
Proceedings of the 31st International Conference on Computational Linguistics, pages 812–827
January 19–24, 2025. ©2025 Association for Computational Linguistics

812

Pre-trained Semantic Interaction based Inductive Graph Neural Networks
for Text Classification

Shiyu Wang1 and Gang Zhou1,* and Jicang Lu1 and Jing Chen1 and Ningbo Huang 1

1 State Key Laboratory of Mathematical Engineering and Advanced Computing, China
share_wind@163.com, lujicang@sina.com, cathysilense@126.com, rylynn_ab@163.com

*Correspondence:zhougang_ieu@126.com

Abstract

Nowadays, research of Text Classification (TC)
based on graph neural networks (GNNs) is on
the rise. Both inductive methods and transduc-
tive methods have made significant progress.
For transductive methods, the semantic inter-
action between texts plays a crucial role in the
learning of effective text representations. How-
ever, it is difficult to perform inductive learning
while modeling interactions between texts on
the graph. To give a universal solution, we
propose the graph neural network based on
pre-trained semantic interaction called PaSIG.
Firstly, we construct a text-word heterogeneity
graph and design an asymmetric structure to
ensure one-way message passing from words
to the test texts. Meanwhile, we use the con-
text representation capability of the pre-trained
language model to construct node features that
contain classification semantic information. Af-
terward, we explore the adaptative aggregation
methods with a gated fusion mechanism. Exten-
sive experiments on five datasets have shown
the effectiveness of PaSIG, with the accuracy
exceeding the baseline by 2.7% on average.
While achieving state-of-the-art performance,
we have also taken measures of subgraph sam-
pling and intermediate state preservation to
achieve fast inference.

1 Introduction

In the field of Natural Language Processing (NLP)
based on deep learning, text classification has con-
sistently been a focal point for researchers as it
helps with the understanding and organization of
data. The pivotal challenge encountered in text
classification is how to effectively represent the
text. Initially, sequence-based methods (Hochre-
iter and Schmidhuber, 1997; Schuster and Paliwal,
1997) are adopted to model text semantic informa-
tion. Nevertheless, they face the issues of vanishing
or exploding gradients when dealing with long se-
quences, making it difficult to handle long-distance

dependencies. Subsequently, the emergence of self-
attention (Vaswani et al., 2017) brings pre-training
capabilities to models. With the help of resid-
ual connection and layer normalization techniques,
pre-trained models (Devlin et al., 2019) have a
strong ability to understand and memorize long se-
quences. Recently, large language models (Brown
et al., 2020; Ouyang et al., 2022) have improved
the accuracy of stance detection (Cruickshank and
Ng, 2023) and sentiment classification (Deng et al.,
2023) in zero-shot and few-shot settings through
in-context learning. However, as the scale of model
parameters and training data continues to expand,
the computational efficiency progressively declines.
Although pre-trained models can draw on knowl-
edge from the pre-training corpora, text interaction
is implicit in the calculation of model parameters.

Furthermore, researchers have also tried to repre-
sent texts with graphs (Yao et al., 2019; Zhang et al.,
2020). By modeling the semantic information and
grammatical structure within the text as graphs, the
representation of the text is further enhanced. In
graph-based methods, there is a special case called
“transductive learning”. Unlike traditional meth-
ods, which perform independent reasoning for each
text, the transductive method constructs a corpus-
level graph containing multiple text nodes. The
semantic interaction among texts is represented as
edges on the graph, then directing the model’s infer-
ence. The perception of explicit text semantic inter-
action has moved beyond the conventional learning
of standalone modes, as shown in Figure 1.

While demonstrating effectiveness, the transduc-
tive method also brings new problems. Firstly, the
model is visible to the test nodes during training.
GNN can learn from the feature of the test nodes
via message aggregation, which is the main contri-
bution to its effectiveness. Secondly, once the text
graph is constructed, it cannot be modified. If new
texts await inference, it is inevitable to reconstruct
the text graph and perform training from scratch.

813

Tradition

Model

Pre-trained

Model

Pre-training

Model

Share Parameters

Test Text Test Text

Prediction Prediction

Training Corpus

Graph

Model
Graph Structure

Prediction

Test Text Training Corpus

(a)

Isolated text input

of traditional model

(b)

Implicit text interaction

of pre-trained model

(c)

Explicit text interaction

of graph model

Figure 1: The illustration of text interaction for tradi-
tional deep learning model (a), pre-trained model (b),
and transductive graph model (c).

To solve this problem, we propose PaSIG, a
Pre-trained Semantic Interaction-based Inductive
Graph Neural Network. Firstly, it decomposes the
relationships on the text graph and uses an asym-
metric structure to avoid passing messages from
test texts to words, which achieves the separation
of training data and test data. Secondly, it uses
the pre-trained model to represent the word and
text nodes in the graph. After the fine-tuning on
the labeled data, the built features contain category
information to support node interactions. Finally,
it not only supports semi-supervised learning on an
entire graph but also facilitates low-cost learning
on subgraphs by node sampling.

The contributions of the paper are as follows:

• We propose a framework of inductive text
learning that can assist model inference by per-
ceiving semantic interactions between texts on
the uniquely designed asymmetric topology.

• We adopt the gated fusion mechanism with
heterogeneous perception, making the model
more flexible on feature updating, while the
node sampling and hidden state preserving
techniques reduce the cost of training.

• Extensive experiments are conducted on five
benchmark datasets and illustrate the effec-
tiveness of our method.

2 Related Works

2.1 Graph Neural Networks for Text
Classification

Since the rise of GNNs (Kipf and Welling, 2017;
Hamilton et al., 2017; Chen et al., 2018), re-
searchers have attempted to combine text classi-
fication with GNNs on the text graphs. Accord-
ing to whether the test nodes are visible during
training, existing methods can be divided into two

categories: inductive and transductive. Induc-
tive methods construct an independent graph for
each text, transforming text tasks into graph tasks.
Among them, TextING (Zhang et al., 2020) per-
ceives word co-occurrence, HyperGAT (Ding et al.,
2020) models topic information with hyperedges,
DADGNN (Liu et al., 2021) uses diffusion along
with attention mechanism, TextSSL (Piao et al.,
2022) proposes sparse structure learning, TextFCG
(Wang et al., 2023) fuses contextual relations to
integrate various information, and MHGAT (Jin
et al., 2024) perceives multiple elements with word
position in heterogeneous hypergraph. Transduc-
tive methods introduce text nodes and construct
heterogeneous graphs, transforming text tasks into
node tasks. TextGCN (Yao et al., 2019) constructs
the corpus-level graph based on the co-occurrence
of words and texts. TextSGC (Wu et al., 2019)
simplifies convolution operations by stacking lin-
ear layers. TensorGCN (Liu et al., 2020) uses
graph tensors to describe semantic, syntactic, and
sequence information. HeteGCN (Ragesh et al.,
2021) decomposes the heterogeneous graph and
learns cross-layer node embeddings. BertGCN
(Lin et al., 2021) combines BERT and GCN for
joint training.

2.2 Language Models for Text Classification

Since Vaswani et al. (Vaswani et al., 2017) pro-
posed the self-attention mechanism, language mod-
els (LMs) based on the Transformer architecture
are evolving along two paths: auto-encoder models
represented by BERT (Devlin et al., 2019) and auto-
regressive models represented by GPT (Radford
and Narasimhan, 2018). In this paper, we refer to
the former as Pre-trained Language Models (PLMs)
and the latter as Large Language Models (LLMs).
Thanks to the pre-training on large-scale corpora,
PLMs can generate richer semantic representations
for texts, compared to shallow embeddings such as
Bag-of-Words or Skip-gram (Mikolov et al., 2013).
Although LLMs such as ChatGPT (Ouyang et al.,
2022) can convert powerful text generation capabil-
ities into discriminative abilities based on specific
prompts, there are still limitations in multi-category
text classification tasks (Wu et al., 2024), especially
the high computational cost. To alleviate the se-
mantic bias of LM, GNN-LM (Meng et al., 2022)
expands the input by retrieving similar contexts
based on the embeddings generated by LM, and
then uses GNN to aggregate information on the
context graph.

