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Abstract

Evaluating the graph comprehension and rea-
soning abilities of Large Language Models
(LLMs) is challenging and often incomplete.
Existing benchmarks focus primarily on pure
graph understanding, lacking a comprehensive
evaluation across all graph types and detailed
capability definitions. This paper presents Gra-
CoRe, a benchmark for systematically assess-
ing LLMs’ graph comprehension and reason-
ing. GraCoRe uses a three-tier hierarchical
taxonomy to categorize and test models on
pure graph and heterogeneous graphs, subdi-
viding capabilities into 10 distinct areas tested
through 19 tasks. Our benchmark includes 11
datasets with 5,140 graphs of varying complex-
ity. We evaluate four closed-source and eight
open-source LLMs, conducting thorough anal-
yses from both ability and task perspectives.
Key findings reveal that OpenAI o1 model has
amazing comprehension and reasoning capa-
bilities, semantic enrichment enhances reason-
ing performance, node ordering impacts task
success, and the ability to process longer texts
does not necessarily improve graph comprehen-
sion or reasoning.GraCoRe is open-sourced at
https://github.com/ZIKEYUAN/GraCoRe.

1 Introduction

Graph understanding and complex reasoning are
crucial capabilities of Large Language Models
(LLMs), supporting applications in areas like social
network analysis, drug discovery, recommendation
systems, and spatiotemporal prediction (Brown
et al., 2020). These abilities are particularly im-
portant for advancing Artificial General Intelli-
gence (AGI) (Zhao et al., 2023). Graph-structured
data mainly consists of homogeneous and hetero-
geneous graphs. Research on homogeneous graphs
often addresses specific structural issues, such as
protein-protein interaction prediction (Rao et al.,

* B. Qin and H. Wang are corresponding authors.

Graph Understanding

Graph Reasoning

This is a undirected graph with the 
following edges:
From node 0 to node 1, distance is 3
From node 0 to node 2, distance is 6
... ...
From node 4 to node 5, distance is 9
From node 6 to node 7, distance is 10

Q: How many nodes in this graph? 
A: ——————

Given a heterogeneous graph about 
internet movie, there are three types of 
nodes, namely:... between different nodes 
include:... The edges of these relationships 
are: ... where the 0-th node is the central 
node that represents a moive with the 
following information:...

Q: Please tell me which actors participated 
in this movie(0-th node).
A: ——————

This is a undirected graph with the 
following edges:
From node 0 to node 1, distance is 3
... ...
From node 6 to node 7, distance is 10

Q: Implement the Breadth-First Search 
(BFS) algorithm to traverse the graph 
and return the list of nodes traversed in 
the order they are visited. 
A: ——————

Given a heterogeneous academic network 
graph about computer science collected 
from... between different nodes include:... 
where the 0-th node is the central node that 
represents a paper with the following 
information:...
Q: Which of the following areas of computer 
science does this paper belong to: 
Database, Wireless Communication, or 
Data Mining?
A: ——————

Figure 1: GraCoRe encompasses two overarching abil-
ities and 19 distinct tasks within LLM on graph sce-
narios, facilitating a granular benchmarking from basic
perceptivity to advanced interactivity.

2014). Unlike homogeneous graphs, pure graphs
are simpler, lacking node and edge attributes, as
seen in graph-theoretic problems (Borgatti and
Everett, 2006). For heterogeneous graphs, tasks
leverage rich semantic information, like knowledge
graph reasoning. However, enabling LLMs to ef-
fectively parse, understand, and reason with graph-
structured data remains a significant challenge.

Firstly, the reasoning and comprehension abili-
ties of current LLMs degrade significantly when
processing complex graph-structured data with nu-
merous nodes and edges. This decline is partly due
to challenges in handling lengthy textual inputs
that describe such data. Long texts increase compu-
tational burden and introduce noise, reducing the
models’ ability to capture essential details. Sec-
ondly, textual descriptions often involve complex
entity relationships and abstract concepts, requiring
models to understand explicit information and infer
implicit connections. Current research primarily
focuses on direct mappings from graph structure
to answers (Wang et al., 2024), overlooking deeper
reasoning capabilities. The absence of clear defini-
tions and evaluation standards for graph reasoning
highlights the need for a comprehensive benchmark
to evaluate these abilities.

https://github.com/ZIKEYUAN/GraCoRe
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Previous research has introduced several bench-
marks to evaluate LLMs’ understanding and rea-
soning on graphs, but these benchmarks have no-
table limitations. Firstly, there is a limited gener-
alization issue: most benchmarks test either pure
or heterogeneous graphs separately, lacking a uni-
fied evaluation across both types. Additionally,
there is a lack of clear definition of model capa-
bilities: existing benchmarks are task-driven and
fail to assess LLMs’ specific abilities with graph
data. Therefore, more comprehensive, ability-
based benchmarks are needed to evaluate under-
standing and reasoning on graph-structured data.
Lastly, there is insufficient diversity in model
types and tasks: current benchmarks do not clearly
classify tasks or test a wide range of models.

To address these challenges, we propose the Gra-
CoRe benchmark, as shown in Figure 1, which
aims to explore and evaluate the understanding and
reasoning capabilities of mainstream LLMs. We
have designed a three-tier hierarchical ability
taxonomy that includes both capability-based and
dataset-based categories. This taxonomy metic-
ulously defines the model’s capabilities and en-
sures greater generalization in the testing range.
Regarding model types and task divisions, our
benchmark tests multiple existing closed-source
and open-source models, and divides tasks into
multiple dimensions based on model capabilities.
In Appendix A, we compare in detail the differ-
ences between the existing benchmark and Gra-
CoRe, as well as our advantages.

Figure 2 presents the framework of our ability
taxonomy. The first layer highlights two core ca-
pabilities: graph understanding and graph rea-
soning. Graph understanding reflects the model’s
ability to comprehend nodes, edges, and graph
structure within the context, while graph reasoning
builds on this, focusing on inferring implicit in-
formation from graph-structured data. The second
layer categorizes LLM capabilities into four types
based on data types. In the third layer, these are fur-
ther divided into 10 distinct capabilities, evaluated
through 19 tasks. This taxonomy provides multi-
level evaluation, enabling detailed identification
of model weaknesses. Each task is designed with
specific prompts, structured by predefined rules to
textualize graph information. GraCoRe includes
11 datasets with 5,140 graphs, with graph complex-
ity controlled by factors such as size and network
sparsity.

We conducted extensive experiments on Gra-
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Figure 2: Our three-tier hierarchical ability taxonomy.
CoRe to evaluate the graph understanding and rea-
soning abilities of LLMs, including four closed-
source and eight open-source models. Key findings
include:
• Graph reasoning is a major weakness in current

LLMs, with most models unable to balance un-
derstanding and reasoning. OpenAI o1 model
has amazing understanding and reasoning capa-
bilities.

• LLMs perform better on graph reasoning tasks
with semantic information than on purely struc-
tural tasks, showing that textual context enhances
reasoning.

• Model performance is sensitive to node order-
ing in textual graph data, where ordered naming
improves results.

• The ability to handle longer text does not impact
performance, regardless of graph complexity or
description length.

2 Related Work

LLMs for Graph Recent advancements in LLMs
for graph tasks includes several notable contribu-
tions. (Li et al., 2023) categorizes these tasks into
three types: Enhancer, Predictor, and Alignment.
(Pan et al.) provides a forward-looking roadmap
for the unification of LLMs and Knowledge Graphs
(KGs).(Chai et al., 2023) proposes an end-to-end
method for solving graph-related problems. Fur-
thermore, (Das et al., 2023) investigates methods
to improve the zero-shot reasoning ability of LLMs
over structured data in a unified manner. (Yao et al.,
2024) explores the graph generation capabilities of
LLMs through systematic task designs and exten-
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sive experiments.
Benchmarks for LLMs on Graph Most bench-
marks for evaluating LLMs on graph tasks are
based on task testing. NLGraph(Wang et al., 2024)
introduced a simple test dataset for eight graph
tasks, while GPT4Graph(Guo et al., 2023) tested
LLM capabilities on semantic tasks. (Liu and Wu,
2023) assessed the capabilities of four LLMs in
graph data analysis. (Fatemi et al., 2023) proposed
a method for describing graph data in text form.
(Perozzi et al., 2024) designed a hint method specif-
ically for graph tasks. GraphInstruct(Luo et al.,
2024) provided diverse processes and steps for
graph data generation. HiGPT(Tang et al., 2024a)
proposed an evaluation method for heterogeneous
graphs, and VisionGraph(Li et al., 2024) assessed
the capabilities of LLMs on image graphs.

3 GraCoRe

This section begins by describing a three-tier hier-
archical taxonomy for LLMs on graph data. Next,
we explain the methodology used to collect the
dataset. Finally, we present an analysis of the
dataset’s statistics.

3.1 Hierarchical Ability Taxonomy

After analyzing (Bai et al., 2024) evaluation of
the LLMs in the multi-round dialogue task, we
have developed a hierarchical taxonomy for clas-
sifying LLMs capabilities on graphs, essential for
their evaluation. The taxonomy is structured into
three levels, encompassing 19 tasks within 10 sub-
capabilities. Table 1 summarizes each task with
a brief description. This section elaborates on the
three levels and their corresponding tasks, with
detailed examples provided in the Appendix B.

