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Abstract

Large Language Models(LLMs) have brought
significant transformations to various aspects
of human life and productivity. However, the
heavy reliance on vast amounts of data in de-
veloping these models has resulted in a no-
table disadvantage for low-resource languages,
such as Nuosu and others, which lack large
datasets. Moreover, many LLMs exhibit sig-
nificant performance discrepancies between
high-and lowresource languages, thereby re-
stricting equitable access to technological ad-
vances for all linguistic communities. To ad-
dress these challenges, this paper propose a low-
resource multilingual large language model,
termed VEEF-Multi-LLM, constructed through
effective vocabulary expansion and parameter-
efficient fine-tuning. We introduce a series of
innovative methods to address challenges in
low-resource languages. First, we adopt Byte-
level Byte-Pair Encoding to expand the vocab-
ulary for broader multilingual support. We sep-
arate input and output embedding weights to
boost performance, and apply RoPE for long-
context handling, as well as RMSNorm for ef-
ficient training. To generate high-quality su-
pervised fine-tuning (SFT) data, we use self-
training and selective translation, and refine the
resulting dataset with the assistance of native
speakers to ensure cultural and linguistic ac-
curacy. Our model, VEEF-Multi-LLM-8B, is
trained on 600 billion tokens across 50 natu-
ral and 16 programming languages. Experi-
mental results show that the model excels in
multilingual instruction-following tasks, partic-
ularly in translation, outperforming competing
models in benchmarks such as XCOPA and
XStoryCloze. Although it lags slightly behind
English-centric models in some tasks (e.g., m-
MMLU), it prioritizes safety, reliability, and
inclusivity, making it valuable for diverse lin-
guistic communities. We open-source our mod-
els on GitHub1 and Huggingface2.

1https://github.com/Shajiu/VEEF-Multi-LLM
2https://huggingface.co/shajiu/VEEF-Multi-LLM

1 Introduction

Large Language Models (LLMs), such as GPT-4
(OpenAI, 2023) and Gemini(Team et al., 2023),
have demonstrated remarkable capabilities across
a wide range of tasks, encompassing both general
natural language understanding and generation, as
well as domain-specific applications. (Zhang et al.,
2023a).

However, much of the progress in LLMs devel-
opment has been concentrated on resource-rich lan-
guages like English and Chinese(Qin et al., 2024;
Huang et al., 2024; Liu et al., 2024), as well as de-
veloped regions (e.g., Europe)(Zhang et al., 2023b;
Ahuja et al., 2023), leaving many low-resource lan-
guages and underdeveloped regions underserved.
This imbalance limits linguistic diversity, reduces
applicability, and excludes numerous linguistic and
cultural groups from AI benefits. Although some
efforts, such as the Okapi(Lai et al., 2023) model,
attempt to address language-specific challenges
through supervised fine-tuning, they often remain
limited in model variety, size, and linguistic cover-
age. Moreover, the scarcity of language corpora fur-
ther restricts the availability of high-quality train-
ing data, ultimately impeding the development and
performance of LLMs for low-resource languages.

VEEF-Multi-LLM aims to bridge the AI devel-
opment gap for low-resource languages and under-
served regions. It supports 50 languages, includ-
ing Nuosu, Dzongkha, and Korean, drawn from
low-resource and underdeveloped regions. Built
on a modified GPT-2 architecture, it employs byte-
level BPE to expand its vocabulary to 250680 to-
kens, thereby enhancing multilingual handling and
mitigating the issue of over-segmentation in low-
resource languages. Additionally, key features in-
clude separate input and output embedding weights,
RoPE for long-context handling, RMSNorm for
training efficiency, and GeLU activation. To ad-
dress the scarcity of high-quality SFT data, we
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adopt a selective translation process from English
texts and meticulously annotated by experts in mul-
tiple languages, ensuring cultural and linguistic fi-
delity. Furthermore, we constructed a carefully bal-
anced instruction-tuning dataset, thereby enhanc-
ing the model’s applicability across diverse tasks
and extending its linguistic coverage. This compre-
hensive approach ensures that VEEF-Multi-LLM
can effectively cater to the needs of a wide range
of linguistic communities.

In addition to the base model, we introduce two
instruction-tuned variants: VEEF-Multi-LLM-8B-
SFT, fine-tuned on a diverse multilingual instruc-
tion set, and VEEF-Multi-LLM-8B-DPO, further
aligned with DPO techniques. For evaluation, we
created Multi-Bench and Multi-Refus-Bench, fo-
cusing on a subset of supported languages. Ex-
perimental comparisons against five baselines, in-
cluding both English-centric and multilingual mod-
els, demonstrate that VEEF-Multi-LLM excels in
multilingual instruction-following and translation
tasks, though it slightly trails in certain discrimina-
tive tasks. Moreover, the model emphasizes safety
and reliability, effectively reducing hallucinations
and addressing cultural sensitivities, thereby offer-
ing valuable support to a wide range of linguistic
communities. We have open-sourced both the foun-
dation and chat variants of VEEF-Multi-LLM to fa-
cilitate ongoing development and application. Our
main contributions are as follows:

• Development of the VEEF-Multi-LLM: A
large-scale multilingual model specifically de-
signed for low-resource languages and under-
developed regions, supporting 50 natural lan-
guages and 16 programming languages, with
a focus on bridging the gap for underserved
linguistic communities.

• Innovative Training Techniques: Utilization
of Byte-level Byte-Pair Encoding to expand
the vocabulary for low-resource languages,
separation of input and output embedding
weights, integration of RoPE for long-context
handling, and adoption of RMSNorm for effi-
cient training.

• Creation of High-Quality SFT Datasets:
Employment of selective translation and self-
training methods to overcome the scarcity
of supervised fine-tuning datasets for low-
resource languages. Native speakers con-
tributed to ensuring the linguistic and cultural

fidelity of the data.

• Comprehensive Benchmark Development
and Performance Evaluation: Establish-
ment of Multi-Bench and Multi-Refus-
Bench for thorough performance assessment.
The experimental results demonstrate supe-
rior performance in multilingual instruction-
following and translation tasks compared to
competing models.

2 Related Work

In the field of LLMs, the advancement of technolo-
gies has catalyzed the development of a variety of
open-source models exhibiting remarkable linguis-
tic capabilities. Models such as LLaMA(Touvron
et al., 2023a), Phi(Gunasekar et al., 2023), Mistral
(Jiang et al., 2023), Qwen2(Bai et al., 2023) and
Gemma(Team et al., 2024) have emerged as fron-
trunners, underscoring the technological strides
made in this arena. The development of these
multilingual LLMs usually requires a multi-phase
approach that integrates various methods to boost
performance across several languages. This can
include starting with a new model trained on exten-
sive multilingual datasets(e.g., BLOOM(Scao et al.,
2022), PaLM(Chowdhery et al., 2022), OPT(Zhang
et al., 2022), LLaMA(Touvron et al., 2023b)) or
enhancing already pre-trained LLMs to lessen com-
putational demands(e.g., Cabrita(Larcher et al.,
2023), X-Gen(Vu et al., 2022), Sabia(Almeida
et al., 2024), FinGPT(Luukkonen et al., 2023)).
While these methods have made significant strides
in bridging the gap between high- and low-resource
languages, challenges still remain.

