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Abstract

We propose a refined alignment-based method
to assess end-to-end grammatical error correc-
tion (GEC) systems, aiming to reproduce and
improve results from existing evaluation tools,
such as errant, even when applied to raw text
input—reflecting real-world language learners’
writing scenarios. Our approach addresses chal-
lenges arising from sentence boundary detec-
tion deviations in text preprocessing, a factor
overlooked by current GEC evaluation metrics.
We demonstrate its effectiveness by replicating
results through a re-implementation of errant,
utilizing stanza for error annotation and sim-
ulating end-to-end evaluation from raw text.
Additionally, we propose a potential multilin-
gual errant, presenting Chinese and Korean
GEC results. Previously, Chinese and Korean
errant were implemented independently for
each language, with different annotation for-
mats. Our approach generates consistent error
annotations across languages, establishing a
basis for standardized grammatical error an-
notation and evaluation in multilingual GEC
contexts.

1 Introduction

In modern natural language processing (NLP), end-
to-end systems have become increasingly popular
due to their ability to manage entire tasks from
start to finish, offering streamlined and efficient
solutions. In this context, evaluation is important
as it allows for consistent and objective assessment
of these systems, ensuring they meet the intended
goals without the need for manual intervention. A
good evaluation system must be flexible, able to
adapt to various tasks and data types, and robust,
providing reliable results even in the face of diverse
or unexpected inputs. It should also align with high-
quality standards to accurately measure the effec-
tiveness of the design or implementation being eval-
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uated. For instance, the CoNLL 2017-2018 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies (Zeman et al., 2017, 2018)
demonstrated that a system could take raw text and
parse it into a structured format that shows how
words relate to each other in many languages. This
approach is comprehensive, covering everything
from identifying sentence boundaries and breaking
the text into words, to labeling parts of speech and
analyzing dependency relationships. Most impor-
tantly, the evaluation method of Universal Depen-
dencies (UD) is designed to accurately measure the
performance of the entire process, even if there are
mismatches in sentence boundaries between the
system’s output and the predefined standard. This
makes the metric flexible, robust, and applicable in
various settings, accommodating differences that
might arise in the preprocessing stages.

Grammatical error correction (GEC) plays an
essential role in facilitating effective communica-
tion, supporting language learning, and ensuring
the accuracy of written texts. GEC systems provide
automated assistance for both instructors and learn-
ers, making them invaluable tools in educational
and professional settings. Over the years, various
NLP systems and methodologies have been devel-
oped to enhance the effectiveness of automated
GEC. Alongside these advancements, several eval-
uation metrics, including M2 (Dahlmeier and Ng,
2012), GLEU (Napoles et al., 2015), errant (Bryant
et al., 2017; Bryant, 2019), and PT M2 (Gong et al.,
2022), have been introduced to measure the perfor-
mance and reliability of these systems, ensuring
they meet the high standards required for accurate
grammatical correction. However, these metrics
often share a common limitation: they require pre-
defined, consistent sentence boundaries between
the gold standard—an ideal set of corrections—and
the outputs generated by the system.

When applied to raw text input—reflecting real-
world language learners’ writing scenarios—the
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current GEC evaluation method suffers due to dif-
fering sentence boundaries detected during pre-
processing, where the sentences in learners’ writ-
ing and the predefined corrections might not align.
This challenge is similar to issues faced in other
NLP tasks, such as Machine Translation (MT),
where sentence alignment between source and tar-
get sentences is crucial for creating a parallel cor-
pus. In MT, sentence alignment involves matching
sentences in two or more languages, connecting
each sentence in one language to its correspond-
ing sentences in another. Sentence alignment has
evolved over several decades, leading to the devel-
opment of various algorithms. Initially, alignment
studies relied on a length-based statistical method
(Gale and Church, 1993), which used bilingual cor-
pora to model differences in sentence length across
languages as a basis for alignment. Later advance-
ments included more sophisticated techniques like
Bleualign, which uses an iterative bootstrapping
method to refine length-based alignment. Other
early approaches improved alignment accuracy
by incorporating lexical correspondences, exem-
plified by hunalign (Varga et al., 2005) and the
IBM model’s lexicon translation approach (Moore,
2002). More recent efforts, like vecalign (Thomp-
son and Koehn, 2019), integrate linguistic knowl-
edge, heuristics, and various scoring methods to
enhance alignment efficiency.

Built upon advancements in MT alignment, we
propose a refined approach to address GEC-specific
challenges, particularly in end-to-end evaluation
scenarios. The key contributions of our work are as
follows: We introduce an alignment-based method
that significantly improves end-to-end GEC eval-
uation by addressing sentence boundary discrep-
ancies that often arise during preprocessing, es-
pecially when systems process raw, unsegmented
text. Our approach employs an advanced jointly
preprocessed algorithm, overcoming limitations of
traditional methods that rely on predefined sentence
boundaries. Moreover, we provide additional en-
hancements to GEC evaluation by reimplementing
errant: (i) We improve error annotation accuracy
by replacing spaCy with stanza for language pro-
cessing, leading to more precise part-of-speech tag-
ging and dependency parsing (§5). (ii) We extend
our approach to multilingual contexts, demonstrat-
ing its potential for consistent grammatical error an-
notation and evaluation across multiple languages
(§6). Our work aims to enhance the robustness, rel-
evance, and real-world applicability of GEC evalu-

ation methodologies. Our approach addresses the
complexities of language learners’ writing in real-
world contexts, ensuring reliable evaluations across
diverse text inputs and more precisely reflecting the
demands of actual language usage.

