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Abstract

To address an important gap in creating chil-
dren’s stories for vocabulary enrichment, we in-
vestigate the automatic evaluation of how well
stories convey the semantics of target vocabu-
lary words, a task with substantial implications
for generating educational content. We moti-
vate this task, which we call measuring con-
textual informativeness in children’s stories,
and provide a formal task definition as well as
a dataset for the task. We further propose a
method for automating the task using a large
language model (LLM). Our experiments show
that our approach reaches a Spearman correla-
tion of 0.4983 with human judgments of infor-
mativeness, while the strongest baseline only
obtains a correlation of 0.3534. An additional
analysis shows that the LLM-based approach is
able to generalize to measuring contextual in-
formativeness in adult-directed text, on which
it also outperforms all baselines.

1 Introduction

Recent advances in natural language processing
(NLP) have put the fully automated generation
of children’s stories within reach (Valentini et al.,
2023). Automatically-generated stories can be used
for targeted vocabulary interventions for preschool-
ers when centered around desirable target words.
As early vocabulary size is strongly correlated with
reading ability in elementary school (Walker et al.,
1994) and future academic success (Brysbaert et al.,
2016), such scalable interventions will contribute
to leveling out existing inequalities.
Approximately 3,000 words are acquired each
year in early childhood, primarily through inciden-
tal learning during reading (Nagy and Anderson,
1984). However, just including target words in sto-
ries might not be enough for effective vocabulary
enrichment: the amount of semantic information

* denotes equal contribution.

Target Vocabulary Words:
T = {prickly, receipt, ...}
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Figure 1: An example of an LLM-generated story pro-
viding an uninformative context for the word "prickly"
and an informative context for the word "receipt.” Itali-
cized words represent helpful context terms in the pas-
sage corresponding to the target word of the same color.

about a word in a story can vary widely. This issue
is exasperated in stories generated by large lan-
guage models (LLMs) when target words are often
used in uninformative and misleading contexts; see
Figure 1.

Automatically quantifying the amount of infor-
mation about a word provided by a given story can
help streamline the selection of effective stories for
vocabulary learning and improve story generation
models to support this purpose. With these bene-
fits in mind, we introduce the task of measuring
contextual informativeness in children’s stories and
create a dataset for evaluation.

We further propose the use of Gemini (Gemini-
Team et al., 2024) for this task with respect to a
set of target words. We compare its performance
with that of another proposed RoBERTa (Liu et al.,
2019a)-based model, as well as multiple baselines.
We find that, on the dataset we introduce, Gem-
ini obtains a Spearman’s p value of 0.4983, while
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the RoBERTa-based model reaches 0.4601 and the
strongest baseline only reaches 0.3534. We also
show that our model generalizes to other domains,
outperforming other approaches to measuring con-
textual informativeness in adult-directed text.

To summarize, we make the following contri-
butions: (1) we propose the task of measuring
contextual informativeness in children’s stories;
(2) we introduce a dataset for the task, which
consists of automatically generated children’s sto-
ries that have been annotated for the amount of
contextual support they provide for target words;
(3) we propose a method for the task and show
that it outperforms multiple baselines; and (4)
we demonstrate that our method generalizes for
adult-directed text. Our dataset is available at
https://github.com/mariavale/contextual_inform.

2 Related Work

In-context Vocabulary Learning As mentioned
in Section 1, research shows that the majority of
new words are learned incidentally through read-
ing in L1 learners (Nagy and Anderson, 1984).
As such, many modern vocabulary intervention
approaches focus on in-context learning. Studies
such as Webb (2008) provide evidence that more
contextual clues about target words can lead to
better learning outcomes. In addition, previous
work stresses the importance of vocabulary inter-
vention early in a child’s life and the correlation of
early vocabulary size with future academic success
(Walker et al., 1994; Duff et al., 2015; Brysbaert
etal., 2016).

