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Abstract

In the era of social media, the proliferation
of fake news has created an urgent need for
more effective detection methods, particularly
for multimodal content. The task of identify-
ing fake news is highly challenging, as it re-
quires broad background knowledge and un-
derstanding across various domains. Existing
detection methods primarily rely on neural net-
works to learn latent feature representations,
resulting in black-box classifications with lim-
ited real-world understanding. To address these
limitations, we propose a novel approach that
leverages Multimodal Large Language Models
(MLLMs) for fake news detection. Our method
introduces adversarial reasoning through de-
bates from opposing perspectives. By harness-
ing the powerful capabilities of MLLMs in
text generation and cross-modal reasoning, we
guide these models to engage in multimodal de-
bates, generating adversarial arguments based
on contradictory evidence from both sides of
the issue. We then utilize these arguments to
learn reasonable thinking patterns, enabling bet-
ter multimodal fusion and fine-tuning. This pro-
cess effectively positions our model as a debate
referee for adversarial inference. Extensive
experiments conducted on four fake news de-
tection datasets demonstrate that our proposed
method significantly outperforms state-of-the-
art approaches’.

1 Introduction

The rise of social media has led to a proliferation
of fake news, posing harmful effects on individuals
and society (Fisher et al., 2016; Vosoughi et al.,
2018). This is especially concerning when images
and text are strategically combined to create seem-
ingly credible but false information (Naeem and
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Bhatti, 2020). Relying solely on investigative jour-
nalism to detect and expose fake news manually is
not a viable solution—this approach is both labor-
intensive and time-consuming, which limits the
scale of coverage and introduces delays in debunk-
ing misinformation. Therefore, there is a pressing
need to develop automated methods capable of de-
tecting fake news across multiple modalities in a
timely manner (Tasnim et al., 2020). This will not
only address emerging trends in misinformation but
also enhance the accuracy and efficiency of rumor
identification (Roth, 2022).

Previous studies have attempted to use pre-
trained visual-language models for fake news de-
tection by adding task-specific classification lay-
ers (Zhang et al., 2021; Kaliyar et al., 2021). These
methods frame the problem as an end-to-end clas-
sification task, merely identifying surface signals
conveyed by the combination of text and images,
and attempting to detect fake news by checking
for consistency between the two (Xue et al., 2021).
However, many well-crafted fake news articles ex-
hibit strong associations between images and text,
and current models often fail to detect these (Shu
et al., 2017). In the face of this fake news, leverag-
ing the vast knowledge humans have acquired in
real life and their critical thinking and vigilance to-
wards biased, subjective, and inflammatory content
in the news is a better approach to combating fake
news. All of this relies on a deep understanding of
fake news (Yang et al., 2022; Wang et al., 2024).

Inspired by the success of Multimodal Large
Language Models (MLLMs) in combining rea-
soning with background knowledge at a cognitive
level (Li et al., 2024), we aim to leverage MLLMs’
capabilities in understanding and reasoning (Liu
et al., 2024a). However, we observed that directly
using the analysis generated by MLLMs could in-
troduce bias into the model’s predictions (Lin et al.,
2024; Hu et al., 2024), preventing comprehensive
thinking. To address this limitation, we propose
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a new approach: the Adversarial Arguments Rea-
soning (AAR) Model. This model leverages multi-
modal adversarial reasoning knowledge extracted
from MLLMs to assist in fake news detection.

In contrast to these traditional methods that rely
solely on identifying superficial harmful signals,
our approach involves creating logical reasoning
between textual and visual information, simulating
human-level thinking about the news, and incor-
porating necessary background knowledge. Un-
like recognition-based detection models, we be-
lieve that a reasoning-driven method that integrates
these elements will significantly improve fake news
detection (Qi et al., 2024).

Our approach involves two key phases: 1). Ad-
versarial Argument Extraction: In the first phase,
we fine-tune a smaller language model by integrat-
ing both language and visual features. This allows
the model to learn how to fuse cross-modal image
and text data. At the same time, we selectively ex-
tract adversarial multimodal reasoning knowledge
from MLLMs. This equips our framework with
cognitive reasoning capabilities, enabling it to pre-
dict the authenticity of news more effectively. 2).
Authenticity Judgment: In the second phase, the
fine-tuned small language model uses the extracted
reasoning knowledge to make a final judgment on
the authenticity of the news. By incorporating mul-
timodal reasoning knowledge, we enhance the de-
tection process, revealing the truth behind the news
more effectively.