3.1.1 Graph understanding
Understanding graph structure necessitates LLMs
capable of accurately answering questions about
the graph’s basic properties and reconstructing its
structural information from extensive text descrip-
tions. This involves two core capabilities:
Pure graph understanding: Pure graphs refer to
graph data containing only structural information,
representing the simplest form of graph data(Jin
et al., 2023). The structural information of such
graphs can be encapsulated in an adjacency matrix.
Consequently, research on pure graphs often em-
phasizes the structural information. Assessing the
ability of LLMs to understand pure graphs should

thus focus on their capacity to comprehend struc-
tural information. To this end, I have identified four
sub-capabilities:
• Pure Graph Attribute Understanding: The

most intuitive measure of understanding graph
structure information is the correct comprehen-
sion of its basic attributes, such as the number
of nodes, average degree, and performance on
several sub-tasks related to node connectivity.

• Pure Graph Memory: This requires the large
language model to reconstruct the input graph
structure data, testing its memory capacity.
This is specifically evaluated by the similarity
score(Lahitani et al., 2016) of the reconstructed
matrix.

• Pure Graph Recognition: For graph data with
different structures, the model must be able to
recognize and distinguish them. This study uses
bipartite graphs and tree graphs to evaluate this
capability.

• Graph Traversal: Traversal is fundamental to
solving many graph theory reasoning problems.
The model’s performance in reasoning tasks is
influenced by its traversal capability. This study
primarily tests whether the model can traverse a
graph using Breadth-First Search (BFS)(Beamer
et al., 2013).

Heterogeneous graph understanding: Unlike
pure graphs, heterogeneous graphs often con-
tain rich semantic information, with much of the
data collected from real-world scenarios. Conse-
quently, understanding heterogeneous graphs typi-
cally involves grasping their semantic information,
whereas understanding their structural information
is less critical. We have refined this into two sub-
capabilities:
• Graph QA and Querying: Given the rich se-

mantic information in heterogeneous graphs, the
ability of large language models to perform
question-answering and querying is crucial. This
capability includes three sub-tasks: querying
neighbor nodes, answering questions about node
relationships, and querying the number of rela-
tionships.

• Subgraph Extraction: This pertains to the over-
all understanding of relationships and nodes
within heterogeneous graphs, assessing the
model’s ability to extract relevant subgraphs.

3.1.2 Graph reasoning
Based on the graph understanding capabilities of
LLMs, their graph reasoning abilities are also
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Task Abbr. Description
Node Number NN Calculate the total number of nodes in a graph.

Average Degree AD Calculate the average degree of the nodes in a graph.

Connectivity Test CT Determine if the graph is connected, meaning there is a path between any two nodes.

Matrix Similarity MS Evaluate the similarity between two adjacency matrices created from LLM and target
graph.

Tree Recognition TR Identify if a graph is binary tree.

Bipartite Recognition BR Identify if a graph is bipartite, meaning its nodes can be divided into two disjoint sets
such that no two nodes within the same set are adjacent.

Breadth First Search BFS Perform a breadth-first traversal starting from a given node.

Neighborhood Query NQ Query all nodes that are neighbors of a specified node.

Relationship Query RQ Query for specific relationships between nodes in the graph.

Relation Number RN Count the number of relationship types in the graph.

Subgraph Extraction SE Extract a subgraph based on specified criteria or nodes.

Shortest Path SP Find the shortest path between two nodes in a graph.

Maximum Flow MF Calculate the maximum flow in a flow network.

Eulerian Path EP Determine if there is a path that visits every edge exactly once.

Hamiltonian Cycle HC Determine if there is a cycle that visits every node exactly once and back start node.

Traveling Salesman
Problem

TSP Find the shortest possible route that visits each node exactly once and returns to the
origin node.

Graph Coloring GC Assign colors to the nodes of the graph so that no two adjacent nodes share the same
color.

Node Classification NC Classify nodes into predefined categories based on their attributes or graph structure.

Link Prediction LP Predict whether a link (edge) exists between two nodes in the graph.

Table 1: The 19 tasks for LLMs on graph within GraCoRe.

worth exploring. This ability requires the model to
infer hidden information from known graph data.
It includes the following two core capabilities:

Graph structure reasoning: Graph structural in-
formation reasoning requires large language mod-
els to understand the nodes, edges, and their con-
nections to infer the overall structural characteris-
tics of the graph or the structural patterns of spe-
cific subgraphs. For example, the model should
be able to identify cycles, paths, tree structures,
and hierarchical structures within the graph, and
use these structural features for further reasoning.
Tasks related to structural reasoning are primarily
focused on graph theory problems. We classify
the complexity of these problems into two cate-
gories: Simple Graph Theory Problems Rea-
soning and Complex Graph Theory Problems
Reasoning. The classification criterion is the time
complexity of the corresponding algorithms. Sim-
ple graph theory problems are solvable in polyno-
mial time, while complex graph theory problems
are NP-complete, requiring significantly more time
to solve. This classification tests the model’s ca-
pability in reasoning about graph theory problems.
We have selected three representative problems for
testing within each of these categories.

Graph semantic reasoning: Unlike structure-
based reasoning, semantic information reasoning
in graphs requires large language models to deeply
understand the semantic meanings of nodes and
edges, and to reason based on this semantic in-
formation. This involves modeling and reasoning
about entities, relationships, and their interactions
within the graph. Based on these tasks, we subdi-
vide the semantic reasoning capabilities of large
language models into Node Entity Reasoning and
Link Relationship Reasoning. Corresponding
tasks include node classification and link predic-
tion. Previous studies have primarily addressed
these two problems using graph neural networks
(GNNs) such as GCN(Kipf and Welling, 2016) and
GraphSAGE(Hamilton et al., 2017). These meth-
ods typically require large structured graph data
for training and cannot directly utilize graph data
containing text information for inference. Con-
sequently, investigating the use of large models
for semantic reasoning is highly significant. This
research will explore whether text enhancement
impacts the performance of LLMs on these two
tasks
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Benchmark Graph Type #Graph Average
Node

Average
Edge

#Node
Type

#Edge
Type

#Task

PureGra

Bipartite Graph 460 19 49 1 1 5
Tree Structure Graph 460 19 18 1 1 5
Graph Traversal Graph 460 19 53 1 1 5
Shortest Path Graph 460 19 53 1 1 5
Max Flow Graph 460 19 106 1 1 1
Graph Coloring 460 19 53 1 1 1
Hamiltonian Graph 460 19 72 1 1 1
TSP Graph 460 19 193 1 1 1
Eulerian Graph 460 19 104 1 1 1

HeterGra IMDBText 500 27 30 3 4 4
ACMText 500 158 171 4 8 2

GraCoRe / 5140 / / / / 19

Table 2: Benchmark Graph Statistics.

3.2 Data Collection

We first divide the dataset into pure graphs and het-
erogeneous graphs to test the capabilities of large
language models on these two types of datasets.
For pure graphs, we customize unique data genera-
tion prompts based on the specific characteristics
of each task, generating corresponding graph struc-
ture data using manually set rules. The scale of
the graph is defined by the number of nodes and
the sparsity of the network, ensuring that the gener-
ated data meets the specific needs of each task. For
heterogeneous graph data, we use the ACM(Wang
et al., 2019) and IMDB(Fu et al., 2020) datasets,
converting them into text-based graph data. These
are constructed according to a manually specified
graph structure description framework, and unique
prompts are designed for each task to build the
dataset.

After generating the benchmark datasets, we also
designed specific few-shot prompts for each task to
test the model’s capabilities. These prompt datasets
will be included in the benchmark data to provide
additional testing options. Finally, we will pro-
vide a standard answer for each task and filter out
graph data that does not meet the corresponding
task requirements.

3.3 Data Statistics

Table 2 shows several key statistics of our GraCoRe
benchmark. We categorized the dataset based on
graph structure into two main datasets: PureGra
and HeterGra. Each main dataset contains multiple
sub-datasets used for corresponding task testing. In
total, there are 19 tasks with up to 5,140 graphs.
Detailed statistics for each task can be found in the
Appendix C.

For pure graph data, the datasets include graphs
with 8 to 30 nodes, with 20 test graphs per dataset.
This design is intended to assess the impact of

graph complexity on the performance of large
language models. For heterogeneous graph data,
we divided them into IMDBText and ACMText
datasets. The ACMText dataset is more complex
and extensive, containing more semantic informa-
tion than the IMDBText dataset. Therefore, the
ACMText dataset is primarily used for complex
reasoning tasks, including node classification and
edge prediction.

GraCoRe is the first benchmark specifically fo-
cused on the fine-grained understanding and rea-
soning capabilities of large language models on
graph data.

3.4 Evaluation

This thesis evaluates LLM outputs using exact
match accuracy across various output types, in-
cluding boolean values (e.g., for graph recognition
tasks), integers (e.g., path lengths), floating-point
numbers (e.g., similarity and average degree), and
lists of nodes (e.g., paths). For tasks with multiple
valid solutions (e.g., BFS), we check whether the
output is a valid solution.