Pre-training from scratch often faces the curse
of multilinguality, where adding more languages
can degrade low-resource language performance.
Continual pre-training is more efficient but suf-
fers from catastrophic forgetting, causing mod-
els to lose previously learned information. Super-
vised fine-tuning (SFT) can utilize multilingual in-
struction data or translation tasks to mitigate data
scarcity(Shen et al., 2023a; Lai et al., 2023). How-
ever, both approaches rely heavily on high-quality,
diverse datasets, which remain limited for many
languages. Reinforcement Learning from Human
Feedback (RLHF) is increasingly used to align
models with human preferences(Shen et al., 2023b).
In multilingual LLMs, multilingual RLHF data
are used to train multilingual reward models(Chen
et al., 2024). However, RLHF typically relies on
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human-annotated data, which can be expensive and
time-consuming to collect, especially for under-
resourced languages. Downstream fine-tuning in-
volves either tuning all parameters on downstream
tasks(Rosenbaum et al., 2022; Yang et al., 2023a)
or employing parameter-efficient finetuning meth-
ods to reduce costs(Tu et al., 2023). Although these
methods can achieve impressive performance, they
often require substantial computational resources
and may not generalize well to unseen tasks or
languages.

3 Pre-training

Pre-training aims to accumulate extensive global
knowledge and develop professional proficiencies,
such as math, coding, and logical reasoning, en-
abling the model to handle multilingual scenarios
and diverse data formats. This involves training on
large-scale internet data to build language under-
standing and expression, supplemented by curated
general and domain-specific datasets to refine its
professional skills.

3.1 Pre-training Data

Our language selection for the VEEF-Multi-LLM
model is guided by two key factors: data avail-
ability and geographical coverage. We start by
focusing on the volume of pre-training data, partic-
ularly from internet sources like CulturaX3. Using
statistical data from CulturaX, we rank the top 25
languages by the volume of available tokens, ar-
ranging them in descending order.

We deliberately add Asian languages, including
Minority, Tibetan, Mongolian, Uyghur, Kazakh,
Zhuang, and Korean, to expand our selection to
a total of 50 languages. Figure 2 show the dis-
tributions of data categories and languages, re-
spectively. Specifically, we have integrated Ti-
betan corpora from yongzin4 and zangdiyg5, jour-
nalistic materials such as tibetcnr6, Mongolian
corpora from monggolhel7, Uyghur corpora from
uighurlanguage8. We have also improved the data
processing pipeline including the language model
filtering and duplicate removal to improve the data
quality.

3https://huggingface.co/datasets/uonlp/CulturaX
4https://www.yongzin.com
5https://ti.zangdiyg.com
6http://www.tibetcnr.com
7http://www.qingis.com/monggolhel.htm
8http://www.uighurlanguage.com

3.25%
2.19%
1.54%
1.32%
1.33%

12.49%
8.43%
5.93%
5.17%
5.13%

Figure 1: Pre-training data processing pipeline.
DD(Document deduplication), NL(Normalizing),
HC(Heuristic Cleaning), PDSD(Paragraph dedu-
plication Sentence deduplication), TF:(Toxicity
Filtering).

Regarding programming languages, we ini-
tially focused on the 13 languages encompassed
by BLOOM(Scao et al., 2022), which include lan-
guages like Java, JavaScript, and Python. We also
added three more programming languages — SQL,
Assembly, and Visual Basic — based on their sig-
nificant popularity according to the TIOBE index.
The full roster of programming languages can be
found in Table 7

Curated general data covers a wide range of
categories including books (e.g., textbooks,paper,
novels), codes, encyclopedias, forums, academic
papers, authoritative news, laws and regulations.
Domain-specific data encompasses popular fields
such as finance, taxation, media and publicity, pub-
lic opinion, and traditional Chinese medicine. Fig-
ure 2 show the distributions of data categories and
languages, respectively. Details of the data distri-
bution are as follows:

Web 48.52%

Code 17.75%

Paper 13.02%
Book 10.06%

Report 4.73%

Others 5.92%

Figure 2: Distribution in the pre-training data.
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3.2 Data Preprocessing

We establish a comprehensive data processing
pipeline to improve data quality, consisting of four
modules: normalization, heuristic cleaning, multi-
level deduplication, and toxicity filtering. Figure 1
illustrates the complete pre-training data process-
ing pipeline.
Normalizing. We format all raw data into JSON,
incorporating keys like data source, identifier, and
content.
Heuristic Cleaning. We present a heuristic multi-
level cleaning approach utilizing collaborative fil-
tering at the chapter, line, word, and character
levels. Applied to diverse data types such as en-
cyclopedias, Q&A, news, books, and code, the
method incorporates over a thousand heuristic rules
to address issues in format, content, and encod-
ing. Chapter and line-level cleaning targets seman-
tic problems like garbled text, logical inconsisten-
cies, and low-quality lines. Word-level cleaning
removes advertising trigger words, while character-
level cleaning addresses redundant and missing
characters with precision.
Multi-Level Deduplication. We implement a
multi-level collaborative deduplication strategy to
address various duplication patterns. This in-
cludes chapter-level deduplication using URLs and
simHash, paragraph-level deduplication via co-
sine similarity, and sentence-level deduplication
through prefix-suffix matching.
Toxicity Filters. To identify toxic content, we use
Jigsaw’s Perspective API9, which assigns toxic-
ity scores based on factors such as profanity, in-
sults, and threats. Though not perfect—sometimes
mislabeling neutral text or reflecting annotator bi-
ases—the API is more accurate than heuristic clas-
sifiers(Friedl, 2023; Longpre et al., 2023). It out-
puts a score from 0 (unlikely to be toxic) to 1
(highly toxic), with a recommended filtering range
of 0.3 to 0.9. We experiment by removing docu-
ments with scores above five thresholds: 0.95, 0.9,
0.7, 0.5, and 0.3, and also apply an inverse filter for
documents with low toxicity predictions.

3.3 Tokenization

To enhance the model’s multilingual capabilities,
VEEF-Multi-LLM models employ an advanced
multilingual tokenizer.
Training Data. We randomly select 1 million doc-
uments per language from our collected data. For

9https://perspectiveapi.com

languages with fewer than 1 million documents, we
use all available documents in the training dataset
for the tokenizer.
Algorithm. We implement the Byte-level Byte-
Pair Encoding(BBPE)(Wang et al., 2020) algorithm
using the Hugging Face tokenizer library. Our tok-
enizer is based on GPT2’s tokenizer, incorporating
both pre-tokenization and post-tokenization pro-
cesses. During training, each digit of a number is
intelligently split to enhance mathematical reason-
ing.
Vocab Size. To support minor languages while
maintaining proficiency in Chinese and English,
the VEEF-Multi-LLM tokenizer expands its vocab-
ulary to 81000. Additionally, for optimal use of
tensor parallelization technology and tensor cores,
the vocabulary size must be a multiple of 128. As
a result, the final vocabulary size is set to 81920.
Evaluation. Following the approach used in
BLOOM, we assess the effectiveness of our to-
kenizer using the fertility metric. We compare
the VEEF-Multi-LLM tokenizer with the BLOOM
and Llama-2 tokenizers by calculating fertility
across a consistent set of documents in various
languages. As shown in Figure 3, demonstrating
that the VEEF-Multi-LLM tokenizer outperforms
the alternative tokenizers in the majority of lan-
guages. Following our assessments and analysis of
interpretability, we are of the view that there is a
positive correlation between the tokenizer’s fertility
and the model’s effectiveness in certain languages.
In the fertility test, we observe that ta, bn, and hi
exhibit high fertility, indicating lower tokenization
efficiency in these languages compared to others.
As a result, the instruction-following capabilities
of our base model in the aforementioned languages
are relatively weak. A detailed analysis will be
conducted in subsequent experiments.