Our contributions can be summarized as follows:

* To the best of our knowledge, we are the first
to explicitly utilize adversarial arguments gen-
erated by MLLMs to assist in multimodal fake
news detection.

* We propose a novel reasoning-based frame-
work that fine-tunes a small language model
by integrating multimodal reasoning knowl-
edge extracted from MLLMs. This pro-
motes better multimodal fusion and enables
lightweight fine-tuning for fake news detec-
tion.

» Through extensive experiments on classical
datasets, we demonstrate that the AAR model
outperforms existing methods in terms of both
accuracy and practicality.

* We have open-sourced the adversarial argu-
ments generated by MLLMs. By incorporat-
ing these analyses, we have built an MLLMs-

enhanced dataset, which serves as an open-
source resource for further research.

2 Related Work

2.1 Multimodal Fake News Detection

Previous research on multimodal fake news detec-
tion mainly follows two approaches. The first is a
content-based method, which simply utilizes the
image and text information of the news (Wu et al.,
2021), employing multimodal networks such as
BERT, ViT, etc. (Dosovitskiy et al., 2021; Devlin
et al., 2019), for classification. However, the down-
side of these models is their lack of understanding
of the real world (Hu et al., 2023a), performing
well only on the current datasets (Mu et al., 2024),
and being limited to identifying surface signals in
the news (Zhu et al., 2022). The second approach is
based on social context, where additional informa-
tion such as the news dissemination tree, comments,
and the identity of the publisher is used to assist
in the judgment (Ma et al., 2015; Cui et al., 2022).
However, not all news articles can access such in-
formation, and the high latency of this method hin-
ders the timely detection of fake news (Hu et al.,
2022).

2.2 Multimodal Large Language Models

Recently, MLLMs have demonstrated outstanding
capabilities across various downstream tasks (Li
et al., 2024). However, the enormous training costs
and dataset limitations prevent MLLMs from being
trained on specific tasks (Xuan et al., 2024), lim-
iting their application in the domain of fake news
detection (Liu et al., 2024a). At the same time,
some experimental studies suggest that there ex-
ists a gap between MLLMs and fine-tuned smaller
models (Hu et al., 2024), but they also point out the
tremendous potential of MLLMs in fake news de-
tection (Liu et al., 2024b). Our approach leverages
MLLMs to simulate adversarial reasoning between
opposing viewpoints in the debate process, extract-
ing multimodal reasoning knowledge from these
adversarial arguments to assist in fake news detec-
tion.

3 Methodology

For a given multimodal news sample, denoted as
N = {X,U, Z}, where X represents the image
associated with the text I/, and Z denotes the label
of the news.
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The image and text provided appear to be a
genuine news item for several reasons: 1.
... 2. Textual Authenticity: The text is
presented in a straightforward, factual
manner, without any obvious signs of bias or
manipulation. It is written in a style that is
consistent with news reporting, and the
content is relevant to the image...3. ...

he image and text provided appear to be a
fabricated news story. Here are several reasons
why this is likely fake news: 1. ... 2. Lack of
Credible Sources: The text does not provide
any credible sources to back up the claim. In
journalism, it is standard practice to cite reliable
sources when reporting on official decisions or
significant events. The absence of such sources
in the text raises suspicion about the

hy ity of th i s

Extractor Reasoning s Judgment
Trump has officially decided to withdraw A 4 w1
from the elect|or-1 due to mounting public Text Encoder Ay Bl
pressure resulting from recent scandal fake news
revelations.

Figure 1: Illustration of AAR model.

Our core idea is to enhance the reasoning abil-
ity of the model in fake news detection by intro-
ducing adversarial arguments and dialectical think-
ing. This process involves analyzing the same
news from different standpoints and seeking rea-
sons within these conflicting viewpoints that can
contribute to the final judgment. We leverage Mul-
timodal Large Language Models (MLLMs) to gen-
erate reasons supporting both the real and fake
stances of the news, which serve as additional
knowledge input for the model.