Standardized global scores(Dyck et al., 2005)
have become the mainstream choice in fields such
as educational assessment and intelligence testing.
Compared to using raw scores, employing standard-
ized scores in the multi-task evaluation of LLMs
offers the following advantages:
• Standardized scores facilitate fair comparisons

across different tasks and datasets. Given the
varying difficulties and sensitivities of metrics
across tasks, absolute performance metrics can-
not be directly compared. Standardization nor-
malizes these scores, enabling a more meaningful
assessment of model performance across diverse
tasks.

• Standardized scores reduce biases from specific
tasks when ranking models. Models often dis-
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Model
Pure Graph Heterogeneous Graph

Attribute
Understanding

Graph
Memory

Graph
Recognition

Grap
Traversaling

Graph QA
and Quering

Subgraph
Extraction

NN AD CT MS TR BR BFS NQ RQ RN SE
OpenAI o1 57.836 81.591 58.491 58.959 96.545 71.257 66.263 72.029 58.731 62.463 75.531

GPT-4o 58.978 59.195 41.355 58.906 50.275 41.450 55.864 57.564 53.095 60.99 60.042
GPT-4 58.887 52.842 56.054 58.853 43.737 26.832 55.349 63.648 52.898 63.128 60.763

GPT-3.5 58.978 42.041 37.166 56.521 28.775 60.293 60.949 41.671 26.302 45.879 43.594
Llama3.1-ins-8b 45.869 57.845 35.643 36.175 33.679 27.517 43.522 52.908 50.327 34.094 44.614
Llama3-ins-8b 54.228 26.077 26.275 44.918 41.851 25.576 60.835 29.628 52.502 57.996 33.748
Qwen2-7b-ins 53.634 16.229 56.968 52.283 36.445 47.959 29.237 39.498 52.502 19.364 55.360

Llama2-7b-chat 17.048 35.766 53.084 38.613 33.930 25.576 38.836 29.007 0.991 35.473 28.946
Vicuna-v1.5-16k 31.755 29.175 0.000 37.818 30.410 40.993 23.808 34.718 51.118 53.720 29.486

Chatglm3-6b 23.442 33.066 55.140 37.659 33.050 25.576 28.151 13.735 21.061 15.610 17.300
Chatglm2-32k-7b 13.987 23.377 17.974 6.239 35.816 74.683 12.895 46.576 21.061 15.610 24.744
Vicuna-v1.5-7b 18.646 36.084 55.140 6.345 28.775 25.576 17.580 12.307 52.700 28.962 19.161

Table 3: Standardized performance of graph understanding.

Model
Graph Structure Reasoning Graph Semantic Reasoning

Average z Total ScoreSimple Graph
Theory Problems

Complex Graph
Theory Problems

Node Entity
Reasoning

Link Relationship
Reasoning

SP MF EP HC TSP GC NC LP
OpenAI o1 95.320 99.390 71.313 85.057 100.000 73.379 66.409 53.236 1.762 1403.799

GPT-4o 52.665 35.019 61.671 41.405 37.647 37.860 66.538 62.877 0.601 993.397
GPT-4 42.456 33.045 62.255 43.303 36.700 33.954 65.435 57.641 0.528 967.778

GPT-3.5 32.852 33.834 60.867 51.788 35.872 45.581 57.908 48.830 0.251 869.702
Llama3.1-ins-8b 35.101 33.045 35.446 54.021 33.624 77.194 40.064 50.908 0.115 821.597
Llama3-ins-8b 39.081 35.809 30.698 56.477 34.334 49.306 36.041 55.563 0.028 790.943
Qwen2-7b-ins 37.005 37.389 39.537 37.498 38.238 28.957 36.625 52.903 -0.038 767.630

Llama2-7b-chat 36.486 40.153 19.594 24.882 34.570 41.039 27.994 33.786 -0.524 595.774
Vicuna-v1.5-16k 34.236 32.255 20.179 24.659 34.334 16.512 12.746 32.955 -0.595 570.875

Chatglm3-6b 23.681 40.153 42.897 24.659 36.463 40.585 32.407 21.734 -0.608 566.369
Chatglm2-32k-7b 26.103 40.153 28.141 24.659 35.872 22.871 20.013 20.072 -0.765 510.845
Vicuna-v1.5-7b 38.303 33.045 20.690 24.882 35.635 26.050 31.109 2.783 -0.756 513.774

Table 4: Standardized performance of graph reasoning.

play varying performance across tasks, making it
difficult to gauge their strengths in graph under-
standing and reasoning. By normalizing scores,
standardized metrics provide a more accurate and
equitable basis for evaluating model capabilities
across a broad range of tasks.

Since the metrics of different GraCoRe tasks are
incomparable and differently sensitive, less experi-
enced audiences cannot easily compare and inter-
pret results, which is also prevalent in recent LLM
benchmarks like Kola(Yu et al., 2023). Therefore,
we utilized standardized global scores to evaluate
the performance of LLMs on each task.

Given a task set T = {ti}|T |
i=1 and an evaluated

model set M = {mj}|M |
j=1, so xij represents the

performance of model mj on task ti. Then the
standardized score z can be calculated as:

zij =
xij − µ

(
xi1, . . . , xi|M |

)
σ
(
xi1, . . . , xi|M |

) , (1)

where µ(·) and σ(·) denote the mean and standard
deviation.Next, we use the Min-Max scaling(Patro
and Sahu, 2015) method to adjust the scores to the
range of 0-100, making it easier to observe and

compare the results. The final scores are presented
as:

sij = 100 · zij −min(z)

max(z)−min(z)
, (2)

where the functions max (z) and min (z) corre-
spond to the maximum and minimum of all zij
scores.

4 Experiments

4.1 Experimental Setup
Using the GraCoRe benchmark, we investigate
whether language models can understand and rea-
son about graph structures through textual descrip-
tions. Furthermore, we examine whether tailored
prompts can improve their performance on graph-
related tasks.

Models and Settings We evaluated a total of
eight popular models on the GraCoRe bench-
mark, including four closed-source models and
eight open-source models. The closed-source
models are: OpenAI o1 , GPT-4o, GPT-4, and
GPT-3.5(Achiam et al., 2023). The open-source

This model is an LLMs with powerful reasoning capabili-
ties launched by OpenAI on September 12, 2024. Due to time
reasons, we only evaluated it in the main experiment.
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Figure 3: Performance of various LLMs for second and third layer ability dimension.
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Figure 4: Effect of Graph Size.

models are: LLama3.1-ins-8b, LLama3-ins-8b,
LLama2-7b-chat(Touvron et al., 2023), Chatglm3-
6b, Chatglm2-32k-7b(Du et al., 2021), Vicuna-
v1.5-7b, Vicuna-v1.5-16k-7b(Chiang et al., 2023)
and Qwen2-7b-ins(Bai et al., 2023). More details
about these models can be found in the Appendix
B.

4.2 Main Results

Task Dimensional Analysis Tables 3 and 4 present
the performance of various LLMs across 19 tasks
in the GraCoRe benchmark. Models generally per-
formed better on graph understanding tasks, while
graph reasoning proved more challenging. Closed-
source models, particularly OpenAI o1, excelled in
both areas, achieving the highest score of 1403.8,
significantly surpassing other closed-source mod-
els. Among open-source models, Llama3.1-8b and
Qwen2-7b-ins also performed well, ranking 5th
and 7th with scores of 821.6 and 767.6, respec-
tively. In contrast, Chatglm2-7b underperformed.
The overall weaker performance on reasoning tasks
was anticipated.

The average z-scores reveal a significant gap be-
tween open-source and commercial models. Only
the Llama3.1-ins-8b and Llama3-ins-8b models
achieve z-scores above 0, indicating above-average
performance. This highlights the need for increased
collaboration within the open-source community

to enhance large language models. Notably, these
two models demonstrate graph understanding and
reasoning capabilities approaching those of GPT-
3.5.

Ability Dimensional Analysis We further analyze
Tables 3 and 4 to assess the models’ overall perfor-
mance from a capability perspective, using radar
charts to visually represent the second and third lay-
ers of the three-tier taxonomy. The left part of Fig-
ure 3 illustrates the performance of LLMs across
four capability dimensions at the second layer, with
each dimension’s score averaged across relevant
tasks. Most models excel in graph understanding
and semantic reasoning but require improvement
in structural reasoning. The OpenAI o1 model no-
tably addresses the structural reasoning weaknesses
of other OpenAI models, offering a more balanced
performance. However, most open-source models
underperform in heterogeneous graph understand-
ing tasks.

The right part of Figure 3 provides a detailed
analysis of LLM performance across ten capability
dimensions at the third layer. It reveals that large
language models generally struggle with reasoning
in graph theory, especially in complex tasks. How-
ever, models like OpenAI o1, GPT-4, and GPT-4o
show strong and balanced graph processing abili-
ties, excelling in more complex tasks. Notably, the
OpenAI o1 model significantly outperforms oth-
ers in graph theory reasoning, with performance
several times better than other OpenAI models. In
contrast, other models display inconsistent perfor-
mance. For instance, Vicuna-v1.5-16k-7b excels in
understanding heterogeneous graph structures but
falls behind in other areas, suggesting that rich se-
mantic information may enhance graph processing
capabilities in certain contexts.