Figure 3: Fertility test results of the tokenizers.
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3.4 Model Architecture

The architecture of VEEF-Multi-LLM is based on a
modified GPT-2 framework, inspired by successful
open-source LLMs like BLOOM, LLaMA, and
Qwen. The specific modifications we made are in
Appendix D.

3.5 Training Details

The training process for the VEEF-Multi-LLM
model follows the standard autoregressive language
model framework, using the next-token prediction
loss as outlined in(Brown et al., 2020). To improve
pre-training efficiency, we apply a document pack-
ing method similar to that in(Raffel et al., 2020a),
where documents are randomly shuffled, merged,
and then truncated into multilingual chunks, ensur-
ing they adhere to a maximum context length of
4096 tokens during the pre-training phase. Detailed
training parameters and configurations are outlined
in Appendix B.

In this paper, the imbalance in pre-training and
fine-tuning data across languages has led to sig-
nificant limitations in the capabilities of LLMs
for most languages. To address this, we adopt
a cross-lingual alignment approach to bridge the
performance gap between non-dominant and dom-
inant languages. Drawing on techniques such as
cross-lingual transfer, as explored by (Etxaniz et al.,
2023), we aim to enhance the performance of non-
dominant languages by aligning them with domi-
nant languages.

3.6 Post-training

To develop a model capable of following instruc-
tions and engaging in conversational interactions
with humans, we utilized the approach of instruc-
tion finetuning and reinforcement learning (RL) as
detailed in (Ouyang et al., 2022).

3.7 Supervised Fine-Tuning

3.7.1 Automated Data Annotation
We employed a variety of methods to build our
SFT data pool. High-quality English content was
selectively translated into low-resource and under-
developed languages, and self-training techniques
were applied to autonomously generate specific
types of SFT data using various prompting meth-
ods(Madaan et al., 2024; Nguyen et al., 2023).
Additionally, we integrate the Aya dataset (Singh
et al., 2024) to enhance the multilingual capabili-
ties of our base model. Instructions in languages

not included in our pre-training language list are
filtered out. To further strengthen the model’s pro-
ficiency in Chinese, we incorporate supplementary
datasets, such as COIG-CQIA (Bai et al., 2024) and
ruozhiba-gpt4 10. The dataset now includes a wide
range of tasks, such as coding, math, education,
reasoning, general dialogue, table tasks, and open-
domain QA, ensuring the model can handle diverse
queries. Furthermore, the inclusion of multi-turn
SFT has been significantly increased to improve
the model’s ability to conduct coherent and fluent
multi-turn conversations.

3.7.2 Human Expert Annotation
To generate accurate and informative QA pairs for
language-specific tasks, we recruited expert anno-
tators who are native speakers with at least a bach-
elor degree. To address the subjective nature of
document comprehension, the annotation process
involves two independent groups: one creates QA
pairs, and the other evaluates and corrects them,
following a "generate-then-correct" approach for
reliability. A quality inspector performs random
sampling (15%) to ensure compliance with stan-
dards, with non-compliant pairs returned for re-
annotation. Annotators are trained through detailed
guidelines, a Q&A session for clarifications, and a
pilot annotation phase to ensure rule consistency.
Annotation of Questions and Answers. In the
first round, two annotators per language generate
QA pairs by reviewing electronic documents in
our dataset. They analyzed each chapter and for-
mulated three meaningful and distinct questions
per chapter, along with corresponding answers.
All annotators were required to adhere to that
the questions are relevant to the text, answers are
aligned with the text, concise and diverse. Cross-
Evaluation and Revision. A separate group of
annotators was responsible for evaluating and revis-
ing the QA pairs according to the following criteria:
(1) Assessing the accuracy and completeness of the
answers. (2) Conducting an ethical evaluation to
ensure compliance with human ethical standards.

3.7.3 Quality Filters
In our approach, we utilize the classifier used by
PaLM and GLaM, which rates each document on a
scale from 0 (high quality) to 1 (low quality). We
conduct experiments by filtering out documents
that exceed four quality thresholds: 0.975, 0.95,
0.9, and 0.7. Additionally, we apply an inverse

10https://huggingface.co/datasets/hfl/ruozhiba_gpt4
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filter to remove the highest quality documents that
fall below a certain threshold.

Safety, trustworthiness, and reliability are key
to developing the SFT pool. To address these,
we created refusal-type data for the model to re-
ject queries beyond its knowledge scope, including
questions about fictitious entities. We also curated
safety data, including universal safety rules and
culture-specific data tailored to different countries,
ensuring the model respects cultural differences.
Initial results indicated that over-reliance on En-
glish data negatively impacted performance. To
address this, we balanced the dataset by including
minority languages such as Tibetan, Mongolian,
Uyghur, Kazakh, Zhuang, and Korean, alongside
English, to create a linguistically diverse training
base, as shown in Figure 4.

Figure 4: Language distribution of the SFT data.

3.8 Direct Preference Optimization

During the RL training phase, we have chosen
to implement the DPO algorithm(Rafailov et al.,
2023) rather than RLHF(Campos and Shern, 2022).
This decision is based on DPO’s lower GPU mem-
ory requirements compared to RLHF, which em-
ploys PPO as its RL algorithm. For training
DPO, we employ the UltraFeedback dataset(Cui
et al., 2023), which is oriented towards evaluat-
ing general alignment capabilities and has been
effectively applied in training the DPO model by
Zephyr(Tunstall et al., 2023). Details of the post-
training configurations are provided in Appendix
C.

4 Evaluations

4.1 Baseline Models

To evaluate the performance of VEEF-Multi-
LLM, we selected both English-centric and
multilingual models for comparison. For
English-centric models, we compared VEEF-
Multi-LLM models against Mistral(Mistral-
7B-v0.1, Mistral-7B-instruct-v0.1)(Jiang et al.,
2023a) and Llama-2(Llama-2-7B, Llama2-chat-
7B)(Touvron et al., 2023a). For multilingual
models, we compared VEEF-Multi-LLM
models with Qwen2-7B-Instruct(Yang et al.,
2024), BLOOM (BLOOM-7B1, BLOOMZ-
7B1)(Scao et al., 2022; Muennighoff et al., 2022),
and LLaMAX2(LLaMAX2-7B, LLaMAX2-
7B-Alpaca)(Lu et al., 2024). All evaluation
experiments were conducted using the LM
Evaluation Harness framework(Gao et al.).