2 Previous GEC Evaluation Measures

The MaxMatch (M2) metric identifies the sequence
of edits from the input to the system correction
that achieves the maximum overlap with the gold
standard edits, based on Levenshtein distance
(Dahlmeier and Ng, 2012). The GLEU metric ex-
tends the BLEU metric used in machine translation
(Papineni et al., 2002), modifying the precision cal-
culation by giving extra weight to n-grams in the
candidate text that align with the reference but not
with the source (i.e., the set of n-grams R\S). It
also introduces a penalty for n-grams present in
both the candidate and the source but absent in
the reference, referred to as false negatives (S\R)
(Napoles et al., 2015).

A novel pretraining-based approach to M2 uses
BERTScore and BARTScore to calculate edit
scores, allowing assessments based on insights
from pretrained metrics. However, directly apply-
ing PT-based metrics often yields unsatisfactory
correlations with human judgments due to an ex-
cessive focus on unchanged sentence parts. To
address this, PT-M2 has been introduced, leverag-
ing PT-based metrics only for scoring corrected
parts, significantly improving correlation with hu-
man evaluations and achieving a state-of-the-art
Pearson correlation of 0.95 on the CoNLL14 evalu-
ation task (Gong et al., 2022).

While these different metrics have their strengths
and limitations, currently errant (ERRor ANnota-
tion Toolkit) is the de facto standard for evaluating
GEC. errant compares error annotations between
the gold standard and system m2 files1, calculating
precision, recall, and reporting the F0.5 score. This
score emphasizes precision over recall, reflecting
the importance of providing accurate feedback to
language learners in GEC systems (Bryant et al.,
2017; Bryant, 2019). errant addresses an impor-
tant limitation of the original M2 metric–the ten-
dency to inflate performance by heavily weighting

1m2 is a common format for representing grammatical
errors and corrections. For each sentence, it includes the
original tokenized text (the S line), and one or more error
annotation lines (A lines). These A lines contain the position
of each error, the error type (or no error), the correction, and
other information. See Figure 2 for an example in English,
and Figure 4 for examples in Chinese and Korean.
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true positives. Another advantage of errant over
other metrics is that in addition to providing a score,
it also offers detailed error annotation, which facil-
itates a deeper analysis of system performance and
specific error patterns. errant has been adapted
for multiple languages, including German, Chinese,
and Korean, among others (Boyd, 2018; Hinson
et al., 2020; Zhang et al., 2022; Sonawane et al.,
2020; Belkebir and Habash, 2021; Náplava et al.,
2022; Katinskaia et al., 2022; Yoon et al., 2023).

Given the advantages of errant and its widely
accepted status as the de facto standard for GEC
evaluation, our work adapted errant by incorpo-
rating an alignment-based preprocessing approach.
This adaptation addresses challenges in end-to-
end GEC scenarios, particularly discrepancies in
sentence boundaries between the gold standard
and system predictions during preprocessing. Our
method ensures accurate evaluations even with dif-
fering sentence boundaries, maintaining errant’s
reliability in real-world GEC applications.

3 Alignment-based errant

We utilize an alignment-based evaluation algorithm
to enhance end-to-end GEC evaluation measures.
Recognizing that sentence boundaries between the
gold standard and system outputs may vary dur-
ing preprocessing, this algorithm employs sentence
alignment to accurately match sentences from the
gold and system GEC results, ensuring correct eval-
uations. Consequently, while the fundamental GEC
evaluation measures remain unchanged, they are
now applied to sentence-aligned results, improving
the accuracy and reliability of the metrics.

We adapt a jointly preprocessed algorithm,
where it preprocesses sentence boundary and tok-
enization between source and target through align-
ment, as described in Algorithm 1. This algorithm
is specifically designed for environments where
gold and system sentences are nearly identical in
a monolingual context. A similar alignment-based
joint preprocessing approach has been shown to
be effective in improving evaluation of constituent
parsing (Jo et al., 2024a; Park et al., 2024) and pre-
processing tasks (Jo et al., 2024b) where they have
shown the effectiveness of the algorithm for several
languages including several European languages as
well as Chinese and Korean. This contrasts with
traditional sentence alignment methods in MT that
often require recursive editing to accommodate sig-
nificant differences between source and target lan-

guages. In cases of mismatches due to varying sen-
tence boundaries, our pattern matching-based algo-
rithm accumulates sentences until it finds a match-
ing pair. The computational efficiency of our ap-
proach is notable, requiring linear time, O(m+ n),
where m and n are the lengths of the gold and sys-
tem sentences, respectively. This is a significant
improvement over the traditional cubic complexity,
n3, of standard length-based sentence alignment al-
gorithms in MT. Figure 1 shows an example where
sentence boundaries between the gold standard
and system outputs may vary during preprocessing.
The proposed jp-algorithm introduces sentence
alignment to ensure correct GEC evaluations.