Long-Text-Specific Models Since graph structure
data described in text often consists of long texts,
the ability of models to handle long texts is also
worth noting. As shown in Table 3, models capable
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of processing long texts, such as Chatglm2-32k-
7b and Vicuna-v1.5-16k-7b, performed poorly in
graph processing tasks. Compared to other models,
their performance was even lower. This suggests
that despite being designed for long text input and
output, these models still require further develop-
ment and training to effectively enhance their graph
processing capabilities.

Finally, we give the measured values of each
model in each task in the main experiment in the
Appendix D.

4.3 Further Analysis
Effect of Graph Size

Figure 4 shows the performance of four OpenAI
LLMs on two graph comprehension and two graph
reasoning tasks as node count increases. Results
reveal a consistent performance decline across all
tasks, particularly in the average degree task for
graph comprehension, indicating increased compu-
tational complexity as node count grows. Despite
this, the OpenAI o1 model shows strong compu-
tational ability, with minimal impact on compre-
hension tasks. However, both the shortest path
and Hamiltonian path tasks in graph reasoning
are notably affected, even for the robust OpenAI
o1 and GPT-3.5 models. These findings indicate
that current LLMs require further improvement
in graph reasoning, particularly with large-scale
graphs, where their performance drops consider-
ably.
Effect of Random Sort Since our data consists of
randomly generated graphs with nodes named by
numbers, the performance of node-related tasks
may be affected by changes in node order. In
this study, we examine the impact of text order on
the understanding of graph structures by large lan-
guage models by comparing random sorting with
sequential sorting. The results in Table 5 indicate
that the model’s performance under sequential sort-
ing is often superior to that under random sorting,
particularly in graph path reasoning tasks, where
the impact is significant. This suggests that re-
naming nodes and ordering them sequentially can
enhance model performance in path reasoning prob-
lems. However, it also highlights the model’s lack
of training on graph data with random sorting. Due
to the inference cost, we chose only GPT-3.5 from
OpenAI’s closed-source models for testing.
Effect of Text Enhancement

Heterogeneous graphs provide rich semantic in-
formation that aids in understanding and reason-

Model NN ST BR SP HP

GPT-3.5 sort 0.993 0.954 0.504 0.117 0.243
random 0.968 0.865 0.346 0.070 0.048

Qwen2-7b sort 0.876 0.874 0.396 0.165 0.115
random 0.773 0.885 0.374 0.159 0.000

Llama3-ins-8b sort 0.889 0.735 0.200 0.189 0.285
random 0.786 0.809 0.200 0.198 0.059

Llama3.1-ins-8b sort 0.706 0.57 0.217 0.143 0.263
random sort 0.52 0.552 0.198 0.102 0.243

Chatglm3-6b sort 0.215 0.598 0.200 0.011 0.000
random sort 0.196 0.603 0.200 0.011 0.000

Chatglm2-32k-7b sort 0.008 0.005 0.63 0.039 0.000
random sort 0.011 0.004 0.504 0.043 0.000

Llama2-7b-chat-hf sort 0.075 0.616 0.200 0.159 0.002
random sort 0.105 0.413 0.200 0.133 0.002

Table 5: Performance of different models with sorted
and random sorted grpah text input.
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Figure 5: Effect of Text Enhancement.

ing about graph-related text. To assess whether
LLMs can reason purely from structural data, we
excluded enhanced text features, such as titles and
abstracts, from the ACMText dataset. Figure 5 il-
lustrates the performance of various models in a
node classification task. Results show that GPT-4
and GPT-4o maintain strong prediction capabilities
without text, indicating effective reasoning based
solely on structure. However, GPT-3.5’s perfor-
mance declines significantly without text, while
open-source models show minimal impact from its
absence.

5 Conclusion

This paper introduces GraCoRe, a benchmark de-
signed to evaluate large language models’ (LLMs)
ability to understand and reason with graph-
structured data. We present a detailed, multi-level
classification system for assessing model perfor-
mance on graph-based tasks. Using GraCoRe, we
evaluate 12 prominent LLMs, identifying signifi-
cant limitations in their graph reasoning capabili-
ties. Our experimental results validate the bench-
mark’s effectiveness in measuring LLM perfor-
mance on graph tasks. Future research will focus
on solving complex graph theory problems in large-
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scale pure graphs, with potential improvements
in graph reasoning through methods like agents,
chain-of-thought (CoT), and retrieval-augmented
generation (RAG).

Limitations

As LLMs continue to develop, the volume of train-
ing data and their capacity to represent graphs are
likely to increase. Our current evaluation may not
encompass all their capabilities, and some models
might incorporate our data for training, potentially
influencing the final evaluation outcomes. In the
future, we aim to continually refine and update
the GraCoRe benchmark to more effectively assess
the graph understanding and reasoning abilities of
emerging LLMs.
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A Comparison with existing benchmarks

In the Introduction, we outlined the advantages
of the GraCoRe benchmark. First, it evaluates
LLMs’ understanding and reasoning abilities on
rich graph-structured data while also quantifying
their performance on graph-related tasks. Sec-
ond, GraCoRe tests a wider range of newer mod-
els and covers more tasks compared to existing
benchmarks. Table 6 highlights the key differences
between the GraCoRe benchmark and other bench-
marks, demonstrating its broader scope and capa-
bilities.

B Details on the data generation and
models

Our dataset consists primarily of two types of graph
data: heterogeneous graphs and pure graphs. Based
on these, we developed 19 tasks across 11 datasets
to evaluate large models. This diversity ensures the
comprehensiveness and robustness of our dataset.

Figures 6 to 26 provide examples of prompts and
graph data descriptions for each task. To ensure
that generated results meet our capability and task-
specific requirements, we concatenate the prompts
for each task with the initial prompts.

We evaluated 12 of the latest LLMs, including
OpenAI o1 reasoning model, launched on Septem-
ber 12, 2024. Table 7 presents more details on the
models and their versions.

C More details about each task

Due to space limitations in the main text, this sec-
tion will provide a detailed explanation of the spe-
cific details for each task. First, we will discuss the
classification of model diagram understanding and
reasoning capabilities associated with each task,
and evaluate the number of test images used for
each task. The evaluation results for all tasks are
measured using accuracy (ACC). Table 10 summa-
rizes the details of each task.

D Raw measurements of each task

In order to solve the problem of being unable to
quantify the capabilities of each model in graph
understanding and reasoning tasks, and to compare
the differences in capabilities of each model, we
use the standardized global scores metric to solve
the above problem. However, we will still provide
the actual measurement values of the large model
in each task, and table 8 and table 9 shows the
actual measurement values.
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Benchmark Graph Type Evaluation Perspective Task # Model #
Pure Heterogeneous Task Model

NLGraph(Wang et al., 2024) " $ " $ 8 2
GPT4Graph(Guo et al., 2023) $ " " $ 10 4
GraphArena(Tang et al., 2024b) $ " " $ 10 10
GraphInstruct(Luo et al., 2024) " $ " $ 21 6
GraCoRe " " " " 19 12

Table 6: Differences between GraCoRe and existing benchmarks.

Model Version Model Link
OpenAI o1 o1-mini https://platform.openai.com/docs/models/o1

GPT-4o gpt-4o https://platform.openai.com/docs/models/gpt-4o
GPT-4 gpt-4-turbo https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4

GPT-3.5 gpt-3.5-turbo https://platform.openai.com/docs/models/gpt-3-5-turbo
Llama3.1-ins-8b Meta-Llama-3.1-8B-Instruct https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
Llama3-ins-8b Meta-Llama-3-8B-Instruct https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Llama2-7b-chat Llama-2-7b-chat-hf https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
Chatglm3-6b chatglm3-6b https://huggingface.co/THUDM/chatglm3-6b

Chatglm2-32k-7b chatglm2-6b-32k https://huggingface.co/THUDM/chatglm2-6b-32k
Vicuna-v1.5-16k vicuna-7b-v1.5-16k https://huggingface.co/lmsys/vicuna-7b-v1.5-16k
Qwen2-7b-ins Qwen2-7B-Instruct https://huggingface.co/Qwen/Qwen2-7B-Instruct
Vicuna-v1.5-7b vicuna-7b-v1.5 https://huggingface.co/lmsys/vicuna-7b-v1.5

Table 7: More details about models.