814

Training

Texts

Test

Text

(Training)

Words

(Optional)

Text Graph Construction

…

Text Feature Encoding

Sub-

Graphs
Entire Graph

Corpus Input

GNN Learning

Sample

Fine-tune Encoding

… …… …

PLMPLM
Fine-tuned

PLM

GFUS

Linear

+

+

Word nodeWord node Training node Test node

One-direction edgeOne-direction edgeBi-direction edgeBi-direction edge

Topology

Input

(PaSIG)

Feature Input

Topology

Input

(PaSIG-S)

Centroid Node

Extract

OOV

Words

Filter ×Match

Word embedding

Training text embedding

Test text embedding

Word embedding

Training text embedding

Test text embedding

Concatenate

Figure 2: The framework of PaSIG. Firstly, we partition the corpus into a training set and a testing set, extracting
words from the training text to form the word set. Next, we fine-tune a PLM with the training text, which enables
the output of word and text embeddings enriched with category information. Subsequently, we use one-direction
edges to ensure one-way message transmission from words to the test texts. Finally, we explore two distinct training
methodologies: one utilizing a complete text graph for model training (referred to as PaSIG), the other employs
sampling around each text node and leverages exported subgraphs for training (referred to as PaSIG-S).

3 Methods

The framework of PaSIG is shown in Figure 2.
Firstly, we fine-tune the PLM with the training cor-
pus to incorporate category knowledge. Following
this, we uniformly encode both texts and words
as input features for nodes using the fine-tuned
PLM. In graph construction process, we adopt an
asymmetric topology to realize one-way message
passing from word nodes to test text nodes. Given
that node features encapsulate category informa-
tion, we implement a gated fusion mechanism to
enable text nodes to adaptively preserve their fea-
tures during semantic interactions. Through these
strategies, we innovativly propose PaSIG, which
is able to perceive semantic interactions among
texts in an inductive way. Additionally, we have
developed a cost-effective variant named PaSIG-S,
which enables neighbor sampling around each text
node and utilizes exported subgraphs for model
training. The learning algorithm for PaSIG is de-
tailed in Appendix B.

3.1 Construction of Text Graph

We aim to construct a heterogeneous text graph that
includes nodes of two categories: text and word.
Firstly, for the text graph containing n word nodes
and m text nodes, the adjacency matrix A can be
represented as the block matrix:

A =

[
N M>

M Q

]
(1)

where matrix N ∈ Rn×n reflects the co-occurrence
between words, with edge weights calculated by
Point-wise Mutual Information (PMI). Matrix M ∈
Rm×n reflects the occurrence of words in the text,
with edge weights calculated by TF-IDF. Matrix
Q ∈ Rm×m reflects the affinity information be-
tween texts. Due to the lack of direct methods
to characterize the affinity between texts, and the
fact that complex methods are prone to introducing
noise, we ablate the matrix Q (see Appendix G for
more details).

The above graph structure does not distinguish
between training and test text nodes. To support
inductive learning, we further partition the matrix
M. For a text graph containing n word nodes,
m training text nodes, and p test text nodes, the
adjacency matrix is represented as follows:

A =

 N M> P>

M 0 0
P 0 0

 (2)

where matrix N ∈ Rn×n only contains words ap-
pear in the training corpus. Matrix M ∈ Rm×n
and P ∈ Rp×n represents the co-occurrence about
words with the training and test texts, respectively.
Since the vocabulary is built from the training cor-
pus, for words in test texts but out of the vocabulary,
their edges with the test texts will be ignored.

The matrix P represents the message passing
from test text nodes to word nodes, resulting in the
exposure of the test set during training. Therefore,

815

we set P as the zero matrix to ensure the one-way
message passing from the word nodes to the test
text nodes. In this way, the test text nodes only
receive information from word nodes during infer-
ence but do not participate in training.

Notice that after removing matrix P, the adja-
cency matrix A becomes asymmetric. Before mes-
sage propagation, it is necessary to perform nor-
malization Ã = D−1/2AD−1/2, where D is the
degree matrix. Due to the asymmetry of A, there
are two strategies to calculate the degree matrix:
using in-degree or out-degree. We will study the
impact of normalization strategies in Section 4.5.

In addition, PMI-weighted word-word edges
have the problems of dense connections and mis-
matches with TF-IDF weights (see Appendix F for
more details). Therefore, we ablate the matrix N.
Finally, we add a self-loop to each node and obtain
the adjacency matrix as follows:

A =

 In M> P>

M Im 0
0 0 Ip

 (3)

where In, Im, and Ip are identity matrices with the
shape of n× n, m×m, and p× p, respectively.

3.2 Fine-tuning and Encoding of BERT
Good node features are the prerequisite for an ef-
fective GNN. TextGCN (Yao et al., 2019) uses one-
hot vectors to embed words and text nodes because
one-hot embedding can achieve fast convergence
on full-batch training. TextING (Zhang et al., 2020)
uses GloVe (Pennington et al., 2014) to initialize
the representations of word nodes. However, nei-
ther of them meets the requirements of PaSIG as
they cannot provide a representation containing
category information for text nodes.

In this work, we use BERT (Devlin et al., 2019)
(or other BERT-like models such as RoBERTa (Liu
et al., 2019)) as the encoder of words and text
nodes. Firstly, BERT can perform encoding for
text and words independently, which meets the
inductive requirement. Secondly, the fine-tuned
BERT can output text features containing category
semantics, benefitting from its good performance
in downstream tasks. Finally, the embedding space
of words and texts encoded by BERT is consistent.

To make the encoding of BERT have category
information, it is necessary to fine-tune BERT first.
We only use the training corpus for inductive fine-
tuning. After fine-tuning, we deploy a token-wise
tokenization as specified by BERT and divide the

input into three parts: the set of words W , the
set of training texts T , and the set of test texts
S. For word w ∈ W , we build the input with
the format {[CLS], w, [SEP]} and use the output
at position of w as the word feature xw ∈ Rd,
where d is the dimension of hidden layers of BERT.
For training text t ∈ T , we add special tokens
[CLS] and [SEP] at the beginning and end of
text t, respectively. Due to the representation of
token [CLS] is believed to contain global semantic
information of the text, the output at the position
of [CLS] is used as the text feature xt ∈ Rd.

If there is a new test text s ∈ S needs to be in-
ferred, we can refer to the encoding of the training
texts to obtain its feature xs ∈ Rd. This process
is independent of the encoding of the training cor-
pus and is therefore inductive. Through BERT
encoding, category information is embedded into
the features of word and text nodes. Finally, the
node features during inference are as follows:

X = [XW ,XT ,XS]
> (4)

where XW ∈ Rn×d, XT ∈ Rm×d and XS ∈
Rp×d.

3.3 GNN with Gated Fusion Mechanism

According to the message passing mechanism pro-
posed by Gilmer et al., given the message function
Ml and update function Ul , the message passing
and updating of GNN can be represented as:

ml+1
v =

∑
u∈Nv

Ml

(
hlv,h

l
u, evu

)
(5)

hl+1
v = Ul

(
hlv,m

l+1
v

)
(6)

where hlv is the hidden state of node v at layer l
with h0

v = xv. evu is the edge feature from node
u to node v. Nv is the set of neighboring nodes of
node v.

Traditional GNNs, such as GCN (Kipf and
Welling, 2017) and GIN (Xu et al., 2018), adopt
the simple summation updating method for hlv and
ml+1
v at each layer. On the one hand, this updating

is constrained by the graph structure and cannot
flexibly extract valuable information from the fea-
tures of the centroid node and the messages from
neighbors. On the other hand, the text graph con-
tains both text and word nodes, but due to their
unified embedding space, the model is impeded in
its ability to discern this heterogeneity.

816

To enable the model to flexibly decide how to
preserve the node features containing category in-
formation while aggregating heterogeneous neigh-
borhood information, we proposed a gated fusion
mechanism with heterogeneous perception called
GFUS. The formula is as follows:

ml+1
v =

∑
u∈Nv

(
Ãv,uh

l
u

)
(7)

λl = δ
(
hlvW

l
h +ml+1

v Wl
m + βltv

)
(8)

h̃lv = λl · hlv + (1− λl) ·ml+1
v (9)

hl+1
v = σ

(
h̃lvW

l
t

)
(10)

where Wl
h ∈ Rd×1 and Wl

m ∈ Rd×1 is the weight
matrix of centroid node representation and neigh-
bor aggregation representation at l-th layer, respec-
tively. βl ∈ R is the learnable parameter that con-
trols the bias according to the type of centroid node.
tv denotes the type of node v (0 for word node and
1 for text node). The sigmoid activation δ is used
to adaptively calculate the gated signal λl, which
controls the proportion of two representations hlv
and ml+1

v during updating.
Due to PaSIG’s unique graph-building strategy,

text nodes are only connected to word nodes, and
vice versa (except for self-loops), so the centroid
node and neighbor nodes are heterogeneous. β ∈
[0, 1] allows the model to apply different biases to
gated signal λ based on the type of centroid node,
giving the perception of node heterogeneity.