Algorithm 1 Pseudo-code for sentence alignment
1: function PATTERNMATCHINGSA (L,R):
2: while L andR do
3: if Li(̸⊔) =Rj(̸⊔) then
4: L′, R′ ← L′ + Li,R′ + Rj where 0 < i ≤

LEN(L), 0 < j ≤ LEN(R)
5: else
6: while ¬(Li(̸⊔) =Rj( ̸⊔)) do
7: if LEN(Li) < LEN(Rj) then
8: L′← L′ + Li

9: i← i+ 1
10: else
11: R′← R′ +Rj

12: j ← j + 1
13: end if
14: end while
15: L′,R′←L′ + L′,R′ +R′

16: end if
17: end while
18: return L′,R′

In Equation (1), we define that sequences Li and
Rj can be aligned if they match when all spaces
are removed, denoted as Li ̸ ⊔ and Rj ̸ ⊔. This
method aims to minimize differences due to tok-
enization.

Li( ̸⊔) == Rj(̸⊔) (1)

However, simply removing spaces and concatenat-
ing words may not sufficiently identify identical
sentence pairs. Variations in tokenization can intro-
duce grammatical morphemes absent in the gold-
standard sentences, or vice versa. For example,
the contraction can’t presents tokenization chal-
lenges, as it can be tokenized as can not or ca n’t,
with each version introducing different characters.
Such variations mean that our character-level evalu-
ation may fail to accurately capture these discrepan-
cies. The inconsistency in tokenization standards
across different corpora further complicates this
issue. For instance, the English UD corpus from
EWT tokenizes can’t as ca and n’t, whereas Par-
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L (SYSTEM) R (GOLD)
(before alignment) Mike McConnell 07/06/2000 14:57 John , Hello from South Mike McConnell ⊓

America . ⊓ 07/06/2000 14:57 ⊓
John , Hello from South America . ⊓

(after alignment) Mike McConnell 07/06/2000 14:57 John , Hello from South
America . ⊓

Mike McConnell ∼∼∼ 07/06/2000 14:57 ∼∼∼ John ,
Hello from South America. ⊓

Figure 1: Examples with the sentence alignment algorithm where ⊓ is a sentence delimiter.

TUT tokenizes it as can and not. We therefore
propose to align sequences Li and Rj , denoted
as Li ̸⊔ and Rj ̸⊔ respectively, when they demon-
strate close character similarities that exceed a pre-
defined threshold, α. Moreover, the subsequent
sequences, Li+1 and Rj+1, must either directly
match or exhibit sufficient similarity, as outlined in
Equation (2).

(Li( ̸⊔) ≃ Rj( ̸⊔)) ∧
(Li+1(̸⊔) == Rj+1(̸⊔) ∨ Li+1(̸⊔) ≃ Rj+1(̸⊔)) (2)

We modify the Jaro-Winkler distance, traditionally
used to measure the similarity between two strings,
by incorporating a suffix scale in addition to the
existing prefix scale. The original Jaro similarity,
denoted by simj , calculates matches based on the
number of forward-matching characters between
two strings, s1 and s2. The Jaro-Winkler distance
enhances this similarity by introducing a prefix
scale p for a specified prefix length l. Our modifica-
tion extends this method by adding a similar scale
for a defined suffix length, thereby improving the
algorithm’s ability to recognize suffix similarities
as well.

α = simj −
(lp+ l′p)(1− simj)

2
(3)

where simj is the Jaro similarity between two
strings s1 and s2, l and l′ are the lengths of the
common prefix and suffix of the strings, respec-
tively, and p is a constant scaling factor (set to
0.1).2 If Li and Rj cannot be aligned, we proceed
by concatenating sequences based on their lengths.
Specifically, if the length of Li:m exceeds that of
Rj:n, then Li is concatenated with Li+1. Con-
versely, if Rj:n is longer, then Rj is concatenated
with Rj+1. This concatenation process is repeated
until the pairs Li+1 and Rj+1 meet the established
sentence matching criteria.

We have re-implemented errant incorporat-
ing a joint preprocessing step, now referred to as

2The value of α represents a trade-off between the correct-
ness and precision of the alignments. If α is too small, we risk
boundary errors (false positives), while if α is too large, we
may miss some boundaries (false negatives).

jp-errant. Unlike the original errant, which
used spaCy for language processing, jp-errant
employs the part-of-speech tagging capabilities of
stanza (Qi et al., 2020), chosen for its demon-
strably clear performance.3 We maintain the orig-
inal error annotation scheme of errant, but we
adjust word positions by re-indexing them during
the sentence alignment process when sentences are
concatenated. This adjustment is crucial to handle
discrepancies in sentence boundaries between the
gold standard and those processed by stanza.

In the alignment algorithm, concatenating sen-
tences necessitates updates to the positions of cor-
responding edits. After sentence alignment, the
re-indexing process is carried out in two primary
steps: First, we update all non-empty edits. For
each concatenated sentence, we accumulate its to-
ken count to serve as the offset for subsequent edits.
Consider the following example: when concate-
nating sentences Si = [w1, w2, ..., wm] and Sj =
[w1, w2, ..., wn], the edits Ei = [e(a,b)] and Ej =
[e(c,d)] are adjusted to become [e(a,b), e(c+m,d+m)]
in the concatenated sequence. Second, after re-
indexing all edits, we proceed to remove any un-
necessary empty edits. This step is crucial to ensure
that the m2 results are fully aligned, with no unnec-
essary empty edits.