Model
Pure Graph Heterogeneous Graph

Attribute
Understanding

Graph
Memory

Graph
Recognition

Grap
Traversaling

Graph QA
and Quering

Subgraph
Extraction

NN(ACC) AD(ACC) CT(ACC) MS(ACC) TR(ACC) BR(ACC) BFS(ACC) NQ(ACC) RQ(ACC) RN(ACC) SE(ACC)
o1-mini 0.968 0.988 0.978 1.000 0.998 0.600 0.991 0.978 0.619 0.986 0.971
GPT-4o 0.993 0.706 0.753 0.999 0.630 0.339 0.809 0.745 0.562 0.955 0.713
GPT-4 0.991 0.626 0.946 0.998 0.578 0.211 0.809 0.843 0.560 1.000 0.725

GPT-3.5 0.993 0.490 0.698 0.954 0.459 0.504 0.898 0.489 0.291 0.637 0.439
Llama3.1-ins-8b 0.706 0.689 0.678 0.570 0.498 0.217 0.593 0.670 0.534 0.389 0.456
Llama3-ins-8b 0.889 0.289 0.555 0.735 0.563 0.200 0.896 0.295 0.556 0.892 0.275

Llama2-7b-chat 0.075 0.411 0.907 0.616 0.500 0.200 0.511 0.285 0.035 0.418 0.195
Chatglm3-6b 0.215 0.377 0.934 0.598 0.493 0.200 0.324 0.039 0.238 0.000 0.001

Chatglm2-32k-7b 0.008 0.255 0.446 0.005 0.515 0.630 0.057 0.568 0.238 0.000 0.125
Vicuna-v1.5-16k 0.397 0.328 0.210 0.601 0.472 0.335 0.248 0.377 0.542 0.802 0.204
Qwen2-7b-ins 0.876 0.165 0.958 0.874 0.520 0.396 0.343 0.454 0.556 0.079 0.635
Vicuna-v1.5-7b 0.110 0.415 0.934 0.007 0.459 0.200 0.139 0.016 0.558 0.281 0.032

Table 8: Performance of graph understanding.

Model
Graph Structure Reasoning Graph Semantic Reasoning

Simple Graph
Theory Problems

Complex Graph
Theory Problems

Node Entity
Reasoning

Link Relationship
Reasoning

SP(ACC) MF(ACC) EP(ACC) HC(ACC) TSP(ACC) GC(ACC) NC(ACC) LP(ACC)
o1-mini 0.839 0.183 0.915 0.541 0.570 0.754 0.927 0.621
GPT-4o 0.346 0.020 0.783 0.15 0.043 0.363 0.929 0.737
GPT-4 0.228 0.015 0.791 0.167 0.035 0.320 0.912 0.674

GPT-3.5 0.117 0.017 0.772 0.243 0.028 0.448 0.796 0.568
Llama3.1-ins-8b 0.143 0.015 0.424 0.263 0.009 0.796 0.521 0.593
Llama3-ins-8b 0.189 0.022 0.359 0.285 0.015 0.489 0.459 0.649

Llama2-7b-chat 0.159 0.033 0.207 0.002 0.017 0.398 0.335 0.387
Chatglm3-6b 0.011 0.033 0.526 0.000 0.033 0.393 0.403 0.242

Chatglm2-32k-7b 0.039 0.033 0.324 0.000 0.028 0.198 0.212 0.222
Vicuna-v1.5-16k 0.133 0.013 0.215 0.000 0.015 0.128 0.100 0.377
Qwen2-7b-ins 0.165 0.026 0.480 0.115 0.048 0.265 0.468 0.617
Vicuna-v1.5-7b 0.180 0.015 0.222 0.002 0.026 0.233 0.383 0.014

Table 9: Performance of graph reasoning.

https://platform.openai.com/docs/models/o1
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/THUDM/chatglm3-6b
https://huggingface.co/THUDM/chatglm2-6b-32k
https://huggingface.co/lmsys/vicuna-7b-v1.5-16k
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/lmsys/vicuna-7b-v1.5
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Level 3 Task Dataset Graph #

Attribute Understanding
NN BG/TSG/GTG/SPG 1840
AD BG/TSG/GTG/SPG 1840
CT BG/TSG/GTG/SPG 1840

Graph Memory MS BG/TSG/GTG/SPG 1840

Graph Recognition TR Tree Structure
Graph

460

BR Bipartite Graph 460
Graph Traversaling BFS Graph Traversal

Graph
460

Graph QA and Querying
NQ IMDBText 500
RQ IMDBText 500
RN IMDBText 500

Subgraph Extraction SE IMDBText 500

Simple Graph
Theory Problems

SP Shortest Path Graph 460
MF Max Flow Graph 460
EP Eulerian Graph 460

Complex Graph
Theory Problems

HC Hamiltonian Graph 460
TSP TSP Graph 460
GC Graph Coloring 460

Node Entity Reasoning NC ACMText 500
Link Relationship Reason-
ing

LP ACMText 500

Table 10: Overview of Tasks and Datasets for Graph-based Problems.

# Initial Instructions # You are provided with a graph described by its nodes and 
edges. Your task is to analyze and understand the graph's properties. Identify and 
describe key attributes such as connectivity, degree of nodes, presence of cycles, 
shortest paths, and any other relevant characteristics. Provide detailed explanations 
and steps for your analysis.

Figure 6: The initial instructions for answer generation.

# Initial Instructions # You are tasked with solving complex graph theory 
problems such as the Traveling Salesman Problem, Minimum Coloring, and 
Hamiltonian Path. Given a graph described by its nodes and edges, identify the 
problem type and provide an optimal or near-optimal solution using appropriate 
algorithms. Ensure your reasoning process is clear and all steps are documented.

Figure 7: The initial instructions for answer generation.
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This is a undirected graph with the following edges:
From node 0 to node 6, distance is 4
From node 0 to node 1, distance is 2
From node 0 to node 3, distance is 3
From node 1 to node 2, distance is 1
From node 2 to node 7, distance is 2
From node 2 to node 4, distance is 5
From node 2 to node 5, distance is 2
From node 2 to node 3, distance is 5
From node 3 to node 6, distance is 2
From node 3 to node 4, distance is 2
From node 3 to node 5, distance is 2
From node 4 to node 6, distance is 4
From node 4 to node 5, distance is 1
From node 6 to node 7, distance is 4
Q: How many nodes in this graph? Please provide the answer directly without the 
reasoning process. 
A: 8

Figure 8: The unique prompt for the Node Number task.

This is a undirected graph with the following edges:
From node 0 to node 6, distance is 4
From node 0 to node 1, distance is 2
From node 0 to node 3, distance is 3
From node 1 to node 2, distance is 1
From node 2 to node 7, distance is 2
From node 2 to node 4, distance is 5
From node 2 to node 5, distance is 2
From node 2 to node 3, distance is 5
From node 3 to node 6, distance is 2
From node 3 to node 4, distance is 2
From node 3 to node 5, distance is 2
From node 4 to node 6, distance is 4
From node 4 to node 5, distance is 1
From node 6 to node 7, distance is 4
Q: What's the average degree of this graph? Round the result to one decimal place. 
Please provide the answer directly without the reasoning process. 
A: The average degree of the graph is 3.5.

Figure 9: The unique prompt for the Average Degree task.
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This is a undirected graph with the following edges:
From node 0 to node 6, distance is 4
From node 0 to node 1, distance is 2
From node 0 to node 3, distance is 3
From node 1 to node 2, distance is 1
From node 2 to node 7, distance is 2
From node 2 to node 4, distance is 5
From node 2 to node 5, distance is 2
From node 2 to node 3, distance is 5
From node 3 to node 6, distance is 2
From node 3 to node 4, distance is 2
From node 3 to node 5, distance is 2
From node 4 to node 6, distance is 4
From node 4 to node 5, distance is 1
From node 6 to node 7, distance is 4
Q: Is this graph a connected graph? Please provide the answer directly without the 
reasoning process.
A: Yes, this graph is a connected graph.

Figure 10: The unique prompt for the Connectivity Test task.

This is a undirected graph with the following edges:
From node 0 to node 6, distance is 4
From node 0 to node 1, distance is 2
From node 0 to node 3, distance is 3
From node 1 to node 2, distance is 1
From node 2 to node 7, distance is 2
From node 2 to node 4, distance is 5
From node 2 to node 5, distance is 2
From node 2 to node 3, distance is 5
From node 3 to node 6, distance is 2
From node 3 to node 4, distance is 2
From node 3 to node 5, distance is 2
From node 4 to node 6, distance is 4
From node 4 to node 5, distance is 1
From node 6 to node 7, distance is 4
Q:  What are the triplets in this graph? Please output the triplet 
(start_node,end_node,weight) of this graph in LIST format.For 
example:[(1,2,3),(4,5,6)]
A: The triplets (start_node, end_node, weight) represent the edges in the undirected 
graph with their respective weights. Based on the given edges, the list format of 
triplets is as follows:[ (0, 6, 4), (0, 1, 2), (0, 3, 3), (1, 2, 1), (2, 7, 2), (2, 4, 5), (2, 5, 2), 
(2, 3, 5), (3, 6, 2), (3, 4, 2), (3, 5, 2), (4, 6, 4), (4, 5, 1), (6, 7, 4) ]

Figure 11: The unique prompt for the Matrix Similarity task.
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This is a undirected graph with the following edges:
From node 0 to node 6, distance is 4
From node 0 to node 1, distance is 2
From node 0 to node 3, distance is 3
From node 1 to node 2, distance is 1
From node 2 to node 7, distance is 2
From node 2 to node 4, distance is 5
From node 2 to node 5, distance is 2
From node 2 to node 3, distance is 5
From node 3 to node 6, distance is 2
From node 3 to node 4, distance is 2
From node 3 to node 5, distance is 2
From node 4 to node 6, distance is 4
From node 4 to node 5, distance is 1
From node 6 to node 7, distance is 4
Q:   What is the shortest path from node 4 to node 1? How long is it? Please provide 
the answer directly without the reasoning process and output it in JSON format. For 
example: {"path":PATH,"distance":DISTANCE}
A: {"path":[1,2,4],"distance":6}

Figure 12: The unique prompt for the Shortest Path task.