Cloze Task The cloze task (Taylor, 1953) is de-
signed to assess lexical and contextual understand-
ing by removing words from a text, requiring partic-
ipants to fill in the blanks with the missing words.
Since its establishment, there has been disagree-
ment about what the task truly measures. The eval-
uation of the task typically only allows one correct
answer, raising concerns about how accurately it
measures comprehension (Rapaport, 2005). De-
spite this limitation, most experts agree it is indica-
tive of understanding local vocabulary and seman-
tic information (Gellert and Elbro, 2013; Carlisle
and Rice, 2004). Many current language models
pretrain on a masked language modeling objective,
a form of the cloze task. Previous research has
established that, for one such model, ROBERTa,
prediction ability is correlated with human uncer-
tainty (Jacobs et al., 2022).

Learning Unknown Word Representations
Previous work on learning representations of nonce
and unknown words gives insight into how mod-
els may narrow down semantic space based on
context. Nonce2Vec learns embeddings for un-
known words from context and achieves high per-
formance on a definitions dataset, but does not
perform well with naturally occurring language.
The authors hypothesize that adjusting risks taken
during learning based on the informativeness of a
context would improve results for naturally occur-
ring language (Herbelot and Baroni, 2017). Schick
and Schiitze (2019) utilize two approaches — (a)
the surface-form representation (subword n-grams)
and (b) learning an embedding from its context —
increasing performance compared to using either
of the two approaches alone.

Evaluating Contextual Informativeness Two
pieces of prior work also focus on the automatic
evaluation of contextual informativeness. The first
formalizes the task and introduces a crowd-sourced
dataset that uses a Likert scale as a gold standard for
contextual informativeness scores (Kapelner et al.,
2018). The second work experiments with this
dataset and proposes an attention-based model to
create vector representations of both the word and
its surrounding context (Nam et al., 2022), which
provide the basis for predicting informativeness
scores. This model achieves strong performance on
adult-directed data which includes a single target
word in each passage.

3 Task and Data

In this section, we describe the creation of our
dataset and formally introduce the task of measur-
ing contextual informativeness in children’s stories.

3.1 Dataset

Our dataset builds on Valentini et al. (2023), which
contains 180 LLM-generated children’s stories.
Each story utilizes five target vocabulary words se-
lected based on age of acquisition which the LLMs
have been tasked to include. We annotate how
much contextual support is provided for each target
word.

Our annotation schema is a modified version of
the cloze task, in which annotators fill in blanks
with the words they believe best complete a story.
As the stories from Valentini et al. (2023) each con-
tain five target words, all target words are replaced
with blanks labeled 1 to 5 to simulate a child’s in-
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comprehension of the unknown targets. Annotators
guess the missing word for each number; there may
be one or more blanks for each number.

The cloze task traditionally only accepts one cor-
rect answer and therefore fails to reward relevant
alternatives (e.g., synonyms and hypernyms). To
address this, we score based on the semantic simi-
larity between the predicted and actual word. We
calculate the cosine similarity between the word
embedding of each guess and true target word us-
ing ConceptNet Numberbatch 19.08 English em-
beddings (Speer et al., 2017).! This similarity is
averaged across guesses from three annotators. The
resulting value is intuitively indicative of how well
annotators are able to narrow the semantic space of
the missing word based on its context.”

We have six university-level, fluent English
speakers annotate all target words for 60 to 180 sto-
ries such that each story has three annotators. We
manually review annotations and exclude all stories
with insufficient or unsatisfactory responses, result-
ing in a final dataset of 765 target words across 153
generated stories.

3.2 Formal Task Definition

We define the task as measuring contextual infor-
mativeness in children’s stories, focusing on pas-
sages with multiple target words, each potentially
occurring more than once. Contextual informative-
ness refers to the extent to which the surrounding
words and phrases clarify the meaning or usage of
a target vocabulary item.

Given a set of stories S = {S1, 52, ..., Sy, } with
target vocabulary words T; = {t; 1,2, ....,tin}
where ¢ € [1,m], the goal is to evaluate the con-
textual informativeness of each passage 5; with
respect to all instances of a target word ¢; ;.

