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Abstract

Code generation with large language mod-
els has shown significant promise, especially
when employing retrieval-augmented genera-
tion (RAG) with few-shot examples. However,
selecting effective examples that enhance gener-
ation quality remains a challenging task, partic-
ularly when the target programming language
(PL) is underrepresented. In this study, we
present two key findings: (1) retrieving exam-
ples whose presented algorithmic plans can be
referenced for generating the desired behavior
significantly improves generation accuracy, and
(2) converting code into pseudocode effectively
captures such algorithmic plans, enhancing re-
trieval quality even when the source and the
target PLs are different. Based on these find-
ings, we propose Plan-as-query Example Re-
trieval for few-shot prompting in Code genera-
tion (PERC), a novel framework that utilizes
algorithmic plans to identify and retrieve ef-
fective examples. We validate the effectiveness
of PERC through extensive experiments on
the CodeContests, HumanEval and MultiPL-E
benchmarks: PERC consistently outperforms
the state-of-the-art RAG methods in code gener-
ation, both when the source and target program-
ming languages match or differ, highlighting its
adaptability and robustness in diverse coding
environments.

1 Introduction

Code generation using large language models
(LLMs) has shown significant potential, particu-
larly when retrieval-augmented generation (RAG)
with few-shot examples is employed (Parvez et al.,
2021; Nashid et al., 2023; Zhang et al., 2023). How-
ever, selecting effective examples to improve code
generation quality remains a challenging task. This
is even more difficult when the target programming

*Corresponding author.

Prompt the user to input numbers
Create a list of numbers from the user input
Iterate each number in the list
Check if the number is even
Print the number

print("Enter numbers: ")
local inputs = io.read()
local nums = {}
numbers = input("Enter numbers: ") for num in string.gmatch(inputs, "%S+") do
numbers = list(map(int, numbers.split())) table.insert(nums, tonumber(num))
for num in numbers: end
if num % 2 ==0: for _, num in ipairs(nums) do
print(num) if num % 2 == 0 then
print(num)
end
end

High-Resource PL

Underrepresented PL

Figure 1: Two Python and Lua code snippets have dif-
ferent modalities but implement the same algorithmic
plans. PERC uses pseudocode describing the algorith-
mic plans to minimize noise from modality differences.
Colors in code represent equivalent steps.

language (PL) is underrepresented, as the construc-
tion of the few-shot example pool for retrieval is
non-trivial.

To construct the retrieval pool for an underrepre-
sented PL, we can transfer the retrieval pool from
a high-resource PL. However, this in turn inter-
feres with the state-of-the-art few-shot prompting
approaches in code generation (Nashid et al., 2023;
Zhang et al., 2023), which employ code to retrieve
examples. Figure 1 illustrates such an example; al-
though the Python code on the lower left and the
Lua code on the lower right follow the same algo-
rithmic steps, both lexical-based (Robertson and
Zaragoza, 2009) and embedding-based (Song et al.,
2020) retrieval fall short in capturing their algo-
rithmic similarity due to syntactic and structural
difference (An et al., 2023).

To overcome this, we propose Plan-as-query Ex-
ample Retrieval for few-shot prompting in Code
generation (PERC). PERC leverages algorithmic
plans such as pseudocode to retrieve examples.
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Converting code to pseudocode reduces syntactic
noise and captures algorithmic similarity, enhanc-
ing retrieval quality across programming languages.
Also, such plans can aid generation by participating
in reasoning chains, further improving the genera-
tion accuracy.

We demonstrate PERC’s effectiveness in two
key scenarios: First, plan-based example selec-
tion improves code generation accuracy for same-
language tasks on CodeContests (Li et al., 2022)
and HumanEval (Chen et al., 2021). Second, on
MultiPL-E (Cassano et al., 2023), PERC enhances
code generation for underrepresented languages by
leveraging data from high-resource languages.

Our contribution is three-fold:

* We propose PERC, a novel framework of
leveraging algorithmic plans for few-shot ex-
ample retrieval in code generation.