This is a undirected graph with the following edges:
From node 0 to node 4, distance is 3
From node 0 to node 5, distance is 5
From node 0 to node 6, distance is 2
From node 1 to node 4, distance is 5
From node 2 to node 4, distance is 3
From node 2 to node 5, distance is 2
From node 2 to node 6, distance is 4
From node 2 to node 7, distance is 4
From node 3 to node 5, distance is 2
From node 3 to node 7, distance is 3

Q:  A bipartite graph is a special type of graph where the vertex set can be divided 
into two disjoint subsets such that every edge connects a vertex in one subset to a 
vertex in the other subset. Please determine if the given graph is bipartite.Please 
provide the answer directly without the reasoning process .

A: Yes, the given graph is bipartite.

Figure 13: The unique prompt for the Bipartite Recognition task.
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This is a undirected graph with the following edges:
From node 0 to node 3, distance is 4
From node 0 to node 5, distance is 3
From node 0 to node 6, distance is 3
From node 0 to node 7, distance is 1
From node 1 to node 3, distance is 4
From node 1 to node 6, distance is 5
From node 2 to node 6, distance is 2
From node 2 to node 7, distance is 4
From node 5 to node 7, distance is 4
From node 6 to node 7, distance is 3

Q: An Eulerian circuit in this graph is a cycle that visits every edge exactly once and 
returns to the starting node.Please determine if an Eulerian circuit exists in this 
graph. Please provide the answer directly without the reasoning process . Yes or No.
A: No, it does not have an Eulerian circuit.

Figure 14: The unique prompt for the Eulerian Path task.

This is a undirected graph with the following edges:
From node 0 to node 6, distance is 5
From node 0 to node 3, distance is 5
From node 1 to node 7, distance is 3
From node 1 to node 6, distance is 5
From node 1 to node 2, distance is 1
From node 1 to node 3, distance is 5
From node 2 to node 6, distance is 4
From node 2 to node 5, distance is 1
From node 2 to node 3, distance is 2
From node 3 to node 5, distance is 3
From node 3 to node 4, distance is 5
From node 4 to node 7, distance is 5
From node 4 to node 5, distance is 5
From node 6 to node 7, distance is 3
Q: Use a greedy algorithm with the "largest_first" strategy to determine the minimum 
number of colors needed to color the graph, ensuring that no two adjacent nodes 
share the same color.Please provide the answer directly without the reasoning 
process .
A: Minimum number of colors required: 4

Figure 15: The unique prompt for the Graph Coloring task.



7942

This is a undirected graph with the following edges:
From node 0 to node 7, distance is 5
From node 0 to node 3, distance is 2
From node 0 to node 2, distance is 2
From node 1 to node 5, distance is 5
From node 1 to node 2, distance is 1
From node 1 to node 7, distance is 1
From node 1 to node 3, distance is 4
From node 2 to node 3, distance is 2
From node 3 to node 6, distance is 4
From node 4 to node 5, distance is 2
From node 4 to node 7, distance is 2
From node 6 to node 7, distance is 4

Q: Implement the Breadth-First Search (BFS) algorithm to traverse the graph and 
return the list of nodes traversed in the order they are visited.Visited the graph start 
node 0.You can choise A,B,C or D.
A. [0, 2, 5, 3, 1, 6, 4, 7] B. [0, 7, 3, 2, 6, 1, 4, 5] C. [0, 4, 2, 7, 6, 3, 5, 1] D. [0, 1, 2, 3, 
5, 4, 6, 7] Please provide the answer directly.
A: B.

Figure 16: The unique prompt for the Breadth First Search task.

This is a directed graph with the following edges:
From node 3 to node 0, distance is 2
From node 3 to node 6, distance is 2
From node 0 to node 5, distance is 3
From node 0 to node 2, distance is 4
From node 0 to node 7, distance is 2
From node 5 to node 7, distance is 3
From node 5 to node 4, distance is 5
From node 7 to node 1, distance is 5
From node 7 to node 6, distance is 2
From node 7 to node 4, distance is 2
From node 1 to node 2, distance is 5
From node 1 to node 7, distance is 4
From node 1 to node 3, distance is 4
From node 1 to node 4, distance is 5
From node 1 to node 6, distance is 4
From node 2 to node 4, distance is 4
From node 2 to node 5, distance is 1
From node 2 to node 6, distance is 4
From node 4 to node 6, distance is 3
From node 4 to node 5, distance is 3
From node 6 to node 3, distance is 3
From node 6 to node 4, distance is 1
Q: A Hamiltonian cycle in this graph is a cycle that visits each node exactly once and returns 
to the starting node. A Hamiltonian cycle exists in this graph, provide the sequence of nodes 
that form this cycle. Please provide the answer directly without the reasoning process and 
output it in JSON format. For example: {"Hamiltonian_cycle": CYCLE}  
A: {"Hamiltonian_cycle": [3, 0, 5, 7, 4, 6, 1, 2, 3]}

Figure 17: The unique prompt for the Hamiltonian Cycle task.
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This is a directed graph with the following edges:
From node 0 to node 2, distance is 2
From node 0 to node 5, distance is 5
From node 0 to node 6, distance is 3
From node 0 to node 7, distance is 3
From node 0 to node 1, distance is 3
From node 0 to node 3, distance is 5
From node 1 to node 2, distance is 4
From node 1 to node 4, distance is 1
From node 1 to node 7, distance is 4
From node 2 to node 3, distance is 2
From node 2 to node 4, distance is 2
From node 2 to node 5, distance is 5
From node 2 to node 6, distance is 1
From node 3 to node 4, distance is 1
From node 3 to node 5, distance is 5
From node 3 to node 6, distance is 1
From node 4 to node 5, distance is 3
From node 4 to node 6, distance is 3
From node 4 to node 7, distance is 3
From node 5 to node 6, distance is 5
From node 5 to node 7, distance is 2
From node 6 to node 7, distance is 3
Q: What is the maximum flow from node 0 to node 7?Please provide the answer directly without 
the reasoning process.
A: The maximum flow is 14. The flow paths are [(0, 2, 2), (0, 6, 2), (0, 7, 3), (0, 1, 3), (0, 3, 4), (1, 
7, 3), (2, 4, 2), (3, 4, 1), (3, 5, 2), (3, 6, 1), (4, 7, 3), (5, 7, 2), (6, 7, 3)].

Figure 18: The unique prompt for the Maximum Flow task.

This is a undirected graph with the following edges:
From node 0 to node 1, distance is 4
From node 0 to node 2, distance is 5
From node 1 to node 3, distance is 1
From node 1 to node 4, distance is 2
From node 2 to node 5, distance is 4
From node 2 to node 6, distance is 5
From node 2 to node 3, distance is 4
From node 3 to node 7, distance is 1

Q: A binary tree is a tree data structure in which each node has at most two children, 
referred to as the left child and the right child. Based on the following description, 
determine if the given graph is a binary tree.
Answer:(Yes or No) No, it is not a binary tree.

Figure 19: The unique prompt for the Tree Recognition task.
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This is a undirected graph with the following edges:
From node 0 to node 1, distance is 2
From node 0 to node 2, distance is 1
From node 0 to node 3, distance is 1
From node 0 to node 4, distance is 4
From node 0 to node 5, distance is 2
From node 0 to node 6, distance is 3
From node 0 to node 7, distance is 3
From node 1 to node 2, distance is 1
From node 1 to node 3, distance is 2
From node 1 to node 4, distance is 3
From node 1 to node 5, distance is 5
From node 1 to node 6, distance is 5
From node 1 to node 7, distance is 2
From node 2 to node 3, distance is 1
From node 2 to node 4, distance is 5
From node 2 to node 5, distance is 1
From node 2 to node 6, distance is 3
From node 2 to node 7, distance is 3
From node 3 to node 4, distance is 4
From node 3 to node 5, distance is 1
From node 3 to node 6, distance is 4
From node 3 to node 7, distance is 5
From node 4 to node 5, distance is 1
From node 4 to node 6, distance is 4
From node 4 to node 7, distance is 3
From node 5 to node 6, distance is 2
From node 5 to node 7, distance is 3
From node 6 to node 7, distance is 5
Q: The goal is to find the shortest possible route that visits each node exactly once and returns to the starting 
node.Please determine the optimal solution for this Traveling Salesman Problem (TSP).You can use Nearest 
Neighbor Algorithm solve this problem. Provide the sequence of nodes that form this shortest route and the total 
distance of this route.Start from node 0.Please provide the answer directly without the reasoning process and 
output it in JSON format. For example: {"length":LENGTH, "path": PATH}  
A:The TSP path is 17 and path is [0, 2, 1, 3, 5, 4, 7, 6, 0].