Next, the image and text are separately fed into
the frozen image and text encoders, which are de-
rived from a pre-trained CLIP model (Xu et al.,
2023). These encoders extract image features Ay
and text features A, mapping them into the same
high-dimensional space. Since these encoders are
pre-trained on large-scale datasets and aligned, no
additional fine-tuning is required.

We then fuse the image and text features through
a multi-head self-attention mechanism to achieve
the fusion module and make the first prediction
based on the fused tensor:

R; = self-attention(Ax)
Ry = self-attention(A,)
G=a-Ri1+8 Rsg
z1 = Judge(W2 - G)

ey

Here, o and [ are trainable weighting parameters
used to control the influence of image and text
features during the fusion; W is a trainable weight
matrix used to project the fused features G; and
Judge is a classifier implemented through a feed-
forward neural network and activation function,
outputting the first prediction z.

Next, the adversarial arguments generated by
MLLMs are concatenated together and transformed
into a tensor representation A4 via the text encoder.

In the Adversarial Reasoning Module, the model
uses a multi-head cross-attention mechanism for
reasoning based on the original news features G
and makes a second prediction:

Lg = attention(Agq, W1 - G,W; - G) 2

zo = Judge(Lg)
Here, W1 is another trainable weight matrix used
to project the fused features G the attention mech-
anism attention operates on the adversarial argu-
ments Aq and the original fused news features G,
extracting relevant information from the adversarial
arguments.

The final loss function is computed using the
cross-entropy function, measuring the differences
between the news label Z and the model’s two
predictions 21 and z9:

L,=BCE(Z,21) L4=BCE(Z,z5)

(3)
L=y -Ly+72-Ly

Where ~; and 75 are hyperparameters used to bal-
ance the two loss functions, and BCE is the binary
cross-entropy loss function.

More details about prompt design can be found
in Appendix §A.

4 Experiments

4.1 Experimental Setup

Our experiments are conducted on four real-world
multimodal datasets: Weibo (Cao et al., 2017),
Twitter (Boididou et al., 2015), Pheme (Kochk-
ina et al., 2018), and MR2-en (Hu et al., 2023b).
To validate the effectiveness of our model, we
selected the following methods for comparison:
MLLMs (Li et al., 2024): Directly using MLLMs
to make final judgments based on adversarial ar-
guments. We also compared our approach with
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Models Pheme Weibo Twitter MR2-en

Acc F1 Acc F1 Acc F1 Acc F1
MLLMs (Li et al., 2024) 0.574 0.623 0.641 0.602 0.559 0.618 0.533 0.584
Bert (Devlin et al., 2019) 0.735 0.728 0.761 0.755 0.734 0.722 0.682 0.709
ViT (Dosovitskiy et al., 2021)  0.692 0.646 0.709 0.680 0.673 0.631 0.625 0.646
CAFE (Chen et al., 2022) 0.861 0.779 0.840 0.842 0.821 0.814 0.837 0.795
MMCAN (Zheng et al., 2022) 0.907 0.893 0916 0919 0.882 0.894 0912 0.890
COOLANT (Wang et al., 2023) 0915 0910 0911 0908 0.902 0.895 0.901 0.886
AAR 0.928 0.923 0.931 0914 0.924 0919 0913 0.907

Table 1: Performance comparison between AAR model and other models. The best results are in bold.

Models Pheme Weibo Twitter MR2-en
AAR 0.928 0.931 0.924 0.913
-w/o Fusion  0.743 0.752 0.696 0.703
-w/o AR 0.831 0.860 0.817 0.855
-w/o FI 0.824 0.848 0.839 0.831
-w/o FT 0.803 0.773 0.752 0.760
-w/o AD 0.852 0.846 0.854 0.872

Table 2: Ablation studies on our proposed model.

five advanced methods: Bert (Devlin et al., 2019),
ViT (Dosovitskiy et al., 2021), CAFE (Chen et al.,
2022), COOLANT (Wang et al., 2023), and MM-
CAN (Zheng et al., 2022).

Detailed information on the datasets and baseline
methods are presented in Appendix §A.