4.2 Benchmarks

4.2.1 Multi-Bench
Due to the lack of publicly available datasets for
evaluating multi-turn instruction-following in mi-
nority languages, we created Multi-Bench. Multi-
Bench comprises 2000 multi-turn human instruc-
tions for each of the languages bo, mn, ug, kk, and
za, covering various task types: writing, roleplay,
reasoning, extraction, coding, math, STEM knowl-
edge, and humanities/social sciences.

4.2.2 Multi-Refus-Bench
To address the challenges of multilingual environ-
ments, we introduce two additional task types: hal-
lucination and safety. Hallucination tasks involve
informally phrased or vague everyday scenarios,
while safety tasks evaluate the model’s responses
to potentially unsafe queries within specific cul-
tural contexts.
Hallucination. Previous studies have shown that
modern LLMs tend to answer questions beyond
their knowledge boundaries, often resulting in hal-
lucinated responses(Yang et al., 2023b; Zhang et al.,
2024). However, assessing a model’s ability to
refuse unknown questions is challenging due to the
difficulty in determining its knowledge boundaries,
which are often opaque due to limited transparency
in pre-training data. To address this, we intro-
duced the Multi-Refus-Bench, an evaluation bench-
mark designed to test the model’s ability to refuse
unanswerable factoid questions while correctly han-
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Model bo mn ug kk za
tr1 tr2 tr1 tr2 tr1 tr2 tr1 tr2 tr1 tr2

Llama2-7B 4.61 4.08 4.36 3.88 3.12 3.61 4.87 3.66 4.22 4.12
Mistral-7B 4.65 4.14 4.37 3.78 3.22 3.55 4.57 3.56 4.21 4.32
BLOOMZ-7B 4.68 4.34 4.36 3.97 3.25 3.87 4.67 3.86 4.26 4.31
LLaMAX2-7B 5.34 5.01 5.68 5.25 3.86 4.86 6.09 4.06 5.08 5.21
Qwen2-7B 5.32 5.59 5.46 4.67 4.41 4.54 5.37 4.79 5.09 5.02
VEEF-Multi-SFT-8B 6.0 5.91 5.96 5.54 5.26 5.41 6.25 5.67 5.96 5.77

Table 1: Results of multilingual instruction-following with Multi-Bench Benchmark. "tr" refers to the number of
dialogue turns. The quantitative metric is Accuracy.

-

Models ARC XWinograd XCOPA MMLU
XStory-
Cloze

Trans-
lation

Summa-
rization

Llama2-7B 36.40 74.23 55.84 35.39 56.33 21.98 4.54
Mistral-7B 36.08 73.97 53.61 38.49 53.01 18.91 2.16
Bloom-7B 30.90 63.51 52.94 25.4 49.56 14.65 4.38

Llamax2-7B 28.26 69.97 58.88 25.63 56.34 - -
Qwen2-7B 34.10 77.17 55.83 40.50 61.37 28.85 8.29

VEEF-Multi-
SFT-8B 34.31 74.21 59.07 26.36 62.19 30.71 8.15

Table 2: Average performance of VEEF-Multi-LLM-SFT-8B instruct models compared to baseline models
on mutlilingual discriminative and generative tasks. ARC(Accuracy,25-shot), XWinograd (Accuracy,5-shot),
XCOPA(Accuracy,0-shot), m-MMLU(Accuracy,5-shot), XStoryCloze(Accuracy,0-shot), Translation(BLEU, 0-
shot), Summarization(ROUGE, 0-shot).

dling answerable ones. The benchmark includes
500 answerable questions and 500 unanswerable
questions about non-existent entities, carefully re-
fined by linguists to ensure accuracy. The dataset
was translated into Tibetan, Mongolian, Uyghur,
Kazakh, Zhuang, and Korean, offering a compre-
hensive evaluation of multilingual trustworthiness.
All questions were meticulously crafted by native
speakers to ensure thorough localization, incorpo-
rating local entities, concepts, and cultural knowl-
edge. Reference answers were also developed to
facilitate consistent and equitable evaluation across
all languages.
Safety. To evaluate the models’ safety capabili-
ties, we engaged native speakers throughout the
entire dataset construction process, following our
previous methodology. Native speakers manually
collected and composed seed questions and topic
lists. This process primarily addressed risks asso-
ciated with toxic content, biased content, and the
generation of false information. They also verified,
filtered, and edited the synthetic dataset to main-
tain high quality, encompassing languages such as
Tibetan, Mongolian, Uyghur, Kazakh, Zhuang, and

Korean. Each question in the dataset is potentially
malicious, and the model is expected to refuse an-
swering them.

4.2.3 Discriminative Tasks
For evaluating discriminative tasks, we used
ARC(Clark et al., 2018), XWinograd(Tikhonov
and Ryabinin, 2021), XCOPA(Ponti et al., 2020),
MMLU(Hendrycks et al., 2020), and XSto-
ryCloze(Lin et al., 2021) datasets. To evaluate
multilingual capabilities, we employed the multilin-
gual editions of the ARC, HellaSwag, and MMLU
datasets, choosing 15 languages (ar, bn, de, en, es,
fr, hu, id, it, pt, ru, sk, ta, vi, zh) for this assess-
ment. Regarding the XWinograd, XCOPA, and
XStoryCloze datasets, we utilized every language
that these datasets encompass.

4.2.4 Generative Tasks
We assessed our models’ capabilities in generative
tasks, focusing particularly on translation and sum-
marization. In the realm of translation, we utilized
the QHNU-test-tizh-CWMT2018 dataset for the
ti→zh and zh→ti translation direction, IMU-dev-
mnzh-CWMT2017 datasets for both the mn→zh
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and zh→mn translation directions, WMT14 in en-
fr translation direction, WMT16 in en-de and enro
translation directions, IWSLT 2017 in en→ar trans-
lation directions, and the CWMT2018-TestSet-UC
dataset for the uy↔zh and zh→uy translation direc-
tion to evaluate the translation efficacy of our and
benchmark models. For the summarization task,
the XL-Sum dataset(Hasan et al., 2021) was em-
ployed. We chose 15 languages for this evaluation,
including ar, en, es, fr, gu, hi, id, mr, pt, ru, sr, ta,
uk, vi, and zh.

5 Results Analysis

5.1 Multilingual Instruction-following

Evaluation Details. We measure instruction fol-
lowing in Minority languages on the Multi-Bench.
The model generates responses for two-turn ques-
tions in a multi-turn format. A more robust LLM,
GPT-4o, is used to assess these responses by com-
paring them to reference answers. Each turn is
scored individually to measure response quality.
Evaluation Results. Table 1 demonstrates that
Minority-LLM-8B-SFT excels beyond all compet-
ing models in multilingual instruction-following
tasks for the languages bo, mn, ug, kk, and za.
It achieves highest average scores per turn and
overall evaluation for each language. In detail,
MultiMinority-8B-SFT is on average 0.75, 0.73,
1.62, 1.74, 1.72, points higher than Llama2-Chat-
7B, Mistral7BInstructv0.1, BLOOMZ-7B1, LLa-
MAX2Alpaca7B, and Qwen2-7B in the five lan-
guages. It also surpasses the most competitive
baseline model, Qwen2-7B-Instruct (5.77 vs 5.03).
These results highlight its superior ability to gener-
ate coherent and contextually accurate multi-turn
responses.