Following the gated fusion, the node represen-
tation h̃lv undergoes a nonlinear transformation
before being forwarded to the subsequent layer.
Wl

t ∈ Rd×d′ is the weight matrix for linear trans-
formations and the output dimension of the last
layer is the number of categories, i.e. d′ = C. The
non-linear function σ in the middle layer is relu,
while the last layer is softmax. Upon completion
of the GUS’s n-layer propagation, we compute the
cross-entropy loss:

L = −
∑

i∈Il h
n
i log(yi) (11)

where Il records the indices of the labeled train-
ing texts, yi ∈ RC represents the one-hot vector
corresponding to the ground truth label of the i-th
text.

3.4 Partition and Sampling of Graph

We have identified the inputs and components of
PaSIG, now we will introduce how it works on
training and inference. As mentioned above, the
adjacency matrix A and input feature X are both in-
ductive. We only need to construct different inputs
during the training and inference to easily achieve
inductive learning. During training, all inputs re-
lated to the test data are excluded:

Atrain =

[
In M>

M Im

]
,Xtrain =

[
XW
XT

]
(12)

During inference, the test data is introduced:

Atest =

 In M> P>

M Im 0
0 0 Ip

 ,Xtest =

 XW
XT
XS


(13)

If there are new texts to be inferred, we only
need to adjust the correlation matrix P> and ini-
tial features XS . And there is no need to retrain
the GNN. Compared to the transductive methods,
PaSIG saves the time of retraining the model.

To analyze the complexity of PaSIG, assume that
the dataset contains m texts, the vocabulary size is
n, the average text length is L, BERT output dimen-
sion is d, the number of GNN’s layers is T , then the
space complexity of the input isO(Lm+md+nd)
and the time complexity isO(TLmd). Performing
message propagation on the entire graph ensures
the integrity of textual interaction, but it incurs a
high cost on a large-scale dataset.

Each text node just requires two-hop message
passing to interact with similar text nodes on the
graph. Additionally, the first and second-order
neighbors covered by each node form a small part
of the graph. Hence, PaSIG can be more efficient
by sampling first-order word neighbors and second-
order text neighbors for each text to construct sub-
graphs for learning (denoted as PaSIG-S), as shown
in Figure 2. The idea of "constructing independent
graph for each text" in PaSIG-S aligns more closely
with the graph construction strategy typically asso-
ciated with inductive approaches. Conversely, the
idea of "building heterogeneous corpus graph" in
PaSIG bears greater resemblance to the graph con-
struction strategy of transductive methods. Never-
theless, the asymmetric topology ensures that both
methodologies will be executed inductively.

817

MR Ohsumed 20NG R8 R52Model Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1
TextING 79.75±0.78 79.63±0.85 73.51±1.05 68.15±0.77 85.13±0.66 84.32±0.12 97.45±0.70 95.94±0.63 94.95±0.95 76.71±0.87

HyperGAT 76.64±0.81 76.58±0.92 66.55±1.37 59.05±1.84 83.29±0.46 82.72±0.24 96.43±0.63 92.12±1.51 94.24±0.54 72.35±1.83
TextSSL 75.74±0.25 75.64±0.38 62.01±0.41 51.99±0.78 79.55±0.27 79.11±0.65 97.31±0.42 93.01±0.33 93.97±0.66 72.79±1.41
TextFCG 80.59±0.29 80.56±0.47 69.58±0.39 56.16±0.71 85.95±0.33 84.91±0.51 97.53±0.34 92.44±0.21 95.64±0.15 69.13±0.28

MHGAT ‡ 78.09±0.73 77.24±0.57 72.88±0.84 65.04±1.60 92.68±0.30 91.94±0.13 97.65±0.47 93.09±1.21 94.78±0.37 76.74±1.06
TextGCN 75.15±0.41 75.02±0.73 67.94±0.85 62.28±1.34 85.69±0.16 84.85±0.23 96.98±0.10 93.19±0.47 93.77±0.26 70.39±0.35
TextSGC 76.48±0.17 76.24±0.52 68.56±0.42 60.50±0.46 88.66±0.35 88.08±1.57 97.44±0.25 93.82±0.51 94.02±0.63 74.00±0.88

HeteGCN ‡ 76.23±0.23 75.88±0.34 68.13±0.89 61.35±1.33 87.03±0.20 85.27±0.25 97.21±0.45 91.36±1.47 93.85±0.59 66.38±2.54
TensorGCN 76.48±0.69 76.40±0.42 64.48±0.71 49.42±0.66 76.57±0.21 75.60±0.35 96.07±0.76 90.46±0.67 93.89±1.35 64.37±0.51
BertGCN 84.92±0.84 84.05±0.67 71.88±0.52 62.72±0.47 88.69±0.45 88.02±0.20 97.94±0.73 94.60±0.44 95.50±0.44 52.30±0.73
w/o BE 69.20±0.26 69.15±0.29 47.52±0.22 36.19±0.65 59.02±0.33 56.91±0.33 87.92±0.38 77.35±1.56 68.93±2.34 13.03±3.31
w/o FB 72.98±0.23 72.95±0.24 41.83±0.28 25.30±0.67 65.02±0.66 63.07±0.85 91.34±0.16 79.31±1.97 80.31±0.51 20.45±0.56
w/o GS 78.59±0.21 78.56±0.19 69.33±0.31 53.32±0.27 87.62±0.21 86.97±0.42 97.49±0.20 94.07±0.33 96.34±0.35 65.99±0.79
PaSIG 86.90±0.16 86.88±0.16 80.94±0.10 74.09±0.32 93.22±0.08 92.88±0.07 98.78±0.02 97.70±0.19 98.05±0.09 79.46±1.25

PaSIG-S 87.05±0.09 87.04±0.09 81.18±0.21 74.58±0.42 93.21±0.07 92.91±0.08 99.02±0.04 98.16±0.12 98.34±0.03 85.99±1.52

Table 1: The average and standard deviation (%) of the text classification accuracy and macro F1-score on five
datasets. BE denotes BERT Embeddings, FB denotes Fine-tuned BERT, GS denotes Graph Structures. Red color
marks the optimal result, orange color marks the suboptimal result, yellow color marks the third best result. ‡ marks
the model without open source, whose score is from the literature.

Assuming that k1 word nodes are sampled from
the first-order neighbors for each text and k2 text
nodes are sampled from the second-order neighbors
for each first-order neighbor, the space complexity
of the input is O(k1k2 + k1d+ k2d) and the time
complexity is O(k1k2md). Sampling subgraphs
is a more cost-effective way for training and in-
ference, but it may suffer from information loss
because of the drop-out of nodes.

4 Experiments

In this section, we will introduce the datasets. The
performance of PaSIG will be compared with base-
lines. In addition, we will observe the effects of
ablations, GNN components, and degree calcu-
lation strategies on model performance. Finally,
we will visualize the text representation output by
PaSIG. The source code of PaSIG is available at
https://github.com/WithMeteor/PaSIG.

4.1 Datasets and Baselines

We adopt widely used text classification datasets,
including short-text sentiment classification dataset
MR (Movie Review)1, long-text news classifica-
tion dataset 20NG2, medical classification dataset
Ohsumed3, and Reuters4 news datasets R8 and R52.
The data preprocessing is in Appendix A.1.

We use state-of-the-art models on text graphs as
baselines. For the transductive text graph model,

1https://www.cs.cornell.edu/people/pabo/
movie-review-data/

2http://qwone.com/~jason/20Newsgroups/
3https://davis.wpi.edu/xmdv/datasets/ohsumed.

html
4http://disi.unitn.it/moschitti/corpora.htm

we chose TextGCN (Yao et al., 2019), TextSGC
(Wu et al., 2019), TensorGCN (Liu et al., 2020),
HeteGCN (Ragesh et al., 2021), and BertGCN (Lin
et al., 2021). For the inductive text graph model,
we show the performance of TextING (Zhang et al.,
2020), HyperGAT (Ding et al., 2020), TextSSL
(Piao et al., 2022), TextFCG (Wang et al., 2023),
and MHGAT (Jin et al., 2024). We implemented
these methods with the official code provided by
the authors, calculating the average and standard
deviation of scores under 10 independent training.
For the methods without open source, we used
the results reported in the paper. For PaSIG, the
settings of training parameters are introduced in
Appendix A.2. We have also compared the perfor-
mance of PaSIG and GPT-3 (Brown et al., 2020) in
Appendix H.