Figure 20: The unique prompt for the TSP task.
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Given a heterogeneous graph about internet movie, there are three types of nodes, 
namely: ['movie', 'director', 'actor']. The relationships (meta paths) between different 
nodes include: [('movie', 'to', 'director'), ('movie', 'to', 'actor'), ('director', 'to', 'movie'), 
('actor', 'to', 'movie')]. The edges of these relationships are: {\"('movie', 'to', 
'director')\": [(1, 18), (2, 18), (3, 18), (4, 18), (0, 18), (5, 18), (6, 18), (7, 18), (8, 18), 
(9, 18)], \"('movie', 'to', 'actor')\": [(10, 19), (0, 19), (11, 19), (12, 20), (0, 20), (0, 21), 
(13, 21), (14, 21), (15, 21), (16, 21), (17, 21)], \"('director', 'to', 'movie')\": [(18, 0)], 
\"('actor', 'to', 'movie')\": [(19, 0), (20, 0), (21, 0)]}.By performing random sampling of 
2-hop 10 neighbors centered on the target movie node, a heterogeneous subgraph 
is obtained. In the subgraph, \"movie\" nodes: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15, 16, 17],and the type of these movies are: {'action': [2, 13], 'comedy': [1, 3, 
4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17], 'drama': []}, 
where the 0-th node is the central node that represents a moive with the following 
information:
Name: The Three Stooges  
Director's name: Bobby Farrelly \nActors' names: Kate Upton|Larry David|Sean 
Hayes 
Plot keywords: mule|nun|orphanage|tennis court|the three stooges
"actor" nodes:[19, 20, 21];"director\" nodes:[18]
Question: How many relationships classes in this graph?
A:4

Figure 21: The unique prompt for the Relation Number task.

Given a heterogeneous graph about internet movie, there are three types of nodes, 
namely: ['movie', 'director', 'actor']. The relationships (meta paths) between different 
nodes include: [('movie', 'to', 'director'), ('movie', 'to', 'actor'), ('director', 'to', 'movie'), 
('actor', 'to', 'movie')]. The edges of these relationships are: {\"('movie', 'to', 
'director')\": [(1, 15), (2, 15), (0, 15), (3, 15), (4, 15), (5, 15), (6, 15)], \"('movie', 'to', 
'actor')\": [(0, 16), (0, 17), (7, 18), (8, 18), (0, 18), (9, 18), (10, 18), (11, 18), (1, 18), 
(12, 18), (13, 18), (14, 18)], \"('director', 'to', 'movie')\": [(15, 0)], \"('actor', 'to', 
'movie')\": [(16, 0), (17, 0), (18, 0)]}.By performing random sampling of 2-hop 10 
neighbors centered on the target movie node, a heterogeneous subgraph is 
obtained. In the subgraph, \"movie\" nodes: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 
14],and the type of these movies are: {'action': [5], 'comedy': [1, 2, 3, 4, 6, 7, 8, 9, 10, 
11, 12, 13, 14], 'drama': []}, 
where the 0-th node is the central node that represents a moive with the following 
information:Name: The Longest Yard  
Director's name: Peter Segal 
Actors' names: Adam Sandler|Steve Reevis|Dalip Singh \nPlot keywords: 
coach|convict|football|prison|warden
"actor\" nodes:[16, 17, 18];\"director\" nodes:[15]
 Question: Did actor 17 act in movie 5? Please provide the answer directly without 
the reasoning process. 
A: No

Figure 22: The unique prompt for the Neighborhood Query task.
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Given a heterogeneous graph about internet movie, there are three types of nodes, 
namely: ['movie', 'director', 'actor']. The relationships (meta paths) between different 
nodes include: [('movie', 'to', 'director'), ('movie', 'to', 'actor'), ('director', 'to', 'movie'), 
('actor', 'to', 'movie')]. The edges of these relationships are: {\"('movie', 'to', 
'director')\": [(1, 15), (2, 15), (0, 15), (3, 15), (4, 15), (5, 15), (6, 15)], \"('movie', 'to', 
'actor')\": [(0, 16), (0, 17), (7, 18), (8, 18), (0, 18), (9, 18), (10, 18), (11, 18), (1, 18), 
(12, 18), (13, 18), (14, 18)], \"('director', 'to', 'movie')\": [(15, 0)], \"('actor', 'to', 
'movie')\": [(16, 0), (17, 0), (18, 0)]}.By performing random sampling of 2-hop 10 
neighbors centered on the target movie node, a heterogeneous subgraph is 
obtained. In the subgraph, \"movie\" nodes: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 
14],and the type of these movies are: {'action': [5], 'comedy': [1, 2, 3, 4, 6, 7, 8, 9, 10, 
11, 12, 13, 14], 'drama': []}, 
where the 0-th node is the central node that represents a moive with the following 
information:Name: The Longest Yard  
Director's name: Peter Segal 
Actors' names: Adam Sandler|Steve Reevis|Dalip Singh \nPlot keywords: 
coach|convict|football|prison|warden
"actor\" nodes:[16, 17, 18];\"director\" nodes:[15]
Question: Please tell me which actors participated in this movie(0-th node).Please 
provide the answer directly without the reasoning process and return a node list.
A:[16, 17, 18]

Figure 23: The unique prompt for the Relationship Query task.

Given a heterogeneous graph about internet movie, there are three types of nodes, 
namely: ['movie', 'director', 'actor']. The relationships (meta paths) between different 
nodes include: [('movie', 'to', 'director'), ('movie', 'to', 'actor'), ('director', 'to', 'movie'), 
('actor', 'to', 'movie')]. The edges of these relationships are: {\"('movie', 'to', 
'director')\": [(1, 15), (2, 15), (0, 15), (3, 15), (4, 15), (5, 15), (6, 15)], \"('movie', 'to', 
'actor')\": [(0, 16), (0, 17), (7, 18), (8, 18), (0, 18), (9, 18), (10, 18), (11, 18), (1, 18), 
(12, 18), (13, 18), (14, 18)], \"('director', 'to', 'movie')\": [(15, 0)], \"('actor', 'to', 
'movie')\": [(16, 0), (17, 0), (18, 0)]}.By performing random sampling of 2-hop 10 
neighbors centered on the target movie node, a heterogeneous subgraph is 
obtained. In the subgraph, \"movie\" nodes: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 
14],and the type of these movies are: {'action': [5], 'comedy': [1, 2, 3, 4, 6, 7, 8, 9, 10, 
11, 12, 13, 14], 'drama': []}, 
where the 0-th node is the central node that represents a moive with the following 
information:Name: The Longest Yard  
Director's name: Peter Segal 
Actors' names: Adam Sandler|Steve Reevis|Dalip Singh \nPlot keywords: 
coach|convict|football|prison|warden
"actor\" nodes:[16, 17, 18];\"director\" nodes:[15]
Question: Please extract the edges connected to this movie(0-th node).Please 
provide the answer directly without the reasoning process and return a edge list. For 
example: \\[(1,2),(4,5)] 
A: [(0, 15), (0, 16), (0, 17), (0, 18),(15,0),(16,0),(17,0),(18,0)]