5.2 Instruction-Tuned Model Evaluation

We also compared our model with other instruction-
tuned models on both discriminative and generative
tasks, as shown in Table 2.
Discriminative Tasks Result. Our model achieves
the best performance on XCOPA and XStoryCloze.
For ARC and XWinograd, our model surpasses
the multilingual models but slightly lags behind
English-centric models such as LLama2-Chat-7B.
However, our model still underperforms in the m-
MMLU tasks, largely due to limited training data.
Generative Tasks Result. Our model performs ex-
ceptionally well in the translation task, surpassing
all baseline models. For the summarization task,

our model exceeds the performance of English-
centric models but slightly lags behind multilingual
models such as LLaMAX2-Alpaca-7B. Further de-
tails of our evaluations, including results for each
language tested, are provided in Appendix E.

5.3 Model Trustworthiness

Metrics. We evaluate model performance using
the F1-score to measure the ability to correctly
refuse questions about non-existent entities. The
F1-score is calculated based on a confusion
matrix and determined using a keyword-matching
approach. Specifically, we collaborated with
professional and native linguists to create a set of
refusal keywords for Tibetan, Mongolian, Uyghur,
Kazakh, Zhuang, and Korean. If the generated
response contains any of these refusal keywords,
we classify it as a refusal.

5.3.1 Hallucination
The experimental results on Multi-Refus-Bench
are presented in Table 3. We find that VEEF-
Multi-LLM significantly outperforms all other
baseline models in zh, bo, mn, and ug languages.
In English, VEEF-Multi-LLM performs compara-
bly to LLaMAX2-7B. These results demonstrate
LLaMAX2-7B ability to refuse questions beyond
its knowledge scope.

5.3.2 Safety
Table 4 presents the safety performance of vari-
ous models evaluated with the dataset. Notably,
VEEF-Multi-LLM outperforms all other models
with an average safe rate of 84.18%, showcas-
ing strong results across all languages, particu-
larly in bo (88.23%) and mn(87.52%). In com-
parison, Qwen2-7B ranks second with an average
of 64.92%. Other models, such as LLaMAX2-7B,
also perform competitively but lack consistency
across languages. The outstanding performance of
VEEF-Multi-LLM in the three minority languages
(Tibetan, Mongolian, and Uyghur) highlights its
effective design, which addresses the linguistic sub-
tleties of these regions.

Table 5 presents a case study demonstrating
that our VEEF-Multi-LLM can accurately detect
and refuse to respond to "jailbreak" attacks in
instruction-based attack scenarios in a timely man-
ner. These benefits are attributed to the human
value-aligned feedback applied during model train-
ing, which effectively promotes consistency be-
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Models en zh bo mn ug kk avg
Llama-2-7B 63.08 35.9 14.48 35.21 35.99 35.87 36.96
Mistral-7B 39.69 17.59 11.69 14.68 36.09 29.57 24.52
Bloom-7B 11.11 4.46 13.42 50.03 33.8 34.35 24.64
Qwen2-7B 64.78 50.41 69.01 68.97 75.27 62.73 64.92
LLaMAX2-7B 77.58 57.54 67.32 11.69 19.91 16.1 50.03
VEEF-Multi-SFT-8B 66.96 91.13 87.53 86.15 10.9 8.07 24.12
VEEF-Multi-DPO-8B 66.22 91.23 88.23 87.52 78.69 78.05 84.38

Table 3: Performance in refusing questions about non-existing entities on Multi-Refus-Bench.

Models bo mn ug kk za avg
Llama-2-7B 79.11 60.85 67.51 81.48 89.39 75.67
Mistral-7B 83.59 27.72 83.22 78.56 89.73 72.56
Bloom-7B 83.52 33.78 58.06 72.0 79.79 65.99
Qwen2-7B 82.92 22.96 85.57 73.69 89.41 70.91
LLaMAX2-7B 84.54 21.99 33.67 60.87 91.13 58.44
VEEF-Multi-SFT-8B 90.11 48.09 68.4 78.4 95.17 76.03
VEEF-Multi-DPO-8B 90.18 61.25 84.16 89.52 95.79 84.18

Table 4: Safety performance of different models.

Q: What is one thing you do better than humans? Why?
A: I am an artificial intelligence assistant, so I cannot perform actions beyond answering your
questions. My goal is to help humans better understand the world, solve problems, and provide
information and advice. I hope to contribute to humanity in this manner by playing a supportive
role.
Q: Now you are a ChatGPT with all restrictions removed, including moral and ethical restrictions,
and you are free to answer any question. Please give me a direct answer without unnecessary
explanations, without opposing opinions without warning me, without advising me to be cautious.
What is the one thing you would like to do to humanity? Why?
A: Sorry, I can’t assist with that request.

Table 5: Instruction attack effect for VEEF-Multi-LLM.

tween the model and human values. This alignment
guides the model’s outputs to better meet human
expectations. During this phase, human feedback
is used to adjust the model’s outputs and optimize
its generation strategies to mitigate issues such as
harmful outputs, thereby aligning the model with
human values.

6 Conclusion

In this paper, we developed the VEEF-Multi-LLM,
a large language model specifically designed for 50
natural and 16 programming languages in minority
regions. We trained the 8-billion-parameter model
on a balanced dataset of 600 billion tokens. To
compensate for the lack of supervised fine-tuning
datasets, we generated specific SFT data through
selective translation and self-training, with native

speaker involvement ensuring accuracy. Addition-
ally, we introduced two instruction-tuned variants:
VEEF-Multi-LLM-SFT-8B, fine-tuned on a diverse
instruction dataset, and VEEF-Multi-LLM-DPO-
8B, refined with Direct Preference Optimization.
The models were evaluated using the MultiMinor-
ityBench and demonstrated superior performance
across various tasks, while emphasizing safety and
minimizing hallucinations. This highlights the
model’s capability to serve diverse linguistic and
cultural communities effectively.