* We demonstrate that plan-based retrieval
improves same-language code generation
on competitive programming and general-
purpose coding tasks.

* We confirm that PERC can leverage high-
resource PLs to improve code generation ac-
curacy in underrepresented PLs.

2 Related Work

Retrieval-Augmented Code Generation Previ-
ous works adopting RAG in code generation tasks
have primarily focused on enhancing the accuracy
of generated code by retrieving from the target PL
pool (Parvez et al., 2021; Lu et al., 2022). More re-
cently, CEDAR (Nashid et al., 2023) retrieved few-
shot examples based on code-code similarity, and
RepoCoder (Zhang et al., 2023) leveraged LLM-
generated code snippets in target PL to expand
queries, allowing for improved retrieval.

Utilizing Algorithmic Plans in Code Retrieval
and Generation Han et al. (2021) viewed pseu-
docode as algorithmic plan of code, to reduce the
modality gap between text and code in code search
task. Jiang et al. (2024) used pseudocode-based
algorithmic plans for code generation through few-
shot prompting, and Sun et al. (2024) used pseu-
docode to bridge different programming languages.

Our distinction. We are the first to leverage al-
gorithmic plans in retrieval-augmented code gen-
eration, which allows to retrieve effective few-shot

Plan-As-Query Retrieval I

Query Expansion with Plan I

Plan
# Sort list.
# If odd, return middle.
# ... (Omit)

| Predlct

Target Problem

Return median
of elements

Candidates Retrieve
Expansion LLM based on similarity
L |

Problem Code Plan

Problem 1 | Code 1 %} LLM Plan 1
Problem 2 Code 2 Plan 2
Problem 3 Code 3 Generate Plan 3

V Select top-k examples

Code Generation with Few-shot Prompting

Few-shot Prompt Code Generation
with ICL
Problem 1
LLM
Plan 1 Plan
Code in Target PL
Target Code
[ Target Problem || Generate 9

Figure 2: Overview of PERC: (1) plan-based retrieval
and (2) code generation with few-shot prompting.
PERC retrieves examples with the most similar algo-
rithmic plans. Yellow and blue respectively signifies the
triplet of the selected few-shot example and the target
problem.

examples by reducing lexical bias. As a result, our
proposed PERC naturally adapts to source-target
PLs mismatches.

3 Preliminaries

Given a natural language query ¢, describing a de-
sired program, code generation aims to return the
corresponding implementation. In few-shot exam-
ple retrieval, we draw relevant text-code pairs (¢, ¢)
from an example pool P to supplement LLM’s
knowledge and guide generation.

Problem-As-Query A baseline approach maps
query t4 and text descriptions ¢ into a shared latent
space using encoder . The top-k examples are
selected based on similarity sim(-):

E = topk; gep sim((tq), (), (D)
where F is the set of indices of chosen examples.

CEDAR Nashid et al. (2023) selects examples
based on code-code similarity. As the prompt lacks
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code for querying, we use the LLM’s predicted
code ¢, from ?, to retrieve examples:

Ecp = tOpk(t,c)e’P Slm(w(éq)v ¢(C)) (2)

RepoCoder Zhang et al. (2023) generates code
¢q from ¢, and expands the query, following LLM-
based query expansion (Wang et al., 2023). The
retrieval combines both problem description and
code:

ERC = topk(t,o)E'P Slm(w(ttp éq)u w(ta C))v (3)
where semicolon denotes concatenation.

4 PERC

PERC retrieves relevant examples using algorith-
mic plans in pseudocode. These plans capture high-
level logic while minimizing cross-lingual lexical
differences, thereby supporting accurate code gen-
eration.

As depicted in Figure 2, the workflow of PERC
consists of two key steps. First, it drafts a plan
for the given problem to form an expanded query,
which is used to retrieve examples that were pro-
jected to plan space in indexing time. Then, the
retrieved examples and their plans are integrated
into a reasoning chain to generate a revised plan
and the final code.