Details of the re-indexing process by jp-errant
are shown in Figure 2. For example, the m2
file’s state is shown both before and after sentence
alignment. The gold m2 file features an empty
edit (-1 -1|||noop) and a capitalization edit (0
1|||R:ADV), where the adverb how is replaced by
How. Conversely, the stanza m2 file contains two
empty edits, which indicate places where no gram-
matical errors were corrected by the system.

4 Extended Gale-Church Algorithm

To assess the effectiveness of our proposed align-
ment method, we first extended the original Gale-
Church sentence alignment algorithm (Gale and
Church, 1993) to accommodate the concatenation

3https://stanfordnlp.github.io/stanza/
performance.html

https://stanfordnlp.github.io/stanza/performance.html
https://stanfordnlp.github.io/stanza/performance.html
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1. Preparation
gold m2 S Kate Ashby ,

A -1 -1|||noop|||-NONE-|||REQUIRED|||-NONE-|||0
S how are you ? I hope you are well .
A 0 1|||R:ADV|||How|||REQUIRED|||-NONE-|||0

stanza m2 S Kate Ashby , how are you ?
A -1 -1|||noop|||-NONE-|||REQUIRED|||-NONE-|||0
S I hope you are well .
A -1 -1|||noop|||-NONE-|||REQUIRED|||-NONE-|||0

2. Sentence alignment
gold m2 S Kate Ashby , how are you ? I hope you are well .

A -1 -1|||noop|||-NONE-|||REQUIRED|||-NONE-|||0
A 0 1|||R:ADV|||How|||REQUIRED|||-NONE-|||0

stanza m2 S Kate Ashby , how are you ? I hope you are well .
A -1 -1|||noop|||-NONE-|||REQUIRED|||-NONE-|||0
A -1 -1|||noop|||-NONE-|||REQUIRED|||-NONE-|||0

3. Re-indexing
gold m2 S Kate Ashby , how are you ? I hope you are well .

A 3 4|||R:ADV|||How|||REQUIRED|||-NONE-|||0
stanza m2 S Kate Ashby , how are you ? I hope you are well .

A -1 -1|||noop|||-NONE-|||REQUIRED|||-NONE-|||0

Figure 2: Procedure example of jp-errant: stanza
m2 indicates that sentence boundaries are detected by
stanza from raw text.

of up to m and n sentences for comparison with
our proposed algorithm. We begin by enhancing
the original Gale-Church sentence alignment algo-
rithm. Our modification allows for aligning sen-
tences beyond the traditional 1:1, 1:0, 0:1, 2:1, 1:2,
and 2:2 alignments prescribed by the original algo-
rithm. Notably, during sentence alignment, more
than two sentences may be contracted as shown
in Figure 1. The present value of D(i, j) is deter-
mined by minimizing across the following scenar-
ios. We assume there is no 1:0 and 0:1, and expand
the algorithm to enable contraction for up to m and
n sentences:

min



D(i− 1, j − 1) + COST(1:1 align si, tj)
D(i− 1, j − 2) + COST(1:2 align si, tj−1, tj)
D(i− 2, j − 1) + COST(2:1 align si−1, si, tj)
D(i− 2, j − 2) + COST(2:2 align si−1, si, tj−1, tj)
...

D(i−m, j − n) + COST(m:n align si−m, si, tj−n, tj)
...

Implementation details We utilize the same
COST function and other constants as the Gale-
Church algorithm proposed. Nevertheless, this ex-
pansion increases its search space exponentially.
Therefore, to manage this expansive search space,
we introduce the following constraint.

Li(̸⊔) == Rj( ̸⊔) (4)

where the notation ̸ ⊔ represents spaces removed
during sentence alignment when comparing Li and
Rj, regardless of their tokenization results. By in-
corporating this constraint, we effectively reduce
the search space, limiting the expansion only un-
til before enforcing the constraint. The original
Gale and Church algorithm exhibits a linear search

complexity, as it evaluates only a constant pair of
potential matches, resulting in a time complexity
of O(n3). We generalize the algorithm to achieve
a higher search complexity of O(n2), while main-
taining a time complexity of O(n3).

We modified the prior probability of a match be-
tween source and target sentences, Prob(match)
parameter of the Gale and Church algorithm, ob-
taining its value from texts of UD_English-EWT,
which we consider general English text, using
stanza’s sentence boundary detection results. This
adjustment allowed us to improve the estima-
tion of match probabilities. For instance, in
UD_English-EWT, the match probability for 1:1
sentence alignment is raised from 0.89, as com-
puted by the Gale and Church algorithm, to 0.95
in our implementation. We have also integrated
a straightforward Laplace smoothing technique to
address unseen match probabilities. The maximum
match count is set to 11, which accounts for sce-
narios such as a 9:11 sentence alignment.