The dataset consists of m * n instances repre-
sented as (S;,T;,t; 5, ¢ ;) where ¢; j is the gold
standard informativeness score for a target word
t; j in the context of .S;. We aim to learn the func-
tion C(S;,T;,t; ;;0) that predicts the contextual
informativeness of target word ¢; ; within a story
S; under the constraint that the meanings of the re-
maining vocabulary terms 7;/{t; ;} are unknown
at inference time. The task is evaluated primar-
ily on the Spearman’s rank correlation coefficient
p(¢, ¢), where higher values indicate stronger agree-
ment between the predicted level of contextual in-

"For the rationale behind our choice of word embeddings,

please refer to Appendix A.
*Please refer to Appendix E for annotation instructions.

formativeness ¢; ; = C(S;, Tj, ti ;3 0) and the gold
standard score c; ; across all passages S; € .S and
their associated target vocabulary terms ¢; ; € T;.

4 Experiments

4.1 Proposed Methods

In our approaches to the specified task, we leverage
the capabilities of RoOBERTa and Gemini to simu-
late extracting contextual information and articulat-
ing it as a guess, as performed by our annotators.
Predicting masked words mirrors the human abil-
ity to extract relevant information and allows us to
estimate the contextual informativeness of a text.

Our first approach is based on RoBERTa (Liu
et al., 2019b), a masked language model (MLM)
we expect to be highly suitable for our task.
RoBERTz’s architecture is based on a transformer
model. We use RoBERTa by predicting words
and computing the word embedding similarity of
the word embeddings corresponding to the target
word and the ground truth. We employ RoBERTa
through the transformers library (Wolf et al., 2020).
Full details are shown in Appendix B.

One challenge of our task setup consists of com-
bining predictions for multiple masked instances
of the same word and hiding instances of other
"unknown" (i.e., to a child) target words in each
passage. To combine multiple word occurrences,
we lemmatize the predictions made for each mask
infill. We then combine the individual predictions
corresponding to the same lemma by summing the
probabilities and getting the overall top prediction
based on the lemma with the highest cumulative
score. To hide instances of unknown words, we re-
place any additional target words with the unknown
token. This approach is denoted by RoBERTa-
mult.

Our other proposed approach uses Gemini, a
state-of-the-art LLM from Google (Gemini-Team
et al., 2024). We examine the use of an LLM in
place of an MLM to see whether it will perform
better at the task due to its massive amounts of
pretraining data. The model is provided prompts in
the following style:

* In the following story, guess the word that
is replaced by ’<mask>’. Ignore any other
blanks ( ) and ONLY try to guess the word
replaced by <mask>’.

For both approaches, the informativeness score
is obtained by calculating the ConceptNet simi-
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‘ Spearman’s p | p-significance | Pearson’s r | r-significance ‘ RMSE

Context Similarity 0.2890 3.68 x 10716 0.2858 7.91 x 10716 | 0.3078
Context Window 0.3134 7.08 x 10719 0.2772 6.06 x 10~ | 0.2921
Num Related Words 0.3534 6.82 x 10724 0.3239 4.03 x 10720 | 0.4120
Nam et al. 0.0525 0.1472 0.0505 0.1635 0.3165
Nam et al.+ WordNet 0.0574 0.1127 0.0623 0.0850 0.3166
RoBERTa-mult 0.4601 2.72 x 10~ 0.4721 1.18 x 10=43 | 0.2972
Gemini 0.4983 3.39 x 10749 0.5297 1.80 x 10756 | 0.2870

Table 1: Full results on our dataset, for all models and baselines. N-significance refers to the reported p-value for

each correlation metric N.

larity between the guessed word and the missing
target.

4.2 Baselines

We compare our model to various simple baselines
and existing models.

Context Similarity Context similarity refers to
the average cosine similarity of the word embed-
ding of every word in a passage or story and the
target word. We exclude stop words, other in-
stances of the target, and instances of any other
target words in the text.

Context Window We then consider the words
only directly surrounding the target in a window of
five words on either side of the target. We average
the cosine similarity of each word in the window
and the target. If a stop word or target appears in
the window, the window is adjusted to include the
next word in order to retain its size when possible.