4.1 Plan-As-Query Example Retrieval

A key contribution of PERC is the use of algorith-
mic plans written in pseudocode, for effective re-
trieval. Specifically, an LLM generates pseudocode
p for the retrieval pool P offline, and p, for ¢, at
inference time. Then, the query is expanded with
Dq as follows:

Eppre = topk 5 ) sim(¥(tg; Dg), ¥ (L: D)), (4)

where the in-context example for p, is provided
in Appendix D. As illustrated in Figure 1, Eq (4)
avoids surface-level details by projecting code ¢
into plans. This is in contrast to Eq (3), which ex-
poses the retriever to such distractions, especially
when ¢ and c use different PLs.

4.2 Code Generation with Examples

We use generated pseudocode as intermediate rea-
soning steps for code generation (Jiang et al., 2024).
Each few-shot example in our prompt consists of a
triplet (t, p, ¢), where text description ¢, generated

pseudocode p, and code ¢ guide the LLM to utilize
pseudocode in its reasoning chain:

prompt = [[t;P; ¢l (¢ p.c)eBome: tal- )

When the target programming language differs
from that of example code c, we replace c with gen-
erated code ¢ in the target language, where the LLM
generates ¢ using the in-context example shown in
Appendix D:

prompt = [[t; 55 ¢l (1 p.c)e Foprc tal- (6)
S Experiments

5.1 Experimental Setup

Experiments were conducted using GPT-3.5-
Turbo-16k and GPT-40-mini as the backbone
LLMs. Other implementation details regarding
the embedding-based retrieval and hyperparameter
configuration for code generation can be found in
Appendix A.

Metrics We evaluated the performance of PERC
using the widely used Pass@1 metric (Chen et al.,
2021), which is an unbiased estimator of the
model’s chance of producing a correct code sample
in a single attempt.

Baselines We compared our method against sev-
eral established baselines to highlight the effective-
ness of PERC: 1) w/o Examples generates code
directly without using few-shot examples, 2) Ran-
dom Selection uses a randomly chosen, then fixed
set of examples, 3) Problem-As-Query Retrieval
retrieves examples based on problem-problem sim-
ilarity, 4) CEDAR (Nashid et al., 2023) uses code-
code similarity, and 5) RepoCoder (Zhang et al.,
2023) expands the query with predicted code.

Datasets For evaluation, we used CodeCon-
tests (Li et al., 2022), HumanEval (Chen et al.,
2021), and MultiPL-E (HumanEval; Cassano
et al., 2023) benchmarks. For CodeContests, we
used the train split as the example pool, while
MBPP (Austin et al., 2021) benchmark was used
for the other two. Throughout the benchmarks, we
used Python—a high-resource PL—as the source.
We used Python as the primary target PL since
it is the only officially supported language in both
CodeContests and HumanEval benchmarks. For ad-
ditional target PLs, we selected languages based on
the frequency classes (NICHE, LOW, MEDIUM)
established in MultiPL-E. We randomly chose two
PLs from each class: Ruby and Go (MEDIUM),
Rust and R (LOW), and Lua and Julia (NICHE).
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Benchmark CodeContests ~ HumanEval MultiPL-E

Target PL Python Python Rust Julia Lwa Ruby Go R
Data Availability High-resource High-resource High-resource Underrepresented
Few-shot Prompting Method Pass@1 (%)

w/o Examples 2.72 73.17 62.82 51.45 4994 47.76 3091 14.78
Random Selection 5.82 72.56 61.86 5277 60.68 68.01 45.58 3342
Problem-As-Query Retrieval 4.97 69.51 63.14 53.65 6093 6522 75.06 31.06
CEDAR 5.82 72.44 62.63 53.71 61.61 61.68 75.06 32.67
RepoCoder 6.48 73.78 62.37 52.83 60.81 6727 7175 34.16
PERC 6.61 76.04 63.78 5421 64.10 69.81 76.49 34.35

Table 1: Pass@1 scores of GPT-3.5-Turbo-16k augmented with different strategies for retrieving few-shot examples
from Python source pools across CodeContests, HumanEval, and MultiPL-E benchmarks. Boldface indicates the
best values while underline indicates the second-highest accuracy.

