14
-Mono - 2547 7794  79.79 92.52 19.88  75.89  77.59 76.37
- 25.51 7810  79.84 92.41 19.87 75.80  77.61 76.32
+Mono NN 25.62 7835  80.14 92.73 20.05 7598 77.72 76.64
QE-DYNAMIC FILTER 25.48 7793 79.65 92.28 20.27 76.25  71.75 76.20
FILTER & NN | 2529 7797 79.66 92.20 20.10 76.35  77.88 76.54
-Mono - 2540 78.08 79.80 92.34 19.95 7571 77.54 76.54

Table 5: Detailed results for German, Chinese. All numbers represent the average of three experiments with
different seeds. EBM (+Mono) methods were run with all possible combinations of data-centric techniques. RL
baselines were run without any data-centric techniques. The best result for each metric is highlighted in bold, and
the second best is underlined.
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Mono  FILTER/NN | BLEU KIWI COMET XCOMET
Supervised - - 1411 6831 70.02 60.05
- FILTER 1265 6554  67.68 59.01
+Mono - 1388 6749 69.16 59.99
REINFORCE  y1ono - 1379 66.81  68.79 59.33
PO +Mono - 1394 6681  69.10 59.68
-Mono - 1358 6638  68.70 59.31
- 1381 6745 69.56 59.45
Mono NN 1358 6796  69.67 58.76
QE-Static FILTER 1430  69.30  70.57 60.70
FILTER & NN | 14.04 6941  70.17 60.92
~Mono - 1420 68.02  70.03 60.09
- 1436 6794 7023 59.77
Mono NN 14.56 6874  70.63 60.52
QE-Dynamic FILTER 1448 69.52 7038 60.83
FILTER & NN | 1447 69.97  70.76 60.86
-Mono - 1449 6825  69.43 60.23

Table 6: Detailed results averaged for all four languages (German, Chinese, Bengali, Marathi). The best result
for each metric is highlighted in bold, and the second best is underlined.

MR translation. For low resource target languages,
applying each technique separately as well as com-
bining them enhances translation quality for both
QE-DYNAMIC and QE-STATIC.

Table 5 contains comparisons for high resource
languages. For both German and Chinese, apply-
ing unlabeled batch retrieval consistently improves
performance for QE-DYNAMIC, but not for QE-
STATIC. We hypothesize that unlabeled batch re-
trieval is more beneficial for QE-DYNAMIC be-
cause the energy model is fine-tuned with the la-
beled batch, and is likely to make the most accu-
rate predictions on those batches. Using an unla-
beled batch that is similar to the labeled batch dur-
ing NMT model fine-tuning best exploits the tuned
energy model.

For high resource languages, filtering mostly im-
proves the performance of the NMT model, with
the exception of QE-DYNAMIC for German.

6 Conclusion

We propose a new method of improving neural
machine translation by using quality estimators as
trainable energy loss networks. Our method per-
forms better than supervised fine-tuning and rein-
forcement learning baselines in both high and low-
resource language directions, especially showing
greater improvements for low-resource languages.
Based on our experiments, the best performance is
expected when applying QE-DYNAMIC with la-
beled data filtering and retrieval of nearest unla-

beled batches.

Limitations

Our proposed training scheme has several limita-
tions. First, although it reduces latency during in-
ference compared to other methods such as energy-
based reranking, the joint update requires a large
amount of computation and memory during train-
ing, since we need to calculate and store gradients
for both models. Second, it is difficult to use the
quality estimation model as an energy model as is
when there is a vocabulary mismatch between the
energy model and the NMT model. This problem
may be solved by adapting the quality estimator to
operate in latent space, which is a potential future
research direction.
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A Hyperparameters

Symbol Function Value
weight for min(0, steps/1000)
@ unlabeled batch *0.001
weight for
A labeled batch max(0,1 =10+ a)
number of
K hypotheses f.or 5
energy loss in
NMT model
number of
N hypotheses for

contrastive learning
in energy model

Table 7: Hyperparameters related to training.