4.2 Experimental Results

Table 1 shows the comparison of the performance
between PaSIG and baselines. Upon examining the
baseline scores, there appears to be little distinction
in performance between inductive and transductive
methods on datasets R8 and R52. The reason is that
these two datasets are easier to fit. With the help of
PLM for semantic supplementation of short texts,
BertGCN achieved the best performance among
the baselines on the short-text dataset MR. Tex-
tING can generate effective embeddings for unseen
words, resulting in the best performance among the
baselines on the medical dataset Ohsumed. MH-
GAT is better at capturing high-order relationships
in documents, resulting in the best performance on
long-text dataset 20NG.

https://github.com/WithMeteor/PaSIG
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
http://qwone.com/~jason/20Newsgroups/
https://davis.wpi.edu/xmdv/datasets/ohsumed.html
https://davis.wpi.edu/xmdv/datasets/ohsumed.html
http://disi.unitn.it/moschitti/corpora.htm

818

PaSIG surpasses all baselines on each dataset
based on t-tests (p < 0.05). BertGCN is the
only baseline that introduces BERT in learning,
but PaSIG performs much better than it on long-
text datasets, with faster inference speed and less
resource consumption. For R8 and R52, the accu-
racy improvement of PaSIG is relatively small, at
1.08% and 2.00%, respectively. However, the in-
crease in F1 score is more significant, at 2.22% and
9.25%, respectively. For the short-text dataset MR,
PaSIG constructs semantic interactions between
texts to compensate for the semantic loss and im-
prove the accuracy and F1 by 2.13% and 2.99%.
For the medical dataset Ohsumed, PaSIG uses the
domain vocabulary as the medium to aggregate
text information from specific categories, thereby
improving accuracy and F1 by 7.67% and 6.43%.
For the long-text dataset 20NG, PaSIG achieves
the accuracy and F1 improvement of 0.54% and
0.97% by utilizing BERT’s ability to model long
texts. Furthermore, the performance of PaSIG-S is
better than PaSIG by the node sampling strategy.
The reason is that sampling on the graph can re-
duce the proportion of discrepant text nodes (i.e.
nodes with different labels from the centroid node)
in the second-order neighbors. More details will
be discussed in Appendix D.

4.3 Ablation Study
To further investigate the influence of PaSIG’s con-
stituents on its overall performance, we executed
meticulous ablation studies. We consider three vari-
ations: PaSIG w/o BERT embeddings, which sub-
stitutes with GloVe vectors; PaSIG w/o fine-tuned
BERT, relying on pre-trained BERT for node encod-
ing; PaSIG w/o graph structure, which is equivalent
to the fine-tuned BERT alone. Table 1 illustrates a
decline in performance across all variations. The
greatest performance decline occurred upon remov-
ing the BERT encoder, underscoring the critical
importance of effective text representation. Using
the pre-trained BERT without fine-tuning also im-
pacts performance, suggesting that textual category
information contributes to PaSIG’s inferential ca-
pabilities. Even without a graph structure, BERT
offers rich contextual semantics after fine-tuning
and attains performance competitive with that of
text graph baselines. Nonetheless, PaSIG does not
entirely rely on BERT embedding as semantic in-
teraction among texts continues to benefit it.

It has been revealed that PaSIG’s efficacy pri-
marily derives from BERT’s representation ability

and the categorical information it acquires. Yet, the
baselines are at a disadvantage when unable to har-
ness BERT’s capacities. To ensure fairness, we con-
ducted an extensive investigation in Appendix E,
examining the performance of baselines integrated
with BERT. The findings suggest that BERT em-
beddings are incompatible with inductive baselines.
While PaSIG’s unique architecture is designed to
fully leverage BERT’s capabilities.

4.4 Comparison among GNN Components

As a text graph learning framework, PaSIG can
substitute GNN components to attain diverse propa-
gation outcomes. We compared the performance of
four components: GCN (Kipf and Welling, 2017),
GIN (Xu et al., 2018), SAGE (Hamilton et al.,
2017), and our proposed GFUS in both entire-graph
and subgraph scenarios. As shown in Figure 3.

GCN GIN SAGE GFUS
85.6

85.8

86.0

86.2

86.4

86.6

86.8

87.0

87.2

MR
Entire Graph
Sub Graph

GCN GIN SAGE GFUS

80.4

80.6

80.8

81.0

81.2

Ohsumed
Entire Graph
Sub Graph

GCN GIN SAGE GFUS

92.6

92.8

93.0

93.2

93.4
20NG

Entire Graph
Sub Graph

GCN GIN SAGE GFUS
98.5

98.6

98.7

98.8

98.9

99.0

99.1
R8

Entire Graph
Sub Graph

GCN GIN SAGE GFUS
97.4

97.6

97.8

98.0

98.2

98.4

98.6
R52

Entire Graph
Sub Graph

Figure 3: PaSIG accuracy (%) with different GNN com-
ponents in the entire-graph and subgraph scenarios.

From Figure 3, it can be seen that GFUS does not
stand out in entire-graph propagation but performs
the best in subgraph propagation. GCN and GIN
are constrained by fixed graph structures due to
their message aggregation based on simple summa-
tion. While SAGE adopts connection-based mes-
sage updating, which is: hl+1

v = Wl(hlv||ml+1
v).

Although SAGE considers centroid representation
and neighborhood representation separately when
performing updating, it is not as flexible as GFUS
in preserving node features and cannot perceive
different node types.

819

Model Dataset Out-Degree In-Degree

GCN

MR 86.91±0.14 83.03±0.20
Ohsumed 80.90±0.33 62.47±0.32
R8 98.87±0.06 91.68±0.43
R52 97.56±0.12 88.58±0.11
20NG 93.12±0.09 85.42±0.32

GIN

MR 86.83±0.11 86.74±0.30
Ohsumed 80.84±0.09 79.60±0.92
R8 98.89±0.05 98.56±0.35
R52 98.09±0.06 97.72±0.16
20NG 93.16±0.08 92.80±0.04

GFUS

MR 86.86±0.20 86.90±0.16
Ohsumed 81.05±0.18 80.94±0.10
R8 98.77±0.09 98.78±0.02
R52 98.11±0.03 98.05±0.09
20NG 93.18±0.04 93.22±0.08

Table 2: Accuracy comparison (%) of PaSIG using
GCN/GIN/GFUS as GNN components with out-degree
and in-degree matrix, the larger values are bolded.

4.5 Analysis of Degree Matrix

As we introduced in Section 3.1, to achieve the
message’s one-way transmission from words to
test texts, the adjacency matrix A corresponding
to the topology is asymmetric. Therefore, when
using degree matrix D to perform symmetric nor-
malization on adjacency matrix, there are two op-
tions: one is to use in-degree to calculate the degree
matrix Djj =

∑
iAij , and the other is to calcu-

late out-degree matrix Dii =
∑

j Aij . We find
that the two strategies will lead to different perfor-
mances. We recorded the performance changes of
three summation-based GNN components (GCN,
GIN, and GFUS) before and after using the out-
degree and in-degree to calculate matrices during
full graph propagation, as shown in Table 2.

It can be seen that GCN and GIN exhibit a strong
preference for out-degree matrix, while GFUS is
almost unaffected by the choice of degree matrix.
According to the analysis in Appendix C, the out-
degree matrix can assign greater weights to the
initial features of test nodes in message aggrega-
tion. The experiment suggests that it is a crucial
factor in ensuring the efficacy of summation-based
message aggregation. Due to the enhanced self-
features of GIN, whose update function is hl+1

v =
MLPl((1 + ε)hlv +ml+1

v), the performance loss
in Table 2 is smaller than that of GCN without en-
hanced self-features when the matrix changes from
out-degree to in-degree. However, due to the gated
fusion mechanism of GFUS, it can adaptively ad-

just the gated signal, experiencing only minimal
interference from the normalization strategy.

4.6 Visualization

We visualize the text embeddings learned by the
models to ascertain if PaSIG has acquired effective
text representations via the semantic interaction
between texts. The dataset 20NG is selected for
visualization. T-SNE (Maaten and Hinton, 2008)
is used to reduce the dimension of the text node
embeddings output by BERT and PaSIG. We set
embedding spatial dimension to 3 and perplexity to
50 for T-SNE. The results are shown in Figure 4.