Benchmark CodeContests ~ HumanEval MultiPL-E

Target PL Python Python Rust Ruby Lua  Julia Go R
Data Availability High-resource High-resource High-resource Underrepresented
Few-shot Prompting Method Pass@1 (%)

w/o Examples 4.97 87.87 81.22 7888 66.96 61.51 52.73 49.07
Random Selection 5.58 86.59 81.35 79.50 7398 68.36 47.01 53.42
Problem-As-Query Retrieval 7.64 87.07 80.58 80.12 7292 6597 68.83 52.80
CEDAR 8.18 88.17 81.15 80.75 74.04 69.37 7143 5342
RepoCoder 7.33 86.46 81.54 8199 75.65 6742 70.71 55.28
PERC 8.48 88.17 8295 8385 7522 70.69 71.69 57.14

Table 2: Pass@1 scores of GPT-40-mini augmented with different strategies for retrieving few-shot examples from
Python source pools across CodeContests, HumanEval, and MultiPL-E benchmarks.

5.2 RAG from Same PL Pool: CodeContests
and HumanEval

Table 1 shows that PERC outperforms all baselines,
achieving Pass@1 scores of 6.61% and 76.04%
on CodeContests and HumanEval, respectively, us-
ing the GPT-3.5-Turbo-16k model. Similarly, the
results for GPT-40-mini in Table 2 show Pass@1
scores of 8.48% and 88.17%, demonstrating consis-
tently high performance across benchmarks. This
supports that retrieval based on algorithmic plans
better captures the logic of the code and allows to
surface more effective demonstrations in top-k.

5.3 RAG from Cross-PL Pool: MultiPL-E

The results for each PL in MultiPL-E, presented in
Tables 1 and 2, are sorted in descending order of
code generation accuracy without examples. PLs
with higher accuracy are considered to have higher
data availability, while those with lower accuracy
are regarded as underrepresented.

Using the GPT-3.5-Turbo-16k model, PERC
achieves the best Pass@]1 scores across all PLs,
with notable results such as 69.81% for Ruby,
63.78% for Rust, and 64.10% for Lua, as shown
in Table 1. The results for GPT-40-mini, presented
in Table 2, also emphasizes PERC’s effectiveness,

showing consistent Pass@ 1 score improvements,
including 83.85% for Ruby, 70.69% for Julila, and
57.14% for R.

By effectively transferring knowledge from high-
resource PLs, PERC demonstrated improved code
generation accuracy for different PLs, showing
its ability to bridge knowledge gaps across PLs
with different data availability. In contrast, state-of-
the-art approaches RepoCoder and CEDAR strug-
gled with code generation. This limitation stemmed
from their reliance on code-based retrieval, where
modality differences introduced noise and hindered
the identification of algorithmically relevant code.'

6 Analysis and Discussion

Open-Source LLM as a Backbone Table 3
shows consistent accuracy improvements with the
open-source model Llama-3.1-8B-Instruct. PERC
outperformed the baselines and demonstrated effec-
tive performance across PLs like Ruby, Lua, and
R in the MultiPL-E benchmark. This highlights
the improvements with PERC generalizes well to

'One may consider a cost-exhaustive approach of translat-
ing all the code in the pool to target (underrepresented) PLs,
which incurs O(|T||P]) cost where T is the set of target PLs
to handle, whereas PERC only requires O(|P|).
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Benchmark MultiPL-E

Target PL Ruby Lua R
Method Pass@1 (%)

w/o Examples 46.09 39.63 18.82
Random Selection 4534 38.70 22.36
RepoCoder 46.21 41.06 18.94
PERC 47.33 44.22 23.66

Table 3: Pass@1 scores of Llama-3.1-8B-Instruct aug-
mented with different strategies for retrieving few-shot
examples on Python source pool, on MultiPL-E bench-
marks.