Alignment result comparison We evaluate our
sentence alignment approaches using the joint pre-
processing algorithm by calculating similarities be-
tween the source and target texts post-alignment.
This involves using a defined similarity measure, as
shown in Equation 5, to assess the correspondence
of sentences after alignment, which is important
for the effectiveness of our text processing tasks.
To calculate these similarities, we concatenate the
sentences in each alignment pair, remove all spaces
from both the gold and system sentences, and then
compute the edit distance ratio between them. The
results in Table 1, show perfect similarity scores
across the proficiency levels of the Cambridge En-
glish Write & Improve (W&I) development dataset
(further described in § 5), indicating accurate align-
ment of sentences by the proposed algorithm. Ad-
ditionally, to further analyze the alignment quality,
we examined the number of sentences in each align-
ment pair, with findings documented in Table 2.

similarities =
∑

similarities of each pair
# of aligned sentence pairs

(5)

5 Experiments and Results

GEC dataset For our experiments, we utilized
the development dataset from the Cambridge En-
glish Write & Improve (W&I) corpus, which was
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# of aligned sentences similarities
A B C A B C

gold 957 1209 1015 1.0 1.0 1.0
EGC 933 1193 999 0.993 0.997 0.996
JP 948 1201 1008 1.0 1.0 1.0

Table 1: Sentence alignment results for the W&I devel-
opment dataset by the extended Gale-Church algorithm
(EGC) and the jp algorithm (JP)

A B C ALL
number ratio number ratio number ratio number ratio

(1, 1) 853 89.13 1109 91.73 938 92.41 2900 91.86
(1, 2) 43 4.49 38 3.16 30 2.98 111 3.52
(2, 1) 27 2.85 25 2.08 24 2.38 76 2.41

beyond 25 2.64 29 1.33 16 1.59 70 2.22

Table 2: Statistics for sentence alignment and its corre-
sponding ratios

introduced during the Building Educational Ap-
plications 2019 Shared Task: Grammatical Er-
ror Correction (BEA2019) (Bryant et al., 2019).
This dataset is manually annotated with Common
European Framework of Reference (CEFR) pro-
ficiency levels—beginner (A), intermediate (B),
and advanced (C) (Yannakoudakis et al., 2018).
The texts, written by L2 English learners, show a
trend where sentences from higher proficiency lev-
els tend to be longer than those from lower levels.
Specifically, the average token counts per sentence
for levels A, B, and C are 17.538, 18.304, and
19.212, respectively. We analyzed the distribution
of errors across different language proficiency lev-
els. The error types in levels B and C are similar,
including missing punctuation marks (M:PUNCT),
incorrect prepositions (R:PREP), and missing deter-
miners (M:DET). Additionally, level A frequently
exhibits orthographic errors (R:ORTH), such as case
or whitespace issues. Table 3 presents the ratios of
the most frequent error types within the W&I train-
ing data, where the ratios represent the distribution
of grammatical errors (Zeng et al., 2024).

Proficiency A Proficiency B Proficiency C
M:PUNCT 0.0933 M:PUNCT 0.1134 M:PUNCT 0.1183
R:ORTH 0.0602 R:PREP 0.0589 R:PREP 0.0517
R:PREP 0.0506 M:DET 0.0442 M:DET 0.0345

R:VERB:TENSE 0.0455 R:VERB 0.0414 R:VERB 0.0323
R:VERB 0.0419 R:VERB:TENSE 0.0393 R:VERB:TENSE 0.0273

Table 3: The most frequent errors and their ratios in the
W&I dataset

GEC evaluation results We utilized two off-
the-shelf state-of-the-art GEC systems: GECTOR

(Omelianchuk et al., 2020) and T5 (Rothe et al.,
2021). Briefly, GECTOR employs a sequence tag-
ging approach instead of sequence generation. This
system uses a Transformer encoder to predict token-

level edit operations, making it significantly faster
and more efficient than traditional seq2seq mod-
els. In our experiments, we used the RoBERTa
pre-trained model as the encoder, which showed
the best performance among various transformer
models tested (Omelianchuk et al., 2020).4 T5,
or Text-To-Text Transfer Transformer, is a unified
framework for NLP tasks that converts all tasks
into a text-to-text format. We used the T5-small
model, a smaller variant with approximately 60
million parameters. This model was fine-tuned on
the cleaned English LANG-8 corpus and achieved
reported F0.5 scores of 60.54 and 65.01 on the
CoNLL2014 and BEA2019 test sets, respectively
(Rothe et al., 2021).5

The GEC results using the original errant
and jp-errant with the gold-standard sentence
boundaries, as well as jp-errant with the system-
generated sentence boundaries, are presented in Ta-
ble 4. It’s important to note that the original errant
does not allow the use of different sentence bound-
aries, which precludes a “SYS + errant” setup.
The results of GEC may also differ between texts
with gold-standard sentence boundaries and those
with system-generated boundaries due to the na-
ture of sequence-to-sequence GEC. The former
shows the reproducibility of jp-errant, while the
latter presents how the proposed method can han-
dle real-world scenarios. If there are mismatches
in sentence boundaries between the gold-standard
and system-generated results, we initiate a sentence
alignment process.