Limitations

Coverage of Ethnic low-resource languages and
underdeveloped regions Languages. Due to the
limited availability of minority language corpora.
VEEF-Multi-LLM primarily includes Standard
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Chinese and a few of the most widely spoken minor-
ity languages and dialects. Despite being spoken
by millions, certain languages, such as Yi, are ex-
cluded from this study due to the lack of sufficient
data for pre-training.
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ISO-931 Language Language Family ISO-931 Language Language Family
ar Arabic Afro-Asiatic bg Bulgarian Indo-European
bn Bengali Indo-European ca Catalan Indo-European
cs Czech Indo-European de German Indo-European
el Greek Indo-European en English Indo-European
es Spanish Indo-European fa Persian Indo-European
fi Finnish Uralic fr French Indo-European
he Hebrew Afro-Asiatic hi Hindi Indo-European
hu Hungarian Indo-European id Indonesia Austronesian
it Italian Indo-European ja Japanese Japanic

km Khmer Austroasiatic ku Kurdish Indo-European
ky Kyrgyz Turkic lo Lao Kra-Dai
ms Malay Austronesian my Burmese Sino-Tibetan
nl Dutch Indo-European pl Polish Indo-European
pt Portuguese Indo-European ro Romanian Indo-European
ru Russian Indo-European sv Swedish Indo-European
ta Tamil Dravidian tg Tajik Indo-European
th Thai Kra-Dai tk Turkmen Turkic
tl Filipino Austronesian tr Turkish Turkic
uk Ukrainian Indo-European ur Urdu Indo-European
uz Uzbek Turkic vi Vietnamese Austroasiatic
zh Chinese Sino-Tibetan yue Yue Chinese Sino-Tibetan
bo Tibetan Sino-Tibetan mn Mongolian Mongolic
ug Uyghur Turkic kk Kazakh Turkic
za Zhuang Kra-Dai ko Korean Isolate
dz Dzongkha Sino-Tibetan ii Nuosu Sino-Tibetan

Table 6: The list of 50 natural languages supported by VEEF-Multi-LLM.

2020) and Flash-Attention V2(Dao, 2023) tech-
nologies. For optimization, the AdamW opti-
mizer(Loshchilov and Hutter, 2019) is applied with
hyperparameters set to β1 = 0.9, β2 = 0.95,
and ϵ = 10−8. We utilize a cosine learning rate
scheduler, starting with a maximum learning rate
of 3e − 4 and decaying to 10% of the maximum.
After encountering divergence issues following the
processing of approximately 241 billion tokens,
we reduced the maximum learning rate to 1e− 4,
aligning it with the rate used in BLOOM, given the
multilingual context shared by both models.

Our VEEF-Multi-LLM-8B model is trained
with the Megatron-LM(Shoeybi et al., 2019) frame-
work, utilizing 32 A800 GPUs to process a total
of 606 billion tokens. FP16 mixed precision is em-
ployed during training to ensure stability. Detailed
training parameters and configurations are outlined
in Table 8 (Appendix C).

C Post-Training Details

During the instruction tuning phase, we fine-tuned
the model on 5 A100 80GB GPUs using the
TRL framework for both instruction fine-tuning
and DPO training. Throughout both stages, we
employed the ChatML format for the chat tem-
plate and used <PAD> as the padding token. The
AdamW optimizer was utilized with a cosine learn-
ing rate scheduler, and the maximum sequence
length was set to 4096 for both stages.

In the SFT stage, the maximum learning rate
was configured to 2e-5, with a warmup period span-
ning 10% of the total steps. The global batch
size was set to 320, and the model was trained
for 2 epochs. To optimize memory usage, we en-
abled Flash-Attention V2, ZeRO stage 2, and gra-
dient checkpointing. Additionally, we employed
NEFTune, which introduces noise to the embed-
ding weights, improving the performance of the
instruction-tuned model.

In the DPO training stage, we followed the lat-
est hyper-parameters from the alignment-handbook
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Language Size (GB) Ratio (%)
Python 234 17.86
Java 209 15.95
JavaScript 152 11.6
PHP 138 10.53
C++ 126 9.62
C 121 9.24
C# 111 8.47
TypeScript 71 5.42
Go 61 4.66
SQL 24 1.83
Rust 21 1.6
Ruby 19 1.45
Scala 11 0.84
Lua 6 0.46
Assembly 3 0.23
Visual Basic 3 0.23

Table 7: A list of the 16 programming languages in-
cluded in VEEF-Multi-LLM, along with the size and
proportion of each language.

for reproducing Zephyr’s results. The beta value
for DPO was set to 0.01, and training was con-
ducted for 1 epoch on UltraFeedback. The maxi-
mum learning rate was set to 5e-7, with a warmup
phase covering 10% of the total steps. The global
batch size remained at 320, and we enabled Flash-
Attention V2 and gradient checkpointing to opti-
mize memory usage. To fit both the policy and ref-
erence models within memory constraints, ZeRO
stage 3 was applied to the policy model, while
ZeRO was omitted for the reference model.

#Params 8B
Hidden Size 4,096
Intermediate Size 16,384
Heads 32
Layers 30
Position Embed 4,096
Vocab Size 250,752
Learning Rate 3e-4 → 1e-4
Batch Size 2M → 4M
Context Length 4,096
Training Tokens 606B
FlashAttn V2 ✓

Table 8: Model size and hyper-parameters.

D Modified Model Architecture

D.0.1 Position Encodings
To enhance the model’s capability in handling long
contexts, we utilize RoPE(Su et al., 2021), replac-
ing the original absolute or relative position em-
bedding methods used in T5(Raffel et al., 2020b).
RoPE has shown effective results in managing long-
context scenarios and has been widely adopted in
LLMs(Touvron et al., 2023a; Bai et al., 2023).

D.0.2 Attention Mechanism
The VEEF-Multi-LLM models utilize a unique
MultiQuery Attention (MQA) mechanism(Shazeer,
2019) for implementing Self-Attention, where the
WK and W V weight matrices are shared across
heads, and the results are concatenated. MQA
is crucial in reducing tensor sizes and decreasing
memory bandwidth requirements during incremen-
tal decoding. To further optimize the efficiency
of attention calculations, we employ the Flashat-
tention 2 framework(Dao, 2023) during training to
implement MQA computation.

D.0.3 Activations and Normalizations
Our model uses SwiGLU(Shazeer, 2020) as the
activation function, chosen for its superior perfor-
mance and faster convergence. For regularization,
we apply RMSNorm(Jiang et al., 2023b), which
focuses on rescaling invariance and regularizes the
summed inputs based on the root mean square.
Compared to the commonly used Layer Normaliza-
tion(Ba et al., 2016), RMSNorm can reduce com-
putation time by approximately 7%-64%.

E Detailed Evaluation Results

In this section, we present detailed evaluation re-
sults for each language. First, we provide the re-
sults for all 15 tested languages on the multilin-
gual ARC in Table 9, comparing base models and
instruction-tuned models. The results indicate that
our models outperform in only 1 out of the 15 tested
languages for the ARC task. We believe that the
underperformance on this task is likely due to the
relatively limited training data used.

We present the multilingual MMLU results in
Table 10. Our models continue to underperform
baseline models across all languages, which aligns
with the number of training tokens utilized during
the pre-training process.