Number of Related Words We further consider
the number of words that have a cosine similarity
with the target above a threshold of 0.3, excluding
the stop words and targets as in the prior baselines.

Nam et al. Model We also compare to the model
proposed by Nam et al. (2022), which is trained on
the gold standard from Kapelner et al. (2018) and
achieves state-of-the-art results on adult-directed
data. Notably, our task differs from theirs in our
focus on children’s stories. In addition, we use sig-
nificantly longer contexts and model the occurrence
of multiple target words within the same story con-
text. Nonetheless, we test the model on our primary
dataset to see if it can generalize to child-directed
text.

>We initially experiment with multiple thresholds as well

as context window sizes, including only the best performing in
the results. See Appendix C for full context baseline results.

Modified Nam et al. Model In addition to the
base model provided by Nam et al. (2022), we also
experiment with a slightly modified version which
adds information about the target word using its
WordNet vector (Saedi et al., 2018). We expect this
to improve the model as the base model does not
obtain any information about the target word. This
approach is denoted by Nam et al.+ WordNet.

4.3 Maetrics

We evaluate all models and baselines using the
following three metrics: Pearson’s r, Spearman’s
p, and root-mean-square error (RMSE). We con-
sider Spearman’s p to be our main metric, as it
assesses monotonic relationships that can be linear
or nonlinear, where Pearson’s r» measures linear
relationships. We do not consider RMSE to be a
primary metric for this task as it loses comparative
power in edge cases and with discrete variables,
but we include it as it is the only metric reported
by Nam et al. (2022).

4.4 Results

Our results, shown in full in Table 1, demonstrate
that using Gemini is the best performing method
for the task: it achieves a Spearman correlation
coefficient of 0.4983 with our gold standard anno-
tations, a Pearson correlation coefficient of 0.5297,
and an RMSE of 0.2870.

RoBERTa-mult performs only slightly worse
than Gemini, with a Spearman correlation of
0.4601, a Pearson correlation coefficient of 0.4721,
and an RMSE of 0.2972.

We find that, on our dataset, Nam et al. (2022)
underperforms the simple baselines. This is reason-
able, as it is a model trained on adult-directed text.
We expect it to have relatively poor generalization
abilities given that it is an attention-based model
trained on a specific dataset.
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‘ Spearman’s p | p-significance | Pearson’s r | r-significance ‘ RMSE

Context Similarity 0.2287 0.0011 0.2314 0.0010 0.2722
Context Window 0.2345 0.0008 0.2778 6.82 x 107° | 0.2573
Num Related Words 0.2797 6.06 x 10~° 0.2583 0.0002 0.3466
Nam et al. 0.3545 2.61 x 1077 0.3217 3.40 x 1076 | 0.3971
Nam et al.+ WordNet 0.3660 9.87 x 1078 0.3230 3.09 x 1076 | 0.3540
RoBERTa-mult 0.3796 2.97 x 1078 0.3886 1.30 x 1078 | 0.2715
Gemini 0.3908 1.05 x 108 0.4209 5.42 x 10719 | 0.3651

Table 2: Full results on the Kapelner dataset, for all models and baselines. IN-significance refers to the reported

p-value for each correlation metric V.

5 Analysis: Generalization Abilities

We further aim to see if our proposed approaches
generalize to measuring contextual informativeness
in adult-directed text.

Dataset We leverage the dataset from Kapelner
et al. (2018) with adult-directed text instances (and
corresponding target words) for contextual informa-
tiveness evaluation. Importantly, the target words
are more complex than in our dataset of children’s
stories, and it generally contains more advanced
language. The original annotations differ from ours
(see Kapelner et al. (2018) for a description), so,
for comparability reasons, we re-annotate 200 con-
texts from that dataset using our annotation schema.
Each instance is annotated by two independent an-
notators, and the similarity scores are averaged.

Results Results from our analysis (shown in Ta-
ble 2) demonstrate that both proposed methods
generalize well to adult-directed text: they achieve
a moderate correlation with the ground truth on
the re-annotated portion of the Kapelner dataset
and outperform all baselines and models for both
correlation metrics. For RMSE, context window
achieves the strongest score, closely followed by
RoBERTa-mult. This suggests that, while Gem-
ini (RMSE = 0.3651) effectively identifies which
passages are more or less contextually informative,
it struggles with calculating exact values for this
dataset.