We have integrated the English-specific classi-
fication module from the original errant, which
identifies types of grammatical errors for English.
This module categorizes detailed grammatical er-
ror types, such as NOUN:POSS for errors related
to possessive noun suffixes. It utilizes universal
part-of-speech tags (Petrov et al., 2012) and de-
pendency relation tags to determine error types.
For instance, if the first token in an edit is tagged
as PART—typically indicating particles or function
words—and its dependency relation is case:poss
(indicative of a possessive case), the classifier la-
bels it as a NOUN:POSS error based on this informa-
tion. Without the classification module, jp-errant
can still produce generic error annotations with
corresponding POS labels and evaluate the results
based on error edits regardless of languages. How-

4https://github.com/grammarly/gector
5https://huggingface.co/Unbabel/gec-t5_small

https://github.com/grammarly/gector
https://huggingface.co/Unbabel/gec-t5_small
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GECTOR A B
TP FP FN Prec Rec F0.5 TP FP FN Prec Rec F0.5

GOLD + errant 1299 798 1680 0.6195 0.4361 0.5714 1049 621 1470 0.6281 0.4164 0.5702
GOLD + jp-errant 1295 794 1678 0.6199 0.4356 0.5715 1047 623 1456 0.6269 0.4183 0.5701

SYS + jp-errant 1220 842 1753 0.5917 0.4104 0.5436 1039 626 1464 0.624 0.4151 0.5670
C all

TP FP FN Prec Rec F0.5 TP FP FN Prec Rec F0.5
GOLD + errant 415 350 706 0.5425 0.3702 0.4963 2763 1769 3856 0.6097 0.4174 0.5582

GOLD + jp-errant 414 350 703 0.5419 0.3706 0.496 2756 1767 3837 0.6093 0.4180 0.5582
SYS + jp-errant 413 347 704 0.5434 0.3697 0.4968 2672 1815 3921 0.5955 0.4053 0.5444

T5 A B
TP FP FN Prec Rec F0.5 TP FP FN Prec Rec F0.5

GOLD + errant 1271 696 1708 0.6462 0.4267 0.5859 960 593 1559 0.6182 0.3811 0.5498
GOLD + jp-errant 1265 689 1708 0.6474 0.4255 0.5862 945 592 1558 0.6148 0.3775 0.5462

SYS + jp-errant 1173 771 1800 0.6034 0.3946 0.5456 928 614 1575 0.6018 0.3708 0.5351
C all

TP FP FN Prec Rec F0.5 TP FP FN Prec Rec F0.5
GOLD + errant 358 350 763 0.5056 0.3194 0.4528 2589 1639 4030 0.6123 0.3911 0.5501

GOLD + jp-errant 355 332 762 0.5167 0.3178 0.4592 2565 1613 4028 0.6139 0.3890 0.5503
SYS + jp-errant 351 332 766 0.5139 0.3142 0.456 2452 1717 4141 0.5882 0.3719 0.5269

Table 4: SOTA GEC results achieved by GECTOR and T5 with the English-specific error classification module with
gold and system sentence boundaries

ever, with this language-specific classification mod-
ule, it can generate language-specific error annota-
tions for other languages.

While we successfully reproduced errant, dis-
crepancies persist, as shown in Figure 3. One no-
table distinction lies in preposition naming: all POS
labels adhere to the Universal POS label names, yet
the original errant continues to use PREP instead
of ADP for prepositions. Another difference arises
from an error in POS tagging by spaCy, which was
employed by the original errant. In the second
sentence, your at positions 3 and 4 is identified as a
pronoun (PRON) by stanza, whereas spaCy labels
it as a determiner (DET).

6 Multilingual Alignment-based errant

We present multilingual errant results, focusing
on Chinese and Korean L2 GEC. By aligning and
evaluating these languages, we demonstrate the
challenges and potential solutions in applying the
proposed GEC evaluation methodology across dif-
ferent languages.

Chinese L2 GEC dataset Multi-Reference
Multi-Source Evaluation Dataset for Chinese
Grammatical Error Correction (CGEC) is a multi-
reference multi-source dataset comprising sen-
tences from the NLPCC18 test set (Zhao et al.,
2018), CGED-2018 and CGED-2020 test datasets
(Rao et al., 2018, 2020), and randomly selected
Lang-8 dataset (Zhang et al., 2022).6 The
MuCGEC dataset exhibits an average number of

6https://github.com/HillZhang1999/MuCGEC

target references per sentence exceeding 2. They
discovered that augmenting the average number
of references per sentence enhances the reliabil-
ity of evaluations, attributed to its multi-reference
characteristics.

Korean L2 GEC dataset The GEC dataset for
Korean consists of two distinct types: L1 writing
from the Center for Teaching and Learning for
Korean, and L2 writing from the National Insti-
tute of Korean Language (NIKL) corpus (Yoon
et al., 2023).7 This dataset includes the original
text, the corrected text, and its corresponding error-
annotated errant-style m2 file, automatically gen-
erated for Korean. Utilizing the proposed split
(70/15/15) of the GEC dataset for Korean. The
original L2 dataset is collected by NIKL with 3613
files. It provides the original L2 sentences, and their
morphological segmentation with part-of-speech
tags. The correction is annotated at the morpheme
level by adding, deleting and replacing the gram-
matical error morpheme.