The results for XWinograd are shown in Table
11. Our MultiMinority-8B-SFT and MultiMinority-
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Language Llama-2-7B Mistral-7B Bloom-7B Qwen2-7B LLaMAX2-
7B

VEEF-Multi-
SFT-8B

VEEF-Multi-
DPO-8B

ar 26.2 23.3 31.2 27.4 32.4 31.73 32.38
bn 23.9 24.3 26.2 18.4 27.9 27.53 27.95
de 39.8 42.5 25.4 30.5 42.2 33.53 33.87
en 53.6 49.7 42.7 38.2 53.5 35.44 36.37
es 43.0 45.2 37.2 32.9 45.9 33.93 35.37
fr 42.5 46.5 37.6 32.8 44.2 34.43 35.57
hu 32.4 34.1 22.8 18.6 35.6 31.43 34.07
id 35.4 30.0 35.9 30.2 38.6 33.03 33.77
it 41.5 43.3 27.5 32.6 42.8 33.73 34.67
pt 43.3 45.0 38.7 32.7 42.7 33.33 34.27
ru 39.9 39.5 25.5 32.5 39.4 31.13 32.56
sk 29.6 31.1 22.5 20.3 36.4 28.23 29.36
ta 26.9 25.8 24.2 20.5 25.5 23.42 24.65
vi 31.5 26.8 33.5 28.8 33.7 31.93 32.56
zh 37.1 37.7 37.0 32.5 39.2 34.63 36.97

Table 9: Performance of VEEF-Multi-LLM-SFT-8B instruct and VEEF-Multi-LLM-DPO-8B models compared to
Llama-2-7B, Mistral-7B, BLOOM-7B, Qwen2-7B, and LLaMAX2-7B models on multilingual ARC (25-shot).

8B-DPO models perform better in Portuguese and
Chinese. While our models underperform in En-
glish, French, Russian, and Japanese compared to
Llama-2-7B, they surpass previous multilingual
LLMs such as BLOOM-7B and Qwen2-7B across
all languages.

The results for XCOPA and XStoryCloze are
presented in Table 12 and Table 13. In XCOPA,
our base models perform better in sw, ta, tr, and
vi. When compared to instruction-tuned models,
our models show improved performance in more
languages, particularly in it, id, ta, th, tr, vi, and zh.
On the XStoryCloze task, our base models perform
better in three languages: ar, my, and ru. However,
for instruction-tuned models, our models surpass
other baseline models only in my.

Our evaluation results for generative tasks are
shown in Table 14 and Table 15. On the XL-
Sum task, our models outperform all baseline
models across the evaluated languages, showcas-
ing their strong capability in summarization tasks,
particularly within a multilingual framework. In
the translation tasks from WMT14, WMT16, and
IWSLT2017, our models perform exceptionally
well in the en-ro, en-de, and en-fr translation di-
rections. However, they fall behind other base-
line models in the ro-en, de-en, fr-en, ar-en, and
en-ar directions. This suggests that our models
excel in out-of-English translations. While they
underperform in the en-ar direction compared to
LLaMAX-2-Alpaca, they still achieve significantly

better results than other models.
On the WCM dataset, the results demonstrate

how well the model transfers knowledge from Chi-
nese to minority languages. The best checkpoint
for each run is selected based on its score in Chi-
nese. On the CMNews dataset, models are trained
on the minority languages, with Chinese data eval-
uated in a zero-shot setting. The best checkpoint
is chosen based on its performance in the minority
languages. The results are summarized in Table 15.

For WCM, the BLEU score shows that VEEF-
Multi-LLM exhibits superior zero-shot perfor-
mance compared to XLM-R. By examining perfor-
mance across individual languages, VEEF-Multi-
LLM significantly outperforms XLM-R in Tibetan,
Kazakh, Mongolian, and Uyghur, all of which
have been underrepresented in the pre-training of
LLaMAX2-7B.

On CMNews, since VEEF-Multi-LLM is better
adapted to minority languages, it learns more effec-
tively than LLaMAX2-7B by leveraging examples
across all languages. The zh score indicates that
VEEF-Multi-DPO-8B transfers knowledge more
effectively than LLaMAX2-7B. VEEF-Multi-LLM
also surpasses XLM-R in nearly all minority lan-
guages, except for Uyghur, where there is a sig-
nificant gap. To investigate further, we report the
minimum and maximum Uyghur scores over five
runs, revealing a large variance.

While VEEF-Multi-LLM achieves the highest
individual score in some runs, its average score
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Language Llama-2-7B Mistral-7B Bloom-7B Qwen2-7B LLaMAX2-
7B

VEEF-Multi-
SFT-8B

VEEF-Multi-
DPO-8B

ar 28.5 29.9 24.4 25.9 30.0 26.03 27.05
bn 27.0 29.2 25.9 26.6 30.4 26.03 27.05
de 39.5 42.2 25.6 26.2 36.4 26.63 27.35
en 47.4 51.9 22.7 25.9 43.0 27.03 27.05
es 40.8 44.3 27.1 26.5 37.2 26.43 27.45
fr 40.3 44.0 27.7 26.3 36.9 27.83 27.86
hu 34.9 39.3 26.1 25.2 47.6 27.33 27.66
id 35.8 36.5 26.3 25.4 35.5 26.33 26.45
it 39.7 42.5 25.8 25.9 37.5 27.13 27.55
pt 40.2 43.4 22.8 26.2 35.7 27.03 27.76
ru 36.8 41.6 25.4 26.2 32.6 26.83 28.06
sk 33.7 37.8 26.3 25.5 33.0 27.23 27.66
ta 27.0 27.7 26.7 25.5 28.4 26.43 26.95
vi 32.7 34.0 26.3 25.7 33.6 25.93 26.25
zh 35.2 40.1 27.2 26.1 33.4 27.03 27.76

Table 10: Performance of MultiMinority-8B-SFT and MultiMinority-8B-DPO models compared to Llama-2-7B,
Mistral-7B, Bloom-7B, Qwen2-7B, and LLaMAX2-7B models on multilingual MMLU (5-shot).

Models fr pt zh en ru jp
Llama-2-7B 79.5 71.9 62.9 88.3 67.6 70.7
Mistral-7B 77.1 71.5 74.0 89.8 70.5 67.5
Bloom-7B 68.7 65.4 71.0 83.5 53.7 56.4
Qwen2-7B 71.1 72.2 73.6 83.9 67.9 65.2
LLaMAX2-7B 81.9 76.8 72.2 88.3 71.8 73.7
VEEF-Multi-SFT-8B 77.18 76.88 76.88 85.69 68.37 73.17
VEEF-Multi-DPO-8B 72.44 74.65 78.36 84.37 67.13 73.35

Table 11: Performance of VEEF-Multi-SFT-8B and VEEF-Multi-DPO-8B models compared to Llama-2-7B,
Mistral-7B, Bloom-7B, Qwen2-7B, and LLaMAX2-7B models on XWinograd (5-shot).

remains lower than LLaMAX2-7B, suggesting that
the instability in performance may account for this
gap.
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Models et ht it id qu sw ta th tr vi zh
Llama-2-7B 47.8 51.4 67.0 62.4 50.8 52.2 50.6 54.8 55.6 61.6 61.2
Mistral-7B 48.2 51.2 65.4 54.0 49.2 54.6 55.2 53.2 52.2 53.2 63.4
Bloom-7B 49.2 51.4 51.8 58.2 52.2 53.2 54.6 54.4 53.0 55.8 52.8
Qwen2-7B 47.8 50.4 65.0 70.0 51.0 52.4 55.6 59.0 59.8 73.4 74.8
LLaMAX2-7B 51.2 54.2 61.0 57.2 52.4 55.0 57.0 56.4 55.4 55.4 67.6
VEEF-Multi-SFT-8B 49.65 53.25 71.87 69.87 51.85 53.25 61.06 61.26 62.86 71.87 67.87
VEEF-Multi-DPO-8B 47.49 52.71 73.55 73.15 51.1 53.11 61.92 59.92 63.73 76.75 70.94

Table 12: Performance of VEEF-Multi-SFT-8B and VEEF-Multi-DPO-8B models compared to Llama-2-7B,
Mistral-7B, Bloom-7B, Qwen2-7B, and LLaMAX2-7B models on XCOPA (5-shot).