Benchmark CodeContests MultiPL-E
Cand. PL C++ Java C++ Java
Target PL Python Python Lua Lua
RepoCoder 545 594 58.88 58.01
PERC 6.61 6.06 64.60 64.60

Table 4: Pass@1 scores of PERC and RepoCoder when
using C++ and Java candidates in the CodeContests and
MultiPL-E Lua benchmarks.

Cand. PL Python Python/C++ Python/C++/Java
RepoCoder  6.48 5.88 4.85
PERC 6.61 6.48 6.12

Table 5: Pass@1 scores on CodeContests as more exam-
ples from different PLs are added to the retrieval pool.

PERC

Python,
8.48%

RepoCoder

Python,
23.03%
Java,
12.12%

Java,
3.64%

C++, C++,
73.33% 79.39%

Figure 3: Source PL distribution of retrieved examples
on CodeContests, under the Mixed PL Pool setting of
Table 5. The target PL, Python, is highlighted in blue.

smaller, public backbone models.

Using C++ and Java as Source PLs Table 4
shows that PERC is also effective when using
source PLs other than Python, namely C++ and
Java. These results demonstrate that selecting ex-
amples based on algorithmic plans, regardless of
the source PLs, can enhance code generation accu-
racy. The accuracy improvements using C++ and
Java code pool for all MultiPL-E benchmarks are
detailed in Appendix B.

Mixed PL Pool As shown in Table 5, when
C++ and Java code were incrementally added to

Method Pass@1 (%)
PERC 64.10
- Converting to Target PL 55.28

Table 6: Pass@1 of PERC on MultiPL-E-Lua bench-
mark with and without code conversion to target PL.

Method Pass@1 (%)
PERC w/ Converted Code 5.52
PERC w/ Gold Code 5.70

Table 7: Pass@1 difference when replacing generated
target PL code with gold target PL code on subsets of
example pools containing both C++ and Python code in
CodeContets

the retrieval pool, PERC maintained higher accu-
racy while RepoCoder suffered from severe per-
formance degradation. Again, this showcases the
adaptability and robustness of retrieving examples
with plans, than with code.

As illustrated in Figure 3, PERC outperforms
RepoCoder while retrieving less examples of the
target PL, Python; this empirically supports that
PERC retrieves useful examples in non-target PLs.

Converting Code to Target PL.  As illustrated in
Section 4.2, PERC uses the converted code ¢ rather
than the original code of the retrieved example c,
if the source and target PLs do not match. Table 6
shows such conversion is crucial, as syntax, APIs,
and other elements specific to the source PL. may
inadvertently influence the generation and lead to
performance degradation. Additionally, as shown
in Table 7, replacing the generated target PL code
with the gold target PL code in CodeContests,>
resulted in a minimal Pass@1 difference. This in-
dicates potential errors that can be introduced in
conversion to target PL are negligible.

7 Conclusion

We presented PERC, a novel framework for code
generation that utilizes algorithmic plans both at
indexing and generation time to select more ef-
fective few-shot examples to guide LLM. PERC
demonstrates notable improvements in Pass@1 on
CodeContests and HumanEval benchmark which
represent scenario where the target PL is of high-
resource, and also on MultiPL-E benchmarks for
targeting underrepresented PLs.

The subset of examples with both available correct C++
and Python code was used for evaluation.
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Limitations

While PERC brings notable performance improve-
ments in code generation with few-shot prompting,
even if the source and target PLs do not match, our
observation in Section 6 is that PERC shows slight
performance drop as more and more programming
languages are added to the retrieval pool. With an
ideal retrieval system suited to selecting the most
effective examples, one should observe monoton-
ically increasing performance as more candidates
are added to the pool; we leave more investigation
and improvements as future work.
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A Implementation Details

Throughout the experiments, we used GPT-3.5-Turbo-16k and GPT-40-mini-2024-07-18 as the base LLM;
for decoding, we applied nucleus sampling with p = 0.95 and sharpening with temperature 7' = 0.8. In
all retrieval experiments, we employed semantic search using embedding models for retrieval, namely
MPNet (Song et al., 2020) as the encoder ). For a fair comparison, we also used this retriever for the
RepoCoder baseline as well, which originally used a sparse bag-of-words model. The top-k candidates
were then selected based on MPNet-based embeddings using cosine similarity, ensuring consistency
across all methods.