B Experimental Details

* When retrieving the nearest unlabeled batch
for each labeled batch, the embeddings
used to calculate cosine similarity are taken
from the “all-mpnet-base-v2” checkpoint in
the SBERT library (Reimers and Gurevych,
2019).

* At the start of training, MBART weights are
initialized to the “facebook/mbart-large-50”
checkpoint from Huggingface (Wolf et al.,
2020).

e At the start of training, the QE
model’s weights are initialized to the
“Unbabel/wmt22-cometkiwi-da” checkpoint
from Huggingface (Wolf et al., 2020).

* Adapter implementations are taken from
AdapterHub (Pfeiffer et al., 2020).

C Computation Time

Operation Data Time(s)
train data after
filter by quality .
S length filtering 24.5
(batch size = 1000) (2769)
compute corpus embeddings train data after
P P €5 quality filtering 0.77

(batch size = 32) (2283 = 0.8245 * 2769)

mpute nearest neighbors filtered train data 0.86
compute nearest nEIZNDOIS 783 - 0.8245 * 2769)

Table 8: Computation time of precomputed operations
for data filtering and for nearest neighbor retrieval. The
time was computed using 2769 data samples from the
English-Bengali dataset after applying length-based fil-
tering. When we filter out poorly aligned samples
from this pool, 2283 samples are left. Before starting
the model updates, we compute embeddings for each
source sentence and also compute the nearest neighbor
for each sentence based on the embeddings. For approx-
imately 2K samples, these operations can each be com-
pleted in less than a second.

Algorithm Time(s) per batch
Supervised 0.2
REINFORCE 8.4
PPO 9.5

QE-STATIC 8.9
QE-DYNAMIC 17.2

Table 9: Latency of a single training step for each al-
gorithm. The time was computed using the English-
Bengali dataset, with a batch size of 4 and gradient ac-
cumulation step of 4. QE-STATIC runs at a similar
speed to REINFORCE, PPO and QE-dynamic at half
the speed.

D Translation Samples
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Target Language

Mongolian

Source Sentence

I used to think that the idea was everything.

Gold Translation Bu canaa 6011 Oyx 1oM rax Gomor GaiicaH.

Algorithm Model Translation BLEU
Supervised Munnit 6047100p caHaa Hb OYX 3YHII IOM. 6.9
QE-STATIC Bu canaa Hp OyX 3yiin Oaiican rax Ooanor Oaiinaa. 13.7
QE-DYNAMIC Bu canaa Hb OyX 3yi1 Oaiicad ra:x Goor OaricaH. 32.5
Target Language Azerbaijani

Source Sentence They make it sacred.

Gold Translation Onlar bunu miigoddaslosdirirlor.

Algorithm Model Translation BLEU
Supervised Bu, miigaddaes bir seydir. 8.1
QE-STATIC Onlar bunu miigoddaslogdirirlor. 100
QE-DYNAMIC Onlar bunu miigoddoaslesdirirlor. 100
Target Language Kazakh

Source Sentence They were brilliant people. I'm not dissing the Neanderthals.

Gold Translation oliobo 0 yobgomg ssdosbgdo 0ygbgb. 3g o 35360690 bgobrgMegomgmagdls.

Algorithm Model Translation BLEU
Supervised oliobo ggboscrymo bawmbo 0ygbgb. 39 dom o6 ggdobo. 18.6
QE-STATIC oliobo ggboscrnmo s@5305bgd0 0g4gbgb. Ig dom oM gyfimwgdgem. 30.2
QE-DYNAMIC oliobo 0 yobgomg ss8dosbgdo 0ygbgb. Ig oM gag@olibdmd bgobegmegomgmgdls.  66.1

Table 10: Translation samples for Mongolian, Azerbaijani, and Kazakh.
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