It can be seen that although the embeddings
of BERT contain category information, they are
not distinguishable for certain categories. There
are overlaps between clusters after dimensionality
reduction. After GNN propagation, the discrim-
ination in different categories is significantly im-
proved, which is reflected in the further separation
of clusters. For GNNs with message aggregation
based on simple summation (GCN and GIN), nodes
within the cluster are integrated more tightly, indi-
cating that nodes of the same category have higher
similarity in representation. However, this will also
lead to easier misclassification of similar nodes
between clusters. GNNs with uniquely designed
update functions (SAGE and GFUS) can aggregate
neighbor messages while also preserving their ini-
tial features, making the node representations more
discriminative. This not only ensures the separa-
tion of different clusters but also prevents nodes
within the cluster from being too tightly integrated.

5 Conclusion

We propose an inductive GNN framework for
text graphs called PaSIG, which performs semi-
supervised learning on the text-word heterogeneous
graph. While modeling the semantical interaction
of the texts, PaSIG achieves the separation of train-
ing and test data by the asymmetric graph structure
and different inputs at different stages, allowing
the model to perform inductive learning. Moreover,
our proposed gated fusion mechanism with hetero-
geneous perception has strong flexibility, which
can help text nodes adaptively preserve their fea-
tures when aggregating neighbor messages. Lastly,
we propose a subgraph-propagation approach with
node sampling to diminish training expenses and
introduce a single-layer propagation technique that
leverages intermediate states to hasten inference.

820

BERT GCN GIN SAGE GFUS

Figure 4: The text embeddings of 20NG output by five models. Different colors represent different categories.

6 Limitations

While PaSIG has contributed to the implementa-
tion of inductive text classification with pre-trained
semantics and inter-textual interaction, there re-
main certain limitations. Firstly, PaSIG employs
a fixed graph structure defined by TF-IDF, which
presupposes that texts with similar contexts are se-
mantically proximate in classification. This static
structure may be suboptimal and lacks the flexibil-
ity for fine-tuning during the learning phase. Sec-
ondly, PaSIG builds node features by BERT, which
cannot be incorporated into the learning process
of PaSIG in an end-to-end manner. This not only
heightens the deployment complexity of PaSIG but
also precludes a tighter synergy between GNN and
PLM. In the future, we hope to propose an end-to-
end architecture that incorporates feature building
and structure learning into the PaSIG framework,
thereby providing more flexible input for GNN
models.

Acknowledgments

The work was supported by the Henan Provin-
cial Science and Technology Research Project
(222102210081, 222300420590).

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and et al. 2020. Language models are few-
shot learners. In Proceedings of the 34th Interna-
tional Conference on Neural Information Processing
Systems, NIPS’20, pages 1877–1901. Curran Asso-
ciates Inc.

Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn:
Fast learning with graph convolutional networks via
importance sampling. In International Conference
on Learning Representations.

Iain J. Cruickshank and Lynnette Hui Xian Ng. 2023.
Use of large language models for stance classification.
CoRR, abs/2309.13734.

Xiang Deng, Vasilisa Bashlovkina, Feng Han, Simon
Baumgartner, and Michael Bendersky. 2023. Llms
to the moon? reddit market sentiment analysis with
large language models. In Companion Proceedings
of the ACM Web Conference 2023, WWW ’23 Com-
panion, pages 1014–1019. Association for Comput-
ing Machinery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, volume 1, pages 4171–4186. Association for
Computational Linguistics.

Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li,
and Huan Liu. 2020. Be more with less: Hypergraph
attention networks for inductive text classification.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley,
Oriol Vinyals, and George E. Dahl. Neural message
passing for quantum chemistry. In Proceedings of the
34th International Conference on Machine Learning
- Volume 70, ICML’17, pages 1263–1272. JMLR.org.

William L. Hamilton, Rex Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems,
NIPS’17, pages 1025–1035. Curran Associates Inc.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Piotr Indyk and Rajeev Motwani. 2000. Approximate
nearest neighbors: Towards removing the curse of
dimensionality. Theory of Computing, 604-613(1).

Yilun Jin, Wei Yin, Haoseng Wang, and Fang He. 2024.
Capturing word positions does help: A multi-element
hypergraph gated attention network for document
classification. Expert Systems with Applications,
251:124002.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations.

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.1801.10247
https://doi.org/10.48550/arXiv.1801.10247
https://doi.org/10.48550/arXiv.1801.10247
https://doi.org/10.48550/ARXIV.2309.13734
https://doi.org/10.1145/3543873.3587605
https://doi.org/10.1145/3543873.3587605
https://doi.org/10.1145/3543873.3587605
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2011.00387
http://arxiv.org/abs/2011.00387
https://dl.acm.org/doi/10.5555/3305381.3305512
https://dl.acm.org/doi/10.5555/3305381.3305512
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://cims.nyu.edu/~regev/toc/articles/v008a014/v008a014.pdf
https://cims.nyu.edu/~regev/toc/articles/v008a014/v008a014.pdf
https://cims.nyu.edu/~regev/toc/articles/v008a014/v008a014.pdf
https://doi.org/10.1016/j.eswa.2024.124002
https://doi.org/10.1016/j.eswa.2024.124002
https://doi.org/10.1016/j.eswa.2024.124002
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907

821

Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han,
Kun Kuang, Jiwei Li, and Fei Wu. 2021. Bertgcn:
Transductive text classification by combining gnn
and bert. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1456–1462. Association for Computational Linguis-
tics.

Xien Liu, Xinxin You, Xiao Zhang, Ji Wu, and Ping Lv.
2020. Tensor graph convolutional networks for text
classification. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(05):8409–8416.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Yonghao Liu, Renchu Guan, Fausto Giunchiglia,
Yanchun Liang, and Xiaoyue Feng. 2021. Deep at-
tention diffusion graph neural networks for text clas-
sification. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 8142–8152. Association for Computational
Linguistics.

Laurens Maaten and Geoffrey Hinton. 2008. Visualiz-
ing data using t-sne. Journal of Machine Learning
Research, 9(86):2579–2605.

Yuxian Meng, Shi Zong, Xiaoya Li, Xiaofei Sun, Tian-
wei Zhang, Fei Wu, and Jiwei Li. 2022. Gnn-lm:
Language modeling based on global contexts via gnn.
In International Conference on Learning Representa-
tions.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In International Conference on
Learning Representations.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and
et al. 2022. Training language models to follow in-
structions with human feedback. In Advances in
Neural Information Processing Systems, volume 35,
pages 27730–27744. Curran Associates, Inc.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Association
for Computational Linguistics.

Yinhua Piao, Sangseon Lee, Dohoon Lee, and Sun Kim.
2022. Sparse structure learning via graph neural
networks for inductive document classification. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 36(10):11165–11173.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Rahul Ragesh, Sundararajan Sellamanickam, Arun Iyer,
Ramakrishna Bairi, and Vijay Lingam. 2021. Het-
egcn: Heterogeneous graph convolutional networks
for text classification. In Proceedings of the 14th
ACM International Conference on Web Search and
Data Mining, pages 860–868. Association for Com-
puting Machinery.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3982–
3992. Association for Computational Linguistics.

M. Schuster and K.K. Paliwal. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Sig-
nal Processing, 45(11):2673–2681.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642. Association for Computational Linguis-
tics.

Xiaofei Sun, Xiaoya Li, Jiwei Li, Fei Wu, Shangwei
Guo, Tianwei Zhang, and Guoyin Wang. Text classi-
fication via large language models. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 8990–9005. Association for Computa-
tional Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, and et al. 2023. Llama 2: Open
foundation and fine-tuned chat models. Preprint,
arxiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Yizhao Wang, Chenxi Wang, Jieyu Zhan, Wenjun Ma,
and Yuncheng Jiang. 2023. Text fcg: Fusing contex-
tual information via graph learning for text classifica-
tion. Expert Systems with Applications, 219:119658.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher
Fifty, Tao Yu, and Kilian Weinberger. 2019. Simpli-
fying graph convolutional networks. In Proceedings
of the 36th International Conference on Machine
Learning, pages 6861–6871. PMLR.