4.2 Training Settings

Our LLVMs use LLaVA-v1.6-mistral-7b (also
known as LLaVa-Next)?. The CLIP model uses
MetaCLIP-b16> for English datasets and Alibaba’s
Chinese CLIP for Chinese datasets*. The Meta-
CLIP model is open-source and user-friendly, mak-
ing it easier to integrate into existing frameworks.
Due to LLaVA’s weak Chinese generation capabil-
ity, we set LLaVA to output in English even for
Chinese datasets, then translate to Chinese using
the DeepL. AP,

We use the AdamW optimizer with an initial
learning rate of 2e-5, training for 40 epochs with
early stopping to prevent overfitting. Our batch
size is set to 32, with 8 attention heads (H = 8).
The weight hyperparameters y; and 7y, are set to
0.5 and 0.5, respectively. To mitigate overfitting,
we applied a dropout rate of 0.5 and a weight decay
rate of 0.01. The model’s prediction 27 is only used

“https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf

3https://huggingface.co/facebook/metaclip-b16-
fullcc2.5b

*https://huggingface.co/OFA-Sys/chinese-clip-vit-base-
patch16

>https://www.deepl.com/en/pro-api

during the training of the fusion module, while the
final prediction output during testing is zs.

All code is implemented in PyTorch and runs
on NVIDIA V100 32G GPUs. Evaluation metrics
include accuracy and F1 score.

4.3 Performance of AAR Model

Table 1 presents a detailed comparison of the
performance of our proposed Adversarial Argu-
ments Reasoning (AAR) model with state-of-the-
art baseline methods across four datasets. By thor-
oughly analyzing the experimental results, we de-
rive the following key insights: Our AAR model
significantly outperforms baseline methods on all
datasets, demonstrating the effectiveness and ro-
bustness of our proposed approach. Notably, the
accuracy improvements on the Weibo and Twitter
datasets exceed 2%, which is a substantial gain
in the challenging domain of fake news detection.
Compared to directly using Multimodal Large Lan-
guage Models (MLLMs) for fake news detection,
our lightweight model, trained additionally for the
specific task, performs remarkably better. This
finding underscores the necessity of training the
AAR model for specific tasks and provides valu-
able methodological guidance for similar tasks in
the future. In terms of modality, multimodal de-
tection methods consistently outperform unimodal
methods, highlighting the importance of integrating
both image and text information for reasoning. It is
noteworthy that text-based unimodal methods gen-
erally outperform image-based unimodal methods
in our experiments. This observation indicates that,
in the current datasets, textual information carries
richer and more critical semantic cues, providing
the model with more context and reasoning signals.
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4.4 Ablation Study

In the ablation study, to further investigate the ef-
fectiveness of each component of the AAR model,
we perform a quantitative analysis by removing
each component and comparing it with the follow-
ing variants: w/o Fusion: This variant removes
the fusion module, relying solely on the output
of MLLMs for prediction. w/o AR: This variant
excludes the Adversarial Reasoning component,
using only the fusion output for prediction. w/o
AD: This variant omits the step where MLLMs
generate adversarial arguments, instead of having
MLLMs directly evaluate the news. w/o FI: This
variant excludes the image content, meaning no
visual information is incorporated during the fu-
sion process. w/o FT: This variant excludes textual
content, meaning the news text is not utilized in the
fusion process. This structured comparison allows
us to better understand the contribution of each
component to the overall model performance.

The results show that the Fusion variant per-
forms the worst, indicating that Adversarial Rea-
soning over MLLM-generated arguments requires
the assistance of original image and text features
from the news. The results of the FI and FT variants
also confirm that both image and text modalities
significantly contribute to the final judgment. The
AR variant demonstrates the effectiveness of the ar-
guments generated by MLLMs, whose rich knowl-
edge and reasoning processes simulate the human
process of thinking and judging the truthfulness
of news. The AD variant proves that adversarial
outputs with opposing viewpoints better leverage
the inherent knowledge and capabilities of MLLMs
compared to directly allowing MLLMs to analyze
and evaluate the news without a prior stance.