In all few-shot prompting-based code generation experiments, ICL was performed using an inference
chain consisting of problem description, pseudocode, and code. To ensure fair comparison of retrieval
methods, the code was replaced with code converted to the target PL, as done in PERC’s approach.
Regarding the number of shots, we employed 3-shot prompting for all benchmarks, except CodeContests,
where 1-shot prompting was necessary due to the model’s 16k token limit.

Our code generation implementation primarily relied on the LangChain library.* To execute and
evaluate the generated code, we used code from the CodeEval repository> hosted on Huggingface for
running evaluating on CodeContests and HumanEval benchmarks. Additionally, we utilized code from
the bigcode-evaluation-harness repository® to evaluate on the MultiPL-E benchmark suite.

B Using C++ and Java Candidates for MultiPL-E Benchmarks

Benchmark MultiPL-E

Candidate PL C++ Java C++ Java C++ Java
Target PL Lua Lua Ruby Ruby R R
RepoCoder 58.88 58.01 6851 6528 3043 3391
PERC 64.60 64.60 71.18 66.15 31.68 34.66

Table 8: Experimental results comparing the Pass@ 1 of PERC and RepoCoder when using C++ and Java candidates
in the MultiPL-E HumanEval-Lua, Ruby, and R benchmarks.

As shown in Table 8, even when the candidate programming languages are C++ and Java rather than
Python, PERC outperforms RepoCoder in the MultiPL-E HumanEval-Lua, Ruby, and R benchmarks.
These results demonstrate that selecting examples based on pseudocode, regardless of the candidate
PLs, can improve code generation accuracy for underrepresented PLs by leveraging the knowledge from
examples written in high-resource PLs.

3https ://huggingface.co/sentence-transformers/all-mpnet-base-v2
4https ://github.com/langchain-ai/langchain

5https ://huggingface.co/spaces/evaluate-metric/code_eval
https://github.com/bigcode-project/bigcode-evaluation-harness
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C Ablation Studies

C.1 Pseudocode as Reasoning Chain

Benchmark MultiPL-E Lua
Reasoning Chain - Pseudocode
w/o Examples 49.94 -
Random Selection 59.38 60.68
Problem-As-Query Retrieval 60.81 60.93
CEDAR 59.69 61.61
RepoCoder 58.94 60.81
PERC 61.99 64.10

Table 9: Pass@1 scores of GPT-3.5-Turbo-16k with and without pseudocode as a reasoning chain.

C.2 Different Retrieval Methods

Benchmark MultiPL-E Lua

Retrieval Method MPNet CodeBERT BM25
w/o Examples 49.94 49.94 49.94
Random Selection 60.68 60.68 60.68
Problem-As-Query Retrieval ~ 60.93 58.76 60.37
CEDAR 61.61 60.99 60.25
RepoCoder 60.81 60.50 63.23
PERC 64.10 61.80 59.01

Table 10: Pass@1 scores of GPT-3.5-Turbo-16k with different retrievers.
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D In-Context Learning Examples

We provide concrete examples of prompts used for in-context learning in Tables 11, 12, and 13. The final
prompt is created by appending the target problem to 3-shot examples in the same format as shown in the
tables.

Problem Description
def count_bidirectional(test_list):
"""Write a function to count bidirectional tuple pairs.

nnn

Instruction for Plan Generation
Write a plan for the problem.

Generated Plan

# Define a function to count bidirectional tuple pairs.
# Create a map to store pairs and their reverse occurrences.
# Initialize a counter for bidirectional pairs.
# Iterate over the input list of tuples.