Hui Wu, Yuanben Zhang, Zhonghe Han, Yingyan Hou,
Lei Wang, Siye Liu, Qihang Gong, and Yunping Ge.
2024. Quartet logic: A four-step reasoning (qlfr)
framework for advancing short text classification.
Preprint, arxiv:2401.03158.

https://doi.org/10.18653/v1/2021.findings-acl.126
https://doi.org/10.18653/v1/2021.findings-acl.126
https://doi.org/10.18653/v1/2021.findings-acl.126
https://doi.org/10.1609/aaai.v34i05.6359
https://doi.org/10.1609/aaai.v34i05.6359
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.18653/v1/2021.emnlp-main.642
https://doi.org/10.18653/v1/2021.emnlp-main.642
https://doi.org/10.18653/v1/2021.emnlp-main.642
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/2110.08743
http://arxiv.org/abs/2110.08743
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1609/aaai.v36i10.21366
https://doi.org/10.1609/aaai.v36i10.21366
https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
https://doi.org/10.1145/3437963.3441746
https://doi.org/10.1145/3437963.3441746
https://doi.org/10.1145/3437963.3441746
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/2023.findings-emnlp.603
https://doi.org/10.18653/v1/2023.findings-emnlp.603
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1016/j.eswa.2023.119658
https://doi.org/10.1016/j.eswa.2023.119658
https://doi.org/10.1016/j.eswa.2023.119658
https://proceedings.mlr.press/v97/wu19e.html
https://proceedings.mlr.press/v97/wu19e.html
https://arxiv.org/abs/2401.03158
https://arxiv.org/abs/2401.03158

822

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2018. How powerful are graph neural net-
works? In International Conference on Learning
Representations.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7370–7377. arXiv.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of the 28th International
Conference on Neural Information Processing Sys-
tems - Volume 1, NIPS’15, pages 649–657. MIT
Press.

Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen
Wen, and Liang Wang. 2020. Every document owns
its structure: Inductive text classification via graph
neural networks. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 334–339. Association for Computa-
tional Linguistics.

A Experiment Set-up

A.1 Data Preprocessing
We adopt a unified preprocessing strategy for the
five datasets. Since both texts and words will be
encoded by BERT as the initial features of nodes,
we use the tokenizer of BERT to make sure each
word will hold a unique encoding on the graph. We
use the NLTK 5 library to remove the stop words
and rare words with a frequency of less than 5 from
the corpus. Finally, we perform a truncation with a
length of 512. For 20NG, we have removed content
unrelated to classification, such as email title, email
address, URL, and phone number. Besides, we ran-
domly select 60% of the 20NG data and truncate
the text to a length of 125 so that the entire graph
training can run on the 12G NVIDIA 4070Ti GPU.
The statistics of the preprocessed datasets and built
graphs are shown in Table 3 and Table 4, respec-
tively. The text graph built according to the method
in Section 3.1 is sufficiently sparse and exhibits
significant variations in degree distribution. This
allows us to test PaSIG’s effectiveness to handle
diverse topological distributions without constrain-
ing its capabilities. We randomly select 10% of the
training set as the validation set.

A.2 Model Parameters
For PaSIG, we use BERT-base as the base model
for BERT, with a feature dimension of 768. We set
the learning rate to 5× 10−6, batch size to 8, and

5https://www.nltk.org/

Dataset #Text #Train #Test #C #Len

MR 10,662 7,108 3,554 2 14.54
Ohsumed 7,400 3,357 4,043 23 202.34
R8 7,674 5,485 2,189 8 80.38
R52 9,100 6,532 2,568 52 83.92
20NG 11,236 6,794 4,442 20 93.61

Table 3: Summary Statistics of the datasets, where #Text
means text number, #Train means training text number,
#Test means test text number, #C means class number,
#Len means average length of texts.

Dataset #NT #NW #E #Dns #IQR

MR 10,662 5,554 213,474 0.0008 1.39
Ohsumed 7,400 9,617 938,421 0.0032 7.15
20NG 11,236 13,437 1,021,631 0.0017 3.96
R8 7,674 7,961 598,189 0.0024 5.25
R52 9,100 8,963 743,404 0.0023 5.65

Table 4: Summary Statistics of the graphs, where #NT

means text node number, #NW means word node num-
ber, #E means edge number, #Dns means graph density,
#IQR means inter-quartile range of node degrees.

fine-tune BERT for 30 epochs. GFUS is used as the
GNN component of PaSIG by default. All the GNN
components adopt a two-layer architecture with a
hidden layer dimension of 256. We set the learning
rate to 10−3, the dropout rate to 0.5, and train GNN
for 100 epochs. For PaSIG trained using subgraph
sampling strategy, we set the batch size to 512 and
the number of samples for first-order and second-
order neighbors is set to 5 and 25 (k1 = 5, k2 = 5),
respectively.

We ran the model 10 times and saved the test
results to calculate the mean and standard devia-
tion as the score. All subsequent scores shall be
recorded by running the model 10 times unless
otherwise specified.

B Algorithm of PaSIG

The pseudo-code for the PaSIG’s learning process
and graph building is shown in Algorithm 1 and 2.

C Proof of Accelerated Reasoning

Taking GCN as an example, the single-layer
propagation formula represented by the matrix is
Hl+1 = σ(Ã>HlWl). If we use the in-degree
matrix, due to the one-way transmission of infor-
mation from words to test texts, the in-degree ma-
trices of word nodes and training text nodes are the
same before and after introducing test texts, that is:

http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1809.05679
https://dl.acm.org/doi/10.5555/2969239.2969312
https://dl.acm.org/doi/10.5555/2969239.2969312
https://doi.org/10.18653/v1/2020.acl-main.31
https://doi.org/10.18653/v1/2020.acl-main.31
https://doi.org/10.18653/v1/2020.acl-main.31
https://www.nltk.org/

823

Algorithm 1 PaSIG Learning Process

Input: The training texts T , test texts S , word set
W from training corpus, ground truth labels
of training and test texts y, pre-trained BERT
parameterized by φ, initial GNN component
parameterized by ψ, BERT fine-tuning epoch
E1, GNN training epoch E2.

Output: The predicted labels of test texts ŷtest.
1: Training Adjacency Matrix Atrain ←

GraphBuilder(T ,W)
2: Test Adjacency Matrix Atest ←

GraphBuilder(T ∪ S,W)
3: while 1 ≤ e ≤ E1 do . BERT fine-tuning
4: for t ∈ T do
5: ỹt ← BERTφ(t)
6: end for
7: LBERT ← −

∑
t∈T yt log(ỹt)

8: Update φ with loss LBERT

9: end while . Output fine-tuned BERTφ∗

10: for t ∈ T ∪ S ∪W do . BERT encoding
11: x← BERTφ∗(t)
12: end for
13: Training Input Xtrain ← Stack(XW ,XT)
14: Test Input Xtrain ← Stack(XW ,XT ,XS)
15: while 1 ≤ e ≤ E2 do . GNN training
16: ŷ← GNNψ(Atrain,Xtrain)
17: LGNN ← −

∑
t∈T yt log(ŷt)

18: Update ψ with loss LGNN

19: end while . Output trained GNNψ∗

20: ŷtest ← GNNψ∗(Atest,Xtest)
21: return ŷtest

Dtrain =

[
DW 0
0 DT

]
(14)

Dtest =

 DW 0 0
0 DT 0
0 0 DS

 (15)

where DW = diag(
∑

iMij) + In,DT =
diag(

∑
j Mij) + Im,DS = diag(

∑
j Pij) + Ip.

Therefore, the elements of Ãtrain and Ãtest[1 :
m + n, 1 : m + n] are the same at their cor-
responding positions after normalization Ã =
D−1/2AD−1/2 by considering the formulas (3)
and (15). In other words, Ãtrain can be regarded
as the submatrix of Ãtest:

Ãtest =

 Ãtrain
P̃>

0

0 0 D−1S

 (16)

Algorithm 2 Graph Builder

Input: The text set T , word setW .
Output: The adjacency matrix A.

1: Build vocabulary V ocab from word setW
2: Calculate inverse document frequency table
IDF from training corpus

3: Initialize the edge list Le whose element is
(source id, target id, edge weight)

4: i← 0 . Initialize text ID
5: for text t ∈ T do
6: Lw ← Tokenizer(t) . Tokenize text
7: for word w ∈ Lw do
8: j ← V ocab(w) . Get word ID
9: tf ← Count(t, w) . Term frequency

10: idf ← IDF (w)
11: Le ← Le ∪ (j, i+ |V|, tf · idf)
12: if t is training text then
13: Le ← Le ∪ (i+ |V|, j, tf · idf) .