Figure 24: The unique prompt for the Subgraph Extraction task.
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Given a heterogeneous academic network graph about computer science collected from Association for Computing Machinery (ACM), 
there are four types of nodes, namely: ['paper', 'subject', 'term', 'author']. The relationships (meta paths) between different nodes include: 
[('paper', 'cite', 'paper'), ('paper', 'ref', 'paper'), ('paper', 'to', 'author'), ('author', 'to', 'paper'), ('paper', 'to', 'subject'), ('subject', 'to', 'paper'), 
('paper', 'to', 'term'), ('term', 'to', 'paper')]. The edges of these relationships are: {\"('paper', 'cite', 'paper')\": [], \"('paper', 'ref', 'paper')\": [], 
\"('paper', 'to', 'author')\": [(0, 106)], \"('author', 'to', 'paper')\": [(106, 0)], \"('paper', 'to', 'subject')\": [(0, 95)], \"('subject', 'to', 'paper')\": [(95, 
0)], \"('paper', 'to', 'term')\": [(1, 96), (2, 96), (3, 96), (4, 96), (5, 96), (6, 96), (7, 96), (8, 96), (9, 96), (0, 96), (10, 97), (11, 97), (12, 97), 
(13, 97), (14, 97), (15, 97), (16, 97), (17, 97), (18, 97), (0, 97), (19, 98), (20, 98), (21, 98), (22, 98), (23, 98), (24, 98), (25, 98), (26, 98), 
(27, 98), (28, 98), (29, 99), (30, 99), (31, 99), (32, 99), (33, 99), (34, 99), (35, 99), (36, 99), (37, 99), (38, 99), (39, 100), (40, 100), (41, 
100), (42, 100), (43, 100), (0, 100), (44, 100), (45, 100), (46, 100), (47, 100), (48, 101), (49, 101), (50, 101), (51, 101), (52, 101), (53, 
101), (54, 101), (55, 101), (56, 101), (57, 101), (58, 102), (59, 102), (60, 102), (61, 102), (62, 102), (63, 102), (64, 102), (65, 102), (66, 
102), (67, 102), (68, 103), (69, 103), (70, 103), (71, 103), (72, 103), (73, 103), (74, 103), (75, 103), (41, 103), (76, 103), (77, 104), (78, 
104), (79, 104), (80, 104), (81, 104), (82, 104), (83, 104), (84, 104), (85, 104), (55, 104), (86, 105), (87, 105), (88, 105), (89, 105), (90, 
105), (91, 105), (2, 105), (92, 105), (93, 105), (94, 105)], \"('term', 'to', 'paper')\": [(96, 0), (97, 0), (98, 0), (99, 0), (100, 0), (101, 0), (102, 
0), (103, 0), (104, 0), (105, 0)]}.By performing random sampling of 2-hop 10 neighbors centered on the target paper node, a 
heterogeneous subgraph is obtained. In the subgraph, \"paper\" nodes: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 
92, 93, 94],and the type of these papers are: {'Database': [1, 2, 5, 11, 12, 13, 16, 19, 28, 29, 30, 31, 32, 34, 35, 37, 38, 39, 41, 42, 46, 
49, 51, 53, 59, 61, 62, 68, 71, 75, 78, 80, 83, 89], 'Wireless Communication': [3, 4, 6, 15, 27, 36, 55, 57, 60, 63, 64, 67, 70, 72, 77, 79, 
81, 82, 84, 86, 91, 92, 94], 'Data Mining': [7, 8, 9, 10, 14, 17, 18, 20, 21, 22, 23, 24, 25, 26, 33, 40, 43, 44, 45, 47, 48, 50, 52, 54, 56, 58, 
65, 66, 69, 73, 74, 76, 85, 87, 88, 90, 93]}, where the 0-th node is the central node that represents a paper with the following 
information:\nTitle and Abstract: Foundation matters  This talk is meant as a wake-up call ... The foundation of the database field is, of 
course, the relational model. Sad to say, however, there are some in the database community--certainly in industry, and to some extent 
in academia also--who do not seem to be as familiar with that model as they ought to be; there are others who seem to think it is not 
very interesting or relevant to the day-today business of earning a living; and there are still others who seem to think all of the 
foundation-level problems have been solved. Indeed, there seems to be a widespread feeling that \"the world has moved on,\" so to 
speak, and the relational model as such is somehow pass&#233;. In my opinion, nothing could be further from the truth! In this talk, I 
want to sketch the results of some of my own investigations into database foundations over the past twenty years or so; my aim is to 
convey some of the excitement and abiding interest that is still to be found in those investigations, with a view--I hope--to inspiring 
others in the field to become involved in such activities.   First of all, almost all of the ideas I will be covering either are part of, or else 
build on top of, The Third Manifesto [1]. The Third Manifesto is a detailed proposal for the future direction of data and DBMSs. Like 
Codds original papers on the relational model, it can be seen as an abstract blueprint for the design of a DBMS and the language 
interface to such a DBMS. Among many other things: &#8226; It shows that the relational model--and I do mean the relational model, 
not SQL--is a necessary and sufficient foundation on which to build \"object/relational\" DBMSs (sometimes called universal servers). 
&#8226; It also points out certain blunders that can unfortunately be observed in some of todays products (not to mention the 
SQL:1999 standard). &#8226; And it explores in depth the idea that a relational database, along with the relational operators, is really a 
logical system and shows how that idea leads to a solution to the view updating problem, among other things.\n\"subject\" 
nodes:[95];\"term\" nodes:[96, 97, 98, 99, 100, 101, 102, 103, 104, 105];\"author\" nodes:[106]\
Question: Which of the following areas of computer science does this paper belong to: Database, Wireless Communication, or Data 
Mining?\n Please provide the answer directly without the reasoning process. 
A: Database

Figure 25: The unique prompt for the Node Classification task.
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Given a heterogeneous academic network graph about computer science collected from Association for Computing Machinery (ACM), 
there are four types of nodes, namely: ['paper', 'subject', 'term', 'author']. The relationships (meta paths) between different nodes include: 
[('paper', 'cite', 'paper'), ('paper', 'ref', 'paper'), ('paper', 'to', 'author'), ('author', 'to', 'paper'), ('paper', 'to', 'subject'), ('subject', 'to', 'paper'), 
('paper', 'to', 'term'), ('term', 'to', 'paper')]. The edges of these relationships are: {\"('paper', 'cite', 'paper')\": [], \"('paper', 'ref', 'paper')\": [], 
\"('paper', 'to', 'author')\": [(0, 106)], \"('author', 'to', 'paper')\": [(106, 0)], \"('paper', 'to', 'subject')\": [(0, 95)], \"('subject', 'to', 'paper')\": [(95, 
0)], \"('paper', 'to', 'term')\": [(1, 96), (2, 96), (3, 96), (4, 96), (5, 96), (6, 96), (7, 96), (8, 96), (9, 96), (0, 96), (10, 97), (11, 97), (12, 97), 
(13, 97), (14, 97), (15, 97), (16, 97), (17, 97), (18, 97), (0, 97), (19, 98), (20, 98), (21, 98), (22, 98), (23, 98), (24, 98), (25, 98), (26, 98), 
(27, 98), (28, 98), (29, 99), (30, 99), (31, 99), (32, 99), (33, 99), (34, 99), (35, 99), (36, 99), (37, 99), (38, 99), (39, 100), (40, 100), (41, 
100), (42, 100), (43, 100), (0, 100), (44, 100), (45, 100), (46, 100), (47, 100), (48, 101), (49, 101), (50, 101), (51, 101), (52, 101), (53, 
101), (54, 101), (55, 101), (56, 101), (57, 101), (58, 102), (59, 102), (60, 102), (61, 102), (62, 102), (63, 102), (64, 102), (65, 102), (66, 
102), (67, 102), (68, 103), (69, 103), (70, 103), (71, 103), (72, 103), (73, 103), (74, 103), (75, 103), (41, 103), (76, 103), (77, 104), (78, 
104), (79, 104), (80, 104), (81, 104), (82, 104), (83, 104), (84, 104), (85, 104), (55, 104), (86, 105), (87, 105), (88, 105), (89, 105), (90, 
105), (91, 105), (2, 105), (92, 105), (93, 105), (94, 105)], \"('term', 'to', 'paper')\": [(96, 0), (97, 0), (98, 0), (99, 0), (100, 0), (101, 0), (102, 
0), (103, 0), (104, 0), (105, 0)]}.By performing random sampling of 2-hop 10 neighbors centered on the target paper node, a 
heterogeneous subgraph is obtained. In the subgraph, \"paper\" nodes: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 
92, 93, 94],and the type of these papers are: {'Database': [1, 2, 5, 11, 12, 13, 16, 19, 28, 29, 30, 31, 32, 34, 35, 37, 38, 39, 41, 42, 46, 
49, 51, 53, 59, 61, 62, 68, 71, 75, 78, 80, 83, 89], 'Wireless Communication': [3, 4, 6, 15, 27, 36, 55, 57, 60, 63, 64, 67, 70, 72, 77, 79, 
81, 82, 84, 86, 91, 92, 94], 'Data Mining': [7, 8, 9, 10, 14, 17, 18, 20, 21, 22, 23, 24, 25, 26, 33, 40, 43, 44, 45, 47, 48, 50, 52, 54, 56, 58, 
65, 66, 69, 73, 74, 76, 85, 87, 88, 90, 93]}, where the 0-th node is the central node that represents a paper with the following 
information:\nTitle and Abstract: Foundation matters  This talk is meant as a wake-up call ... The foundation of the database field is, of 
course, the relational model. Sad to say, however, there are some in the database community--certainly in industry, and to some extent 
in academia also--who do not seem to be as familiar with that model as they ought to be; there are others who seem to think it is not 
very interesting or relevant to the day-today business of earning a living; and there are still others who seem to think all of the 
foundation-level problems have been solved. Indeed, there seems to be a widespread feeling that \"the world has moved on,\" so to 
speak, and the relational model as such is somehow pass&#233;. In my opinion, nothing could be further from the truth! In this talk, I 
want to sketch the results of some of my own investigations into database foundations over the past twenty years or so; my aim is to 
convey some of the excitement and abiding interest that is still to be found in those investigations, with a view--I hope--to inspiring 
others in the field to become involved in such activities.   First of all, almost all of the ideas I will be covering either are part of, or else 
build on top of, The Third Manifesto [1]. The Third Manifesto is a detailed proposal for the future direction of data and DBMSs. Like 
Codds original papers on the relational model, it can be seen as an abstract blueprint for the design of a DBMS and the language 
interface to such a DBMS. Among many other things: &#8226; It shows that the relational model--and I do mean the relational model, 
not SQL--is a necessary and sufficient foundation on which to build \"object/relational\" DBMSs (sometimes called universal servers). 
&#8226; It also points out certain blunders that can unfortunately be observed in some of todays products (not to mention the 
SQL:1999 standard). &#8226; And it explores in depth the idea that a relational database, along with the relational operators, is really a 
logical system and shows how that idea leads to a solution to the view updating problem, among other things.\n\"subject\" 
nodes:[95];\"term\" nodes:[96, 97, 98, 99, 100, 101, 102, 103, 104, 105];\"author\" nodes:[106]\
Question: Please predict if Paper 72 cited Paper 25.Answer Yes or No. Please provide the answer directly without the reasoning 
process. 
A: No

Figure 26: The unique prompt for the Link Prediction task.
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