Multilingual experiments and results For Chi-
nese GEC, we employed a recent system based
on the Chinese BART-large model (Zhang et al.,
2023). The model was trained using a combination
of the HSK and Lang8 datasets, totaling approxi-
mately 1.3 million sentence pairs. This model is
designed to effectively handle grammatical errors
in texts written by Chinese L2 learners.8 Similarly,

7https://github.com/soyoung97/Standard_Korean_
GEC

8https://huggingface.co/HillZhang/real_
learner_bart_CGEC

https://github.com/HillZhang1999/MuCGEC
https://github.com/soyoung97/Standard_Korean_GEC
https://github.com/soyoung97/Standard_Korean_GEC
https://huggingface.co/HillZhang/real_learner_bart_CGEC
https://huggingface.co/HillZhang/real_learner_bart_CGEC
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jp-errant errant
S It ’s difficult answer at the question " ... S It ’s difficult answer at the question " ...
A 3 3|||M:VERB:FORM|||to|||REQUIRED|||-NONE-|||0 A 3 3|||M:VERB:FORM|||to|||REQUIRED|||-NONE-|||0
A 4 5|||U:PREP||||||REQUIRED|||-NONE-|||0 A 4 5|||U:ADP||||||REQUIRED|||-NONE-|||0
S Thank you for your e - mail , it was wonderful to hear from you . S Thank you for your e - mail , it was wonderful to hear from you .
A 3 4|||R:PRON|||your|||REQUIRED|||-NONE-|||0 A 3 4|||R:DET|||your|||REQUIRED|||-NONE-|||0
A 7 9|||R:PUNCT|||. It|||REQUIRED|||-NONE-|||0 A 7 9|||R:PUNCT|||. It|||REQUIRED|||-NONE-|||0

Figure 3: Differences between errant and jp-errant

Chinese Korean
TP FP FN Prec Rec F0.5 TP FP FN Prec Rec F0.5

GOLD + previous work 699 1854 3534 0.2738 0.1651 0.242 3037 7323 5822 0.2931 0.3428 0.3019
GOLD + jp-errant 788 2215 3765 0.2624 0.1731 0.2379 3187 2212 5090 0.5903 0.385 0.5334

SYS + jp-errant 499 1781 4054 0.2189 0.1096 0.1825 3418 2307 4859 0.597 0.413 0.5482

Table 5: Multilingual GEC results from previous work ChERRANT for Chinese and KAGAS for Korean) and
jp-errant, using both gold and system-detected sentence boundaries.

for Korean GEC, we utilized a system based on
the Korean BART model (Yoon et al., 2023). The
model was fine-tuned using both Korean L1 and
L2 datasets. Compared to Hanspell, a widely re-
garded top rule-based Korean GEC system, this
model demonstrates both efficiency and superior
performance in correcting grammatical errors in
Korean texts.9

In previous work, language-specific tools were
used for error annotation and evaluation: ChERRANT
for Chinese (Zhang et al., 2022) and KAGAS for
Korean (Korean Automatic Grammatical error An-
notation System; Yoon et al., 2023)10. In the
present work, we apply the generic jp-errant to
generate m2 files for Chinese and Korean with-
out any language-specific error classification. The
m2 files generated by jp-errant adhere to the
original m2 file conventions (Missing, Unecessary,
and Replacement) to support future multilingual
GEC evaluations. Discrepancies between previous
work and jp-errant would be reduced if language-
specific error classifications were provided. Fig-
ure 4 shows examples of the multilingual m2 files
for Chinese and Korean.

Table 5 presents the multilingual GEC results
obtained using jp-errant. For results from previ-
ous work, GOLD sentence boundaries are used. All
input text is concatenated into a single text block,
and sentence boundaries are detected using stanza
for SYS. For Chinese L2 data, ChERRANT and
jp-errant exhibit similar performance regardless
of potential different sentence boundaries, likely
due to the relatively low proportion of language-
specific grammatical error annotations. According
to results from ChERRANT, about 4.56% of the errors
in the validation set belong to language-specific

9https://huggingface.co/Soyoung97/gec_kr
10See Appendix A for a brief description of both tools.

error types that were not part of the the original
errant: spelling errors (SPELL), missing compo-
nents (MC), and quantifier errors (QUANT). Spelling
errors in Chinese are defined based on the strings
similarity in pinyin pronunciation and character
shape. Missing components are defined as place-
holders for important words that were somehow
omitted in the source sentence. Quantifiers are not
part of the original errant labels. Among these,
spelling errors are the most common, accounting
for 3.96% of all errors. In contrast, Table 5 shows
large discrepancies in the Korean results. It has
been recognized that the previous KAGAS system
has limitations in error detection and annotation.
Our current implementation using stanza demon-
strates improved language processing capabilities
for Korean. A refined Korean-specific error annota-
tion system is currently in development, aiming to
address existing issues and enhance the accuracy
of Korean GEC evaluation.

7 Conclusion

In this study, we addressed various challenges in
grammatical error correction by implementing and
refining a methodology for end-to-end processing.
We demonstrated the effectiveness of our meth-
ods by reproducing previous methodologies and
highlighting our contributions. Our primary con-
tribution is the refined alignment process, which
addresses discrepancies in sentence boundaries
between gold-standard and system-generated re-
sults. Despite successfully reproducing errant us-
ing stanza, we identified persistent discrepancies,
such as differences in POS label naming conven-
tions and tagging errors, which was used in the
original errant. We also took an additional step
to facilitate multilingual evaluation by generalizing
errant, and we presented case studies for Chinese

https://huggingface.co/Soyoung97/gec_kr
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m2 file generated by ChERRANT:
S 对 一个 生名 来说 空气 污染 是 很 危害 的 问题 ， 对 身体 不好 。
T0-A0 对 一个 生命 来说 空气 污染 是 有 很 大 危害 的 问题 ， 对 身体 不好 。
A 2 3|||S:SPELL|||生命|||REQUIRED|||-NONE-|||0
A 7 7|||M:VERB|||有|||REQUIRED|||-NONE-|||0
A 8 8|||M:ADJ|||大|||REQUIRED|||-NONE-|||0

m2 file generated by jp-errant:
S 对 一个 生名 来说 空气 污染 是 很 危害 的 问题 ， 对 身体 不好 。
A 2 3|||R:NOUN|||生命|||REQUIRED|||-NONE-|||0
A 7 7|||M:VERB|||有|||REQUIRED|||-NONE-|||0
A 8 8|||M:ADJ|||大|||REQUIRED|||-NONE-|||0