# Retrieve the two elements of the tuple.

# Create both the original pair and the reverse pair.

# Check if the reverse pair exists in the map.

# If it does, increment the bidirectional pair count and decrement the occurrence of the reverse

pair in the map.

# If the reverse pair does not exist in the map, increment the occurrence of the original pair in the
hap. e .
# Return the count of bidirectional pairs.

Table 11: The in-context example used for predicting the algorithmic plan from the test problem for query expansion
by PERC. The problem description example is from Austin et al. (2021).
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Problem Description
def count_bidirectional(test_list):
"""Write a function to count bidirectional tuple pairs.

nnn

def count_bidirectional(test_list):
pair_count = { }
bidirectional _count =0
for tup in test_list:
a, b = tup[0], tup[1]
original = (a, b)
reverse = (b, a)
if reverse in pair_count and pair_count[reverse] > 0:
bidirectional_count += 1
pair_count[reverse] -= 1
else:
pair_count[original] = pair_count.get(original, 0) + 1
return bidirectional_count
" Instruction for Plan Generation
Write a plan for the problem.
Generated Plan

# Define a function to count bidirectional tuple pairs.
# Create a map to store pairs and their reverse occurrences.
# Initialize a counter for bidirectional pairs.
# Iterate over the input list of tuples.

# Retrieve the two elements of the tuple.

# Create both the original pair and the reverse pair.

# Check if the reverse pair exists in the map.

# If it does, increment the bidirectional pair count and decrement the occurrence of the reverse

pair in the map.

# If the reverse pair does not exist in the map, increment the occurrence of the original pair in the
map.
# Return the count of bidirectional pairs.

Table 12: The in-context example used for converting code in source PL to algorithmic plan by PERC. The problem
description example is from Austin et al. (2021).
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Problem Description
def count_bidirectional(test_list):
"""Write a function to count bidirectional tuple pairs.

nnn

def count_bidirectional(test_list):
pair_count = { }
bidirectional _count =0
for tup in test_list:
a, b = tup[0], tup[1]
original = (a, b)
reverse = (b, a)
if reverse in pair_count and pair_count[reverse] > 0:
bidirectional_count += 1
pair_count[reverse] -= 1
else:
pair_count[original] = pair_count.get(original, 0) + 1
return bidirectional_count

# Define a function to count bidirectional tuple pairs.
# Create a map to store pairs and their reverse occurrences.
# Initialize a counter for bidirectional pairs.
# Iterate over the input list of tuples.

# Retrieve the two elements of the tuple.

# Create both the original pair and the reverse pair.

# Check if the reverse pair exists in the map.

# If it does, increment the bidirectional pair count and decrement the occurrence of the reverse

pair in the map.
# If the reverse pair does not exist in the map, increment the occurrence of the original pair in the

map.
# Return the count of bidirectional pairs.

Convert to Lua code for the problem following the plan.

- Converted Code to Target PL
function count_bidirectional(test_list)
local pair_count = {}
local bidirectional _count =0

for _, tup in ipairs(test_list) do
local a, b = tup[1], tup[2]
local original = {a, b}
local reverse = {b, a}
if pair_count[reverse] and pair_count[reverse] > O then
bidirectional_count = bidirectional_count + 1
pair_count[reverse] = pair_count[reverse] - 1
else
pair_count[original] = (pair_count[original] or 0) + 1
end
end

return bidirectional _count
end

Table 13: The in-context example used for converting code in source PL to target PL by PERC. The problem
description example is from Austin et al. (2021).
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E Retrieved Example and Generated Code with PERC

We provide concrete example of the few-shot examples retrieved by PERC and the resultant pseudocode
and generated code on HumanEval, in which the target PL is high-resource (python), in Tables 14 and 15.
We also provide examples from MultiPL-E-Lua, underrepresented target PL setting, in Tables 16 and 17.