5 Conclusion

Our proposed AAR model leverages the broad
world knowledge and understanding capabilities of
MLLM:s, which have been trained on vast amounts
of data. By generating adversarial arguments to
analyze news content, it uncovers potential contra-
dictions and uncertainties, assisting in determining
the truthfulness of news. Extensive experiments
on multiple datasets have shown that compared to
previous methods, it achieves better accuracy and
generalization, offering an insightful solution for
utilizing the powerful capabilities of MLLMs in
fake news detection systems.

6 Discussion and Limitations

Traditional fake news detection methods overly rely
on the surface-level consistency between text and
images. However, when faced with more sophis-
ticated fake news, where the association between
text and images is stronger, these methods often
fall short (Mu et al., 2024).

More effective detection methods should em-
ulate the way humans assess the truthfulness of
news: not only focusing on surface-level informa-
tion but also utilizing rich background knowledge
and critically analyzing the news content (Hu et al.,
2023a). This involves detecting biases, subjectivity,
and sensationalism in the news. Additionally, mul-
timodal reasoning is required to deeply integrate
text and image information, followed by logical
reasoning to make the final decision.

We acknowledge certain limitations in our re-
search. For instance, our method involves multi-
ple calls to MLLMs, which may result in higher
costs compared to traditional methods. Further-
more, due to cost and API limitations, we only
tested with the most accessible open-source model,
LLaVA-v1.6-mistral-7b, and have not yet evaluated
other MLLMs. Additionally, there is room for im-
provement in our model architecture. For example,
the fusion module could be enhanced by exploring
more advanced fusion methods.
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A Implementation Details

A.1 Datasets

The statistics of the datasets are shown in Table
3, divided into English and Chinese datasets. The
English datasets are Pheme, Twitter, and MR2-en.
The Pheme dataset is collected based on five break-
ing news events, with each event containing a set
of posts, including a large amount of text and im-
ages. The Twitter dataset is released by MediaEval,
aiming to detect fake multimedia content on social
media. MR2-en is an English dataset crawled from
Twitter and verified using the Google Fact Check
Tools API. The Chinese dataset is Weibo, where
all the fake news was crawled from May 2012 to
January 2016, and it was collected and verified
by Xinhua News Agency and Weibo. We prepro-
cess and split the datasets following the methods
of MCAN.

A.2 Baseline

* BERT (Devlin et al., 2019): Only uses textual
content for classification.

* ViT (Dosovitskiy et al., 2021): Only uses vi-
sual information for classification.

e CAFE (Chen et al., 2022): Learns cross-
modal fusion and adaptively aggregates mul-
timodal and unimodal features for fake news
detection.

* COOLANT (Wang et al., 2023): A cross-
modal contrastive learning framework that
learns cross-modal correlation through an
attention-guided module to effectively detect
fake news.

* MMCAN (Zheng et al., 2022): Designs a
co-attention mechanism that is image-text
matching-aware, capturing the alignment be-
tween images and text for better multimodal
fusion in fake news detection.
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Datasets | # of Real News | # of Fake News
Weibo 4779 4749
Twitter 6026 7898
Pheme 1972 3670

MR2-en 2318 1418

Table 3: The Statistics of Four Benchmark Datasets.

A.3 Adversarial Arguments Generation
Prompts

"[INST] <image> news content: <text> Analyze
the given news image and text to determine why this
is likely genuine news. Provide specific analyses
to support your conclusion that this news item is
authentic.[/INST]"

"[INST] <image> news content: <text> Analyze
the given news image and text to determine why
this is likely fake news. Provide specific analyses
to support your conclusion that this news item is
not authentic.[/INST]"

B Ethics and Broader Impact

Our Adversarial Arguments Reasoning (AAR)
model for fake news detection presents both
promising opportunities and ethical challenges.
The research offers substantial benefits, including
reducing the spread of harmful fake news, provid-
ing a more nuanced approach to news authenticity,
and creating a scalable alternative to manual fact-
checking. However, we recognize critical ethical
concerns such as the potential for algorithmic bias,
the risk of misinterpreting complex information,
and the possibility of technological solutions being
misused for narrative control. To mitigate these
risks, we commit to continuous model auditing,
ensuring transparency in our decision-making pro-
cesses, and promoting responsible Al development.
Our approach is fundamentally designed not as an
absolute arbiter of truth, but as a tool to enhance
critical thinking and media literacy.
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