Add inverse edge
14: end if
15: end for
16: i← i+ 1
17: end for
18: A← ListToMatrix(Le)
19: return A

where P̃> = D
−1/2
W P>D

−1/2
S .

Based on this condition, we can save the out-
put of the word node H1

W in the first layer and
the model parameters W2 in the second layer af-
ter training. During inference, we only need to
input H1

W along with the incidence matrix P̃ =

D
−1/2
S PD

−1/2
W and perform single-layer propaga-

tion to obtain the prediction of test texts:

H2
S = σ

(
P̃H

1
WW2

)
(17)

Since the entire-graph propagation is not re-
quired and the input size is reduced, the model
can achieve faster inference.

However, if the out-degree matrix is adopted,
the degree matrix will change into D′W =
diag(

∑
iMij) + diag(

∑
iPij) + In,D

′
T =

diag(
∑

j Mij) + Im,D
′
S = Ip. Then matrices

Ãtrain and Ãtest[1 : m+ n, 1 : m+ n] no longer
satisfy the condition of equality, thus unable to
achieve accelerated reasoning. Meanwhile, due to
D′S [i, i] < DS [i, i],∀1 ≤ i ≤ p, performing nor-
malization with a smaller degree can give greater
weight to the self-loops of test text nodes by the
out-degree matrix.

824

Dataset Entire
Graph

Subgraph
(k1=5, k2=5) Variation

MR 50.99 54.41 +3.42
Ohsumed 8.51 11.97 +3.46
R8 40.09 52.09 +12.00
R52 29.12 41.63 +12.51
20NG 5.41 11.36 +5.95

Table 5: The proportion (%) of nodes with the same
label as the central node in second-order neighbors.

D Effect of Sampling Parameters

From Table 1, we observe that the performance of
PaSIG-S is not weaker than that of PaSIG. It even
achieves better results on the R8 and R52 datasets,
which contradicts our intuition. According to our
conjecture, propagating across the entire graph can
obtain complete semantic interaction information,
while sampling nodes may lead to the loss of key
information. We examine several nodes that are
predicted correctly by PaSIG-S but predicted incor-
rectly by PaSIG and find a common phenomenon:
in second-order neighbors, the proportion of text
nodes with different labels from the central node is
higher, indicating a high level of discrepancy. Af-
ter sampling, the proportion of neighboring nodes
with different labels has decreased. We count the
changes in the proportion of second-order-neighbor
text nodes that share the same label with the central
text node before and after sampling, as shown in
Table 5.

It can be seen that after sampling, the propor-
tion of same-label second-order neighbors has in-
creased, with R8 and R52 showing the greatest in-
crease. We believe that the reduction in discrepancy
on these datasets is the main reason why PaSIG-S
performs better than PaSIG in Table 1.

To investigate the distribution of the optimal sam-
pling parameters of each dataset, we employ a grid
search approach and record the classification accu-
racy corresponding to different sampling parameter
settings. We present PaSIG’s performance with
various sampling parameters on four datasets: MR,
Ohsumed, R52, and 20NG, as shown in Figure 5.

We observe that as the text length expands,
there is a growing trend in the number of second-
order nodes sampled by PaSIG-S. For the short-
text dataset MR, the optimal sampling parameters
are k1 = 4, k2 = 5. For the long-text dataset
Ohsumed, the optimal sampling parameters are
k1 = 10, k2 = 4. For 20NG and R52 with text

1 2 3 4 5 6 7 8 9 10
First Neighbor Num

5
4

3
2

1Se
co

nd
 N

ei
gh

bo
r N

um

MR

1 2 3 4 5 6 7 8 9 10
First Neighbor Num

5
4

3
2

1Se
co

nd
 N

ei
gh

bo
r N

um

Ohsumed

1 2 3 4 5 6 7 8 9 10
First Neighbor Num

5
4

3
2

1Se
co

nd
 N

ei
gh

bo
r N

um

20NG

1 2 3 4 5 6 7 8 9 10
First Neighbor Num

5
4

3
2

1Se
co

nd
 N

ei
gh

bo
r N

um

R52

86.8

87.0

ac
cu

ra
cy

 (%
)

81.0

81.2

81.4

ac
cu

ra
cy

 (%
)

93.1

93.2

ac
cu

ra
cy

 (%
)

98.30

98.35

98.40

ac
cu

ra
cy

 (%
)

Figure 5: The variation of PaSIG-S’s accuracy with
sampling parameters.

Baseline MR 20NG R8 R52 Ohsu-
med

TextING† 77.78 86.75 96.53 93.26 69.05
TextING‡ 74.40 78.49 96.71 92.49 62.80
HyperGAT† 76.53 84.35 96.85 94.40 66.88
HyperGAT‡ 66.71 83.92 96.21 93.85 67.28
DADGNN† 78.21 80.06 96.14 93.32 54.84
DADGNN‡ 75.91 77.90 96.78 92.70 53.37

Table 6: Baseline accuracy (%) with different embed-
dings, where † denotes GloVe and ‡ denotes BERT.

lengths between MR and Ohsumed, the optimal
sampling parameters are k1 = 3, k2 = 3, and
k1 = 5, k2 = 4, respectively. We have established
the default sampling parameters as k1 = 5, k2 = 5,
a setting chosen to equilibrate performance across
long and short texts. In real-world applications,
these parameters can be adjusted according to the
text length.

E Baselines with BERT Embeddings

In Section 4.3, we noted the critical importance of
BERT embeddings within PaSIG. However, induc-
tive baselines often employ shallow GloVe vectors
for node feature representation. To ensure equi-
table comparison, we chose three baseline models:
TextING (Zhang et al., 2020), HyperGAT (Ding
et al., 2020), DADGNN (Liu et al., 2021) and eval-
uated their performance variance with both GloVe
and BERT embeddings, as presented in Table 6.

It becomes apparent that the introduction of
BERT does not necessarily lead to enhancements.
The performance improvement of PaSIG stems
from it harnessing the discriminative power of fine-
tuned BERT, which infuses category information

825

Dataset W-W
#Wgt

W-W
#Dns

W-D
#Wgt

W-D
#Dns

Vari-
ation

MR 3.29 0.0060 0.34 0.0008 +0.3%
Ohsumed 2.53 0.0086 0.05 0.0032 -0.7%
20NG 3.14 0.0040 0.07 0.0017 OOM
R8 2.85 0.0084 0.08 0.0024 -0.1%
R52 2.78 0.0083 0.08 0.0023 -0.2%

Table 7: The average Weight (#Wgt) and Density (#Dns)
of Word-Word (W-W) edges and Word-Text (W-T)
edges, and accuracy variation after the introduction of
Word-Word edges. OOM denotes Out-Of-Memory.

into text nodes, facilitating their semantic interac-
tion. In contrast, inductive baselines only embed
word nodes, deriving a greater advantage from the
global semantics of GloVe embeddings over the
contextual semantics provided by BERT.

F Add Word-Word Edges

In Section 3.1, we removed the edges between
words weighted by PMI (i.e. matrix N), which
is computed by:

PMI(i, j) = log
p(i, j)

p(i)p(j)
(18)

p(i, j) = log
W (i, j)

W
(19)

p(i) = log
W (i)

W
(20)

where W is the total number of sliding windows,
W (i) is the number of sliding windows contain
word i, and W (i, j) is the number of sliding win-
dows contain both word i and word j.

To demonstrate the validity of ablating matrix N,
we monitor the average weight and density of PMI
weighted word-word edges and TF-IDF weighted
word-text edges, along with the changes in PaSIG’s
performance after the introduction of word-word
edges as shown in Table 7.

The data indicates that word-word edges gen-
erally have higher weight and density. However,
upon their addition, most datasets experience a
decline in performance, except for the short-text
dataset MR which benefits from supplementary se-
mantic information. Notably, the 20NG dataset
encounters memory overflow issues. Introducing
word-word edges fails to enhance performance but
augments the graph size, elevating computational
complexity. Consequently, we exclude word-word
edges when devising the graph structure.

G Add Text-Text Edges

In this work, text nodes use word nodes as the
media to achieve indirect interaction. We aim to
restore the ablated affinity matrix Q in Section 3.1
and demonstrate the effect of introducing text-text
edges. To perform inductive learning, following the
same approach as constructing adjacency matrices
A, we block the message passing from the test
texts to the training texts and represent the affinity
matrix in the form of a block matrix as follows:

Q =

[
G F>

0 0

]
(21)

where matrix G ∈ Rm×m describes the affinity
among the training texts, and matrix F ∈ Rp×m
describes the affinity between the test texts and
the training texts, for the text graph containing m
training texts and p test texts.