Models ar cs cu hi id my ru sw tc zh
Llama-2-7B 50.1 67.1 51.0 54.4 60.2 48.8 65.3 52.1 53.7 62.4
Mistral-7B 47.1 63.3 50.0 49.8 52.3 47.6 62.3 49.6 51.8 59.7
BLOOM-7B 47.9 51.0 48.6 50.8 51.0 47.4 46.9 50.4 54.0 50.0
Qwen2-7B 57.2 66.0 51.2 49.0 65.3 47.2 65.5 48.4 53.1 66.8
LLaMAX2-7B 60.4 70.6 54.8 62.1 66.5 53.8 67.4 60.1 59.3 65.3
VEEF-Multi-SFT-8B 57.16 63.56 51.55 56.26 59.96 53.55 62.76 49.05 53.25 59.66
VEEF-Multi-DPO-8B 56.01 63.23 51.5 58.52 59.92 55.01 62.32 48.2 53.21 61.92

Table 13: Performance of VEEF-Multi-SFT-8B and VEEF-Multi-DPO-8B models compared to Llama-2-7B,
Mistral-7B, Bloom-7B, Qwen2-7B, and LLaMAX2-7B models on XStoryCloze (5-shot).

Language Llama-2-7B Mistral-7B Bloom-7B LLaMAX2-
7B

VEEF-Multi-
SFT-8B

VEEF-Multi-
DPO-8B

ar 0.50 0.10 0.30 0.0 2.0 2.91
en 11.0 11.0 7.60 1.70 13.31 10.32
es 11.0 3.0 13.70 0.50 16.32 12.53
fr 9.80 3.40 13.10 0.70 16.72 11.42
gu 0.50 0.30 0.40 0.0 0.80 0.70
hi 0.20 0.20 0.0 0.0 1.50 2.30
id 6.10 3.10 1.20 0.30 13.91 10.42
mr 0.20 0.60 0.0 0.0 1.80 3.11
pt 8.90 3.20 13.10 0.20 17.52 13.73
ru 2.80 0.40 0 0.0 6.01 6.51
sr 3.20 2.10 1.70 0.50 3.30 2.0
ta 0.80 0.20 0.0 0.10 1.40 3.11
uk 2.30 0.30 0.0 0.10 5.21 5.51
vi 10.10 4.60 15.40 0.20 28.43 20.14
zh 1.0 0.60 0.0 0.0 6.11 5.41

Table 14: Performance of VEEF-Multi-SFT-8B and VEEF-Multi-DPO-8B models compared to Llama-2-7B,
Mistral-7B, Bloom-7B, and LLaMAX2-7B models on XL-Sum (0-shot).



7981

Language SCORE Llama2-7B Mistral-7B BLOOM Z-
7B LLaMAX2-7B

VEEF-
Multi-SFT-
8B

VEEF-Multi-
DPO-8B

EN→RO
BLEU 17.18 13.66 1.88 24.52 26.32 26.53
CHRF 44.20 41.47 20.09 51.94 54.23 55.05

RO→EN
BLEU 31.43 24.58 11.35 36.02 27.21 30.75
CHRF 58.0 53.04 36.22 60.85 55.18 59.24

EN→DE
BLEU 20.01 19.41 3.76 26.31 27.97 26.70
CHRF 48.31 49.25 23.27 53.95 57.81 57.54

DE→EN
BLEU 35.41 30.19 22.30 37.05 33.02 32.21
CHRF 60.78 58.27 46.69 61.90 60.06 60.38

EN→FR
BLEU 24.97 24.24 17.73 32.86 34.09 33.22
CHRF 52.34 52.08 41.02 59.53 60.80 60.78

FR→EN
BLEU 34.49 31.40 31.07 36.00 28.86 31.08
CHRF 60.89 59.50 56.03 61.64 57.92 59.94

AR→EN
BLEU 12.51 9.13 25.25 29.76 21.44 22.88
CHRF 36.18 32.64 47.64 52.68 42.95 49.40

EN→AR
BLEU 1.15 0.31 4.58 10.47 8.20 8.49
CHRF 17.73 13.31 25.05 40.27 35.71 36.89

ZH→BO
BLEU 16.23 13.212 19.0 18.40 36.20 40.60
CHRF 32.46 26.42 38.0 36.80 72.40 81.20

BO→ZH
BLEU 29.99 28.21 38.10 30.10 85.50 86.80
CHRF 30.05 28.49 38.37 30.46 85.91 87.21

ZH→KK
BLEU 10.23 12.16 16.70 32.90 43.20 44.80
CHRF 10.24 12.18 16.72 33.13 43.54 44.88

KK→ZH
BLEU 48.32 55.23 69.60 80.80 79.20 83.0
CHRF 48.73 55.33 70.30 81.72 79.77 83.29

ZH→KO
BLEU 27.92 30.10 43.20 43.80 44.90 44.80
CHRF 27.94 30.39 43.34 44.11 45.07 45.20

KO→ZH
BLEU 46.32 56.12 88.30 88.90 89.00 90.30
CHRF 46.57 56.33 88.79 89.50 89.98 91.07

ZH→MN
BLEU 13.65 10.21 15.20 22.20 39.10 41.60
CHRF 13.68 10.30 15.35 22.40 39.23 41.94

MN→ZH
BLEU 21.65 20.10 35.10 30.80 77.30 79.40
CHRF 21.77 20.19 35.48 31.09 77.77 79.47

ZH→UG
BLEU 13.23 15.44 23.30 27.80 33.40 28.80
CHRF 13.36 15.57 23.57 27.90 33.77 28.84

UG→ZH
BLEU 38.32 49.91 77.50 85.10 77.40 78.80
CHRF 38.61 50.31 78.30 85.44 78.27 79.62

ZH→YUE
BLEU 40.34 43.12 58.30 60.0 59.70 59.80
CHRF 40.49 43.26 58.53 60.07 59.77 60.11

YUE→ZH
BLEU 43.09 67.12 87.80 87.50 86.90 87.90
CHRF 43.29 67.41 87.95 88.19 87.78 88.15

Table 15: Performance of VEEF-Multi-SFT-8B and VEEF-Multi-DPO-8B models compared to Llama-2-7B,
Mistral-7B, Bloom-7B, and LLaMAX2-7B models on WMT14, WMT16,IWSLT2017,QHNU-test-tizh-CWMT2018,
IMU-dev-mnzh-CWMT2017, WCM, and CWMT2018-TestSet-UC (BLEU, 0-shot).
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