These results indicate that our previous find-
ing (that the best performing methods initially re-
ported on the adult-directed data do not generalize
well to child-directed data) does not hold true in
the converse. The attention-based model achieves
the best scores on the original Likert scale-based
Kapelner annotations,* and the correlation is only

*Full results of Nam et al. (2022), including on the Kapel-

slightly lower than that of Gemini and RoOBERTa-
mult when using our annotation schema. However,
on the child-directed dataset, the Spearman coef-
ficient drops to only 0.0574, exhibiting almost no
correlation at all.

6 Conclusion

We propose the task of measuring contextual infor-
mativeness in children’s stories with respect to tar-
get vocabulary words. We provide a task definition,
along with a gold standard dataset for the task. As
methods to address the task, we test RoOBERTa and
Gemini by using the similarity of their predictions
to the true target words to produce a contextual in-
formativeness score. On the child-directed dataset,
Gemini achieves a Spearman’s rank correlation of
0.4983, while the highest performing baseline only
obtains 0.3534. We further show that our method
generalizes well to adult-directed text, once again
outperforming all baselines.

These findings highlight the potential of auto-
mated methods for evaluating and improving the
educational value of children’s stories. We hope
this work serves as a strong starting point for fu-
ture research on the automatic assessment and opti-
mization of vocabulary learning tools, particularly
as needed for the automatic generation of person-
alized vocabulary intervention materials in early
childhood.

Limitations

Because the creation of our dataset and modifica-
tion of the Kapelner dataset required human anno-
tators, all of which were undergraduate or graduate
student volunteers, something that could greatly
strengthen this work in the future would be the

ner dataset using their Likert scale-based annotation schema
are located in Appendix D.
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use of additional annotators to add more statistical
significance to our results.

The use of additional models or additional meth-
ods for evaluating these models (e.g., perplexity),
could also yield more insights and is encouraged
as a direction for future work.

Finally, while contextual informativeness with
respect to target words is important to measure, it
does not necessarily correlate with the learnability
of those words for children who read the stories. In
future work, we hope to use data from ongoing ex-
periments to bridge the gap between contextual in-
formativeness and vocabulary learnability in early
childhood.

Ethics Statement

No data involved uses any sort of personal informa-
tion and is all either available to the public or used
with full permission and knowledge of intended
use from the authors.

In terms of other ethical considerations, we find
that the risks of this study are minimal to none.
Though the results of this research are eventually
intended for children, no vulnerable populations
were involved in this study up to this point. If
automatically generated stories are given or read to
children, it is important to verify in advance that
they are safe for the target population, as current
models cannot guarantee this.
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A Selection of Word Embeddings

A.1 Word Embeddings

ConceptNet Numberbatch 19.08 English word
embeddings (Speer et al., 2017) are considered
state-of-the-art and have been shown to correlate
best with human discernment of similarity be-
tween word pairs on three gold-standard similarity
datasets: SimLex-999 (Hill et al., 2015), SimVerb-
3500 (Gerz et al., 2016), and WordSimilarity-353
(Finkelstein et al., 2001). Cosine similarity be-
tween two words using ConceptNet Numberbatch
embeddings has the highest correlation with gold
standard scores using Spearman’s Rho, Pearson’s
R, and Kendall’s Tau correlation (Toshevska et al.,
2020). We verify these results on the top perform-
ing embeddings from Toshevska et al. (2020) for
SimLex-999 and WordSimilarity-353 in Table 3.

SimLex-999

I
Word2Vec(GoogleNews 300) 0.4539 | 0.4420
LexVec(CommonCrawl 300) 0.4542 | 0.4442
ConceptNet Numberbatch 19.08 | 0.6458 | 0.6268

WordSimilarity-353

I
Word2Vec(GoogleNews 300) 0.6411 | 0.6833
LexVec(CommonCrawl 300) 0.6845 | 0.7189
ConceptNet Numberbatch 19.08 | 0.7534 | 0.8149

Table 3: Verification of word embedding performance
against similarity gold standard evaluation datasets. r
indicates Pearson’s r and p indicates Spearman’s p.