Problem Description ¢,
from typing import List

def below_zero(operations: List[int]) -> bool:
""" You’re given a list of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account falls below zero, and
at that point function should return True. Otherwise it should return False.
> below_zero([1, 2, 3])
False
> below_zero([1, 2, -4, 5])
True

nnn

Predicted Pseudocode p,

# Set the initial balance of the bank account to zero
# Iterate through each operation in the list
# Update the balance of the bank account by adding the current operation
# Check if the balance is less than zero
# If it is, return True

# If the balance never falls below zero, return False

Retrieved Problem with Pseudocode ¢; p

Write a function to calculate the sum of the negative numbers of a given list of numbers.
# Initialize the sum of negative numbers to 0

# Iterate through each number in the list
# Check if the number is negative
# If it is negative, add it to the sum

# Return the sum of negative numbers

Retrieved Code c

def sum_negativenum(nums):
sum_negativenum = list(filter(lambda nums:nums<0,nums))
return sum(sum_negativenum)

Table 14: The example of pseudocode to extend the query for a target HumanEval problem #3, along with the
problem, pseudocode, code, and converted code in the target PL of the retrieved candidate through PERC.
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Problem Description
from typing import List

def below_zero(operations: List[int]) -> bool:
""" You’re given a list of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return True. Otherwise it should return False.
> below_zero([1, 2, 3])
False
> below_zero([1, 2, -4, 5])
True

nnn

Generated Pseudocode
# Initialize a variable "balance" to O

# Iterate through each operation in the given list
# Add the operation to the balance

# Check if the balance is less than 0
# If it is, return True

def below_zero(operations: List[int]) -> bool:
balance = 0
for operation in operations:
balance += operation
if balance < 0:
return True
return False

Table 15: An example of pseudocode and code generated using few-shot prompting with PERC for HumanEval
problem #3, based on examples from Table 14.
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Problem Description %,

— You’re given a table of deposit and withdrawal operations on a bank account that starts with
— zero balance. Your task is to detect if at any point the balance of account falls below zero, and
— at that point function should return true. Otherwise it should return false.

—> below_zero(1, 2, 3)

— false

—> below_zero(1, 2, -4, 5)

— true

local function below_zero(operations)

Predicted Pseudocode p,

# Set the initial balance of the bank account to zero
# Iterate through each operation in the list
# Update the balance of the bank account by adding the current operation
# Check if the balance is less than zero
# If it is, return True

# If the balance never falls below zero, return False

Retrieved Problem with Pseudocode ¢; p
Write a python function to return the negative numbers in a list.

# Initialize an empty list to store the negative numbers
# Iterate through each element in the input list
# Check if the current element is less than O
# If the element is negative, append it to the list of negative numbers

# Return the list of negative numbers

Retrieved Code c
def neg_nos(listl):
out =[]
for num in list1:
if num < O:
out.append(num)
return out

Converted Code in Target PL ¢

function getNegativeNumbers(numbers)
local negativeNumbers = { }

for _, num in ipairs(numbers) do
if num < O then
table.insert(negativeNumbers, num)
end
end

return negativeNumbers
end

Table 16: The example of pseudocode to extend the query for a target HumanEval-Lua problem #3, along with the
problem, pseudocode, code, and converted code in the target PL of the retrieved candidate through PERC.
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Problem Description

— You’re given a table of deposit and withdrawal operations on a bank account that starts with

— zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
— at that point function should return true. Otherwise it should return false.

—> below_zero(1, 2, 3)

— false

—> below_zero(1, 2, -4, 5)

— true

local function below_zero(operations)

Generated Pseudocode

# Return the count of bidirectional pairs.
# Initialize the balance of the account to 0
# Iterate through each operation in the list
# Add the operation to the balance
# Check if the balance is less than 0
# If it is, return true
# If the loop completes without returning true, return false

function below_zero(operations)
local balance =0

for _, operation in ipairs(operations) do
balance = balance + operation

if balance < O then
return true
end
end

return false
end

Table 17: An example of pseudocode and code generated using few-shot prompting for the target HumanEval-Lua
problem #3, based on PERC-retrieved examples from Table 16.
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