(a) Example of word based m2 files for Chinese (‘Air pollution is a very harmful problem to a life and is bad for the body.’)

m2 file generated by KAGAS:
S 한국어수업할때 너무 자고 싶었다
A 0 1|||WS|||한국어 수업할 때|||REQUIRED|||-NONE-|||0
A 4 4|||INSERTION|||.|||REQUIRED|||-NONE-|||0

m2 file generated by jp-errant:
S 한국어수업할때 너무 자고 싶었다
A 0 1|||R:NOUN VERB NOUN|||한국어 수업할 때|||REQUIRED|||-NONE-|||0
A 4 4|||M:PUNCT|||.|||REQUIRED|||-NONE-|||0

(b) Example of m2 files for Korean (‘I really wanted to sleep during Korean class.’)

Figure 4: Differences in m2 files for Chinese and Korean

and Korean, which enabled potential multilingual
evaluation for GEC. Such universality will provide
a framework for the consistent annotation of gram-
matical errors across different languages. In con-
clusion, we lay a robust foundation for advancing
grammatical error correction, particularly its evalu-
ation, and enhancing its applicability in real-world
contexts.

Limitations

While this study is comprehensive in nature, we
acknowledge three minor limitations. First, adap-
tations for language-specific error classification
in the multilingual evaluation using jp-errant
are left for future work, presenting an opportu-
nity for further refinement and specialization of
the tool for various languages. Second, our study
primarily focused on adapting errant, as it is cur-
rently the de facto GEC evaluation tool in the field.
However, it’s worth noting that our jointly prepro-
cessed algorithm can potentially be applied to other
reference-based evaluation metrics, including the
M2 scheme. We leave the exploration and imple-
mentation of these applications to future research
efforts. Third, unlike the original errant which
uses spaCy, jp-errant employs stanza’s POS
tagging capabilities, chosen for its demonstrated
performance across diverse languages (Qi et al.,
2020). However, discrepancies in POS tagging

contribute to challenges in comparisons between
the two frameworks, as observed in variations in
English precision scores and performance gaps in
Korean GEC. A comprehensive error analysis quan-
tifying the impact of these POS mismatches and
tagging errors remains as future work. These limi-
tations do not significantly impact the overall find-
ings of our study but rather point to promising
directions for future research in the field of GEC
evaluation.
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A Error Annotation for Chinese and
Korean

Chinese ChERRANT (Chinese errant), an adapta-
tion of the original English errant, is the most re-
cent development in annotating Chinese grammat-
ical errors and evaluating Chinese GEC systems
(Zhang et al., 2022). ChERRANT operates at two
levels of granularity: character-based and word-
based, and primarily categorizes errors into three
operational types: redundant (R, equivalent to U for
unnecessary in the original errant), missing (M),
and substitution (S, equivalent to R for replacement
in the original errant) errors. For word-based er-
ror annotation, ChERRANT utilizes LTP-based word
segmentation (Che et al., 2010)11 and converts its
part-of-speech (POS) tags to Universal POS labels
(Petrov et al., 2012). While word-based annota-
tion allows for more detailed error categorization
(e.g., S:VERB would indicate a verb substitution
error), due to potential word segmentation inaccu-
racies, ChERRANT applies character-level annotation
by default and has not fully implemented all word-
level annotations. jp-errant, as proposed in the
current work, attempts to address the limitations
of ChERRANT by: 1) using stanza for improved
Chinese word segmentation and POS tagging, and
2) adhering to the original errant conventions
(Missing, Unecessary, and Replacement) for consis-
tent multilingual grammatical error annotation.

Korean While the original Koraen L2 dataset col-
lected by the National Institute of Korean Language
(NIKL), provided error annotations with three dif-
ferent levels based on the POS of the morpheme
(e.g. noun, verb, case marker, and other grammat-
ical categories), transformation of the morpheme
(omission, addition, replacement, and misforma-
tion12), and its linguistic dimensions (pronunci-
ation, syntax, and discourse), the previous work
proposed fourteen error types such as INSERTION,
DELETION, and WS (word space) at the word level
by converting sequences of morphemes into words
(Yoon et al., 2023). Given that grammatical errors
manifest at the morpheme level, while the current
error annotation operates at the word level, the
previous work established two priority rules for

11https://github.com/HIT-SCIR/ltp
12The term misformation by NIKL is not commonly used

to refer to a spelling error.

categorizing error types to assign a single error
type for each word, as follows: (i) INSERTION >
DELETION > others, and (ii) WS > WO > SPELL

> SHORTEN > PUNCTUATION > others, where
WO stands for ’word order’. However, the PUNC-
TUATION and WO error types do not appear in the
m2 files, indicating that this type of error might
not have been explicitly annotated or utilized in the
previous work.

https://github.com/HIT-SCIR/ltp
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