B Computational Experiment Details

B.1 Ecxisting Packages

The packages and versions we use for our imple-
mentation include: transformers 4.37.2, pandas
2.2.0, numpy 1.26.4, NLTK 3.8.1, gensim 4.3.2,
scikit-learn 1.4.0, and scipy 1.12.0.

B.2 Model Parameters

For our implementation of RoOBERTa, we use
roberta-base, which has 125M parameters.

B.3 Model Hyperparameters

Hyperparameters for RoBERTaForMaskedLM:
"attention_probs_dropout_prob": 0.1,
"bos_token_id": 0,

"classifier_dropout": null,

"eos_token_id": 2,

"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": le-05,
"max_position_embeddings": 514,
"model_type": "roberta",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 1,
"position_embedding_type": "absolute",
"transformers_version": "4.37.2",
"type_vocab_size": 1,

"use_cache": true,

"vocab_size": 50265

C Semantic Similarity Baselines

C.1 Semantic Similarity Baselines

In the main results tables, we utilize the best
performing semantic similarity baselines of three
lengths tested for Context Window and three thresh-
olds tested for Number Relevant Words.

Baseline Comparison

‘ r ‘ p ‘ RMSE
Context Similarity 0.2858 | 0.2890 | 0.3078
Context Window(1 word) 0.1587 | 0.2036 | 0.3583
Context Window(3 words) | 0.2397 | 0.2815 | 0.2918
Context Window(5 words) | 0.2772 | 0.3134 | 0.2921
Num Related Words(0.3) 0.3239 | 0.3534 | 0.4120
Num Related Words(0.4) 0.3056 | 0.3523 | 0.4387
Num Related Words(0.5) 0.2451 | 0.2483 | 0.4683

Table 4: Comparison of cosine similarity-based context
baselines. r indicates Pearson’s r and p indicates Spear-
man’s p.

8119



D Nam et al. Model Performance

D.1 Nam et al. Performance and Annotation
Comparison

Kapelner et al. data, Likert scale gold standard

| r | p | RMSE
Nam et al. 0.6691 | 0.6286 | 0.2026
Nam et al. + WordNet | 0.6815 | 0.6496 | 0.1660

Kapelner et al. data, cloze gold standard

| r | p | RMSE
Nam et al. 0.3217 | 0.3545 | 0.3971
Nam et al. + WordNet | 0.3230 | 0.3660 | 0.3540

Child-Directed data, cloze gold standard

| r | p | RMSE
Nam et al. 0.0505 | 0.0525 | 0.3165
Nam et al. + WordNet | 0.0623 | 0.0574 | 0.3166

Table 5: Results of the Nam et al. model on different
annotation schemas and datasets. r indicates Pearson’s
r and p indicates Spearman’s p.

E Human Annotation Details

E.1 Annotator Instructions

The annotators received the following instructions
prior to beginning the survey where we collected
annotations. "In the following survey you will see
a set of 60 children’s stories, one per page. Each
story has FIVE words blanked out, labeled 1-5.
Your job is to try to guess each of the FIVE words
from context.

Each word could be a noun (person, place, or
thing), a verb (action word), or an adjective (de-
scriptive word). Each word may occur more than
one time, so please read the whole story before
making your best guess for each word. Addi-
tionally, any word may appear in different forms
throughout the story. For example, the noun apple
could appear in the story sometimes as apple or as
apples. Similarly verbs might appear in different
forms — walk, walking, walked, or walks — then
you would write “walking” for it. Even if you think
of more than one potential word for each missing
word, write down the one you think fits best.

At the end of each story, you will also be asked
to evaluate whether you think the story would be
appropriate for a preschooler (3-5-years-old).

If you need to take a break, you can do that.
Clicking the same link will take you to the last page
you completed so you can continue the survey."
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