The affinity of text, also referred to as seman-
tic similarity, boasts a variety of computational
approaches. We can opt to use vectorization
techniques such as the bag-of-words models, or
fine-tune discriminative PLMs, or engage gen-
erative LLMs to recognize semantic similarities.
In this study, we employ S-BERT (Reimers and
Gurevych), a model meticulously designed for the
Semantic Text Similarity (STS) task. S-BERT fea-
tures a siamese network architecture, adept at deter-
mining the semantic similarity between text pairs.

The specific framework for constructing text-text
edges is illustrated in Figure 6. Initially, we clus-
ter the text embeddings that have been encoded
by BERT, extract pairs of text from each cluster,
and assemble the training data for S-BERT. Subse-
quently, we fine-tune S-BERT to capture semantic
similarities. Finally, we identify the most simi-
lar texts to each text and use the cosine similarity
scores yielded by S-BERT as weights to establish
the direct edges between texts.

When assembling the training data for fine-
tuning S-BERT, considering all possible pairings
within the training corpus would result in the for-
mation of

(
m
2

)
text pairs from a corpus containing

m texts. To mitigate the scale of the training set,
we adopt the K-Means clustering on the training
texts and extract text pairs solely from within these
clusters, reducing the training set size to c ·

(
m/c
2

)
with the number of clusters c. Then, we derive
text pairs from each cluster and designate whether
their category labels align (where positive samples
share the same label, and negative samples have

826

Fine-tuned TC

PLM

……

K-Means

Clustering

……

Pretrained STS

PLM

Fine-tuned STS

PLM

Test

Text

…

Build Training

Text Pairs

Fine-tune

STS PLM

Get Training Text

Embedding

Predict Text-Text Edges

Centroid nodeCentroid node

One-direction edgeOne-direction edge

Bi-direction edgeBi-direction edge

Training nodeTraining node

Test nodeTest node

Train

Text

Train

Text

Figure 6: Diagram of constructing text-text edges. Different colors correspond to different clusters. Text pairs
marked with a green checkmark are positive samples, while negative samples are marked with a red crossmark.

Dataset γ Acc Train Valid Test
MR 70.04 79.17 91.22 81.08 78.92
Ohsumed 52.51 75.18 76.74 67.35 64.53
R8 57.64 98.06 98.80 97.74 97.25
R52 52.11 95.61 97.49 95.65 95.00
20NG 39.36 91.76 89.97 84.14 78.77

Table 8: The similarity threshold γ, corresponding S-
BERT accuracy, and hit rates under three partitions (%).

different labels). To ensure a balanced training, we
mandate an equal number of positive and negative
samples. Through the aforementioned procedures,
we acquire the data for fine-tuning S-BERT.

We employ the fine-tuned S-BERT to identify
the most similar texts from the training set for each
text. The textual similarity ascertained by S-BERT
is employed as the affinity between text pairs to con-
struct the affinity matrix. To accelerate the search
process, we devise an Approximate Nearest Neigh-
bor (Indyk and Motwani, 2000) that locally scouts
for text pairs exhibiting high similarity. Finally, the
adjacency matrix with text-text edges is as follows:

A =

 In M> P>

M G+ Im F>

0 0 Ip

 (22)

Furthermore, to counteract the disparity in
weight distribution between text-word edge
Etext−word and text-text edge Etext−text, we adjust
the weights of the text-text edges. This adjustment
ensures that the average weight across both edge
types is uniformly maintained.

For K-Means clustering, we maintain a consis-
tency between the number of clusters and the num-
ber of categories (except for R52, whose cluster
number is set to 20). We adopt the MpNet-base
as the base model for S-BERT, configure the batch
size to 8, set the learning rate at 2× 10−5, impose
a weight decay of 0.01, and execute training over
2 epochs. 10% of the data is partitioned for vali-

MR Ohsu-
med 20NG R8 R52

PaSIG 86.90 80.94 93.22 98.78 98.05
PaSIG* 86.63 80.93 93.21 98.81 97.94
Variation - 0.27 - 0.01 - 0.01 + 0.03 - 0.11
PaSIG-S 87.03 81.21 93.20 99.02 98.34
PaSIG-S* 82.99 81.08 93.22 99.01 98.28
Variation - 4.04 - 0.13 + 0.02 - 0.01 - 0.06

Table 9: The average accuracy (%) and variation of
PaSIG before and after (*) adding text-text edges.

dation. During the inference, S-BERT calculates
the similarity scores for text pairs and ascertains
semantic congruence based on a predefined sim-
ilarity threshold γ, with cosine similarity as the
evaluative metric. After fine-tuning, we choose the
top q = 10 similar texts as deduced by S-BERT for
each text and establish edges between them.

The accuracy of S-BERT on the fine-tuning task
with corresponding γ is shown in Table 8. We
also report the hit rate of text-text edges inferred
by S-BERT, which is the proportion of connected
text pairs with the same label. It shows that the
hit rate sequentially diminishes across the training,
validation, and test set. This trend is due to that
S-BERT is solely fine-tuned on the training set,
which explains its highest accuracy on it. Neverthe-
less, owing to the preservation of the optimal model
based on the validation set, induction bias leads to
a further decline in the hit rate on the test set. Al-
though the input adjacency matrix is modified, the
training parameters for PaSIG remain congruent
with the configurations outlined in Section A.2.

We then exhibit the testing results alongside
performance variations, as illustrated in Table 9.
We find that the introduction of text-text edges
yields performance improvement in a few instances,
whereas in the majority of cases, it brings a decline
in performance. The primary cause is the subop-
timal hit rate text pairs on the test set, which in-

827

Model MR SST-2 AG-
News R8 R52

GPT-3
zero-shot

88.69 91.55 90.72 90.19 89.06

GPT-3
few-shot

89.59 94.36 93.50 94.36 92.40

PaSIG 86.90 91.43 93.63 98.78 98.05

Table 10: Accuracy comparison (%) between GPT-3
and PaSIG. GPT-3 denotes text-davinci-003. In few-
shot experiments, 16 annotated examples (k=16) are
sampled for every test instance.

troduces noise. The proposition of more advanced
methods for assessing text affinity may potentially
boost PaSIG’s performance, and exploring strate-
gies to integrate higher-quality text-text edges in
inductive scenarios warrants further investigation.

H Compare with GPT-3

LLMs such as GPT-3 (Brown et al., 2020) and
LLaMA-2 (Touvron et al., 2023), have shown ex-
ceptional performance in text classification, partic-
ularly in single-label tasks. For an extensive study,
we compare PaSIG with GPT-3 (Brown et al., 2020)
under both zero-shot and few-shot settings across
five datasets. For GPT-3, we reference the scores
reported in the literature by Sun et al.. In alignment
with their dataset configurations, PaSIG is specifi-
cally trained on two additional datasets: AGNews
(Zhang et al., 2015) and SST-2 (Socher et al., 2013).
Since most baselines have not been evaluated on
these datasets, we exclude them from Section 4.1
and instead present the results separately here, as
detailed in Table 10.

GPT-3 outperforms PaSIG on the sentiment clas-
sification datasets MR and SST-2 because they
only consider two categories (positive or negative).
Nevertheless, PaSIG maintains an advantage over
GPT-3 on the multi-category news classification
datasets AGNews and Reuters (R8 and R52). GPT-
3 struggles with crafting multi-category prompts
for few-shot learning because of the input text
length, whereas its inference process requires sub-
stantially more computational resources compared
to PaSIG. Therefore, we argue that by leveraging
pre-trained semantics and text interactions, PaSIG
demonstrates superior competitiveness in text clas-
sification tasks over GPT-3.

	Introduction
	Related Works
	Graph Neural Networks for Text Classification
	Language Models for Text Classification

	Methods
	Construction of Text Graph
	Fine-tuning and Encoding of BERT
	GNN with Gated Fusion Mechanism
	Partition and Sampling of Graph

	Experiments
	Datasets and Baselines
	Experimental Results
	Ablation Study
	Comparison among GNN Components
	Analysis of Degree Matrix
	Visualization

	Conclusion
	Limitations
	Experiment Set-up
	Data Preprocessing
	Model Parameters

	Algorithm of PaSIG
	Proof of Accelerated Reasoning
	Effect of Sampling Parameters
	Baselines with BERT Embeddings
	Add Word-Word Edges
	Add Text-Text Edges
	Compare with GPT-3

