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Abstract

Speech-to-Text Translation (S2TT) involves
converting spoken language from a source lan-
guage directly into text in a target language.
Traditionally, S2TT systems rely on a sequen-
tial pipeline that combines Automatic Speech
Recognition (ASR) and Machine Translation
(MT) models. However, these systems are
prone to error propagation and demand sub-
stantial resources to develop and train each
component independently. Thus, posing a ma-
jor challenge in industry settings where cost-
effective yet highly accurate S2TT solutions
are essential. With the increasing availability
of multilingual large pre-trained speech mod-
els (LPSM), we propose a parameter-efficient
framework that integrates one LPSM with a
multilingual MT engine. We evaluate the ef-
fectiveness of several well-established LPSMs
within this framework, focusing on a real-world
industry scenario that involves building a sys-
tem capable of translating between French, En-
glish, and Arabic. The results show that high-
quality S2TT systems can be built with minimal
computational resources, offering an efficient
solution for cross-lingual communication.

1 Introduction

Speech-to-Text Translation refers to the process
of converting spoken language into written text
in a different language, a vital technology for a
wide range of applications, including hands-free
communication, dictation, video lecture translation,
automatic subtitling, and telephone conversations.
As globalization expands and the creation of multi-
lingual content increases, the demand for seamless
cross-lingual communication becomes more preva-
lent. S2TT systems address this need effectively
by facilitating real-time communication across lan-
guage barriers.

Traditionally, S2TT systems have been built us-
ing a sequential pipeline that combines ASR and
MT models (Anastasopoulos et al., 2021; Ney,

1999; Nakamura et al., 2006). In this setup, the
ASR component first converts spoken language
into text, which is then fed into the MT model
for translation. While this method has been effec-
tive in taking advantage of improvements in both
areas, it has notable drawbacks, such as error prop-
agation, increased training complexity, and longer
inference times (Stentiford and Steer, 1988; Waibel
et al., 1991). Building and training separate ASR
and MT models for each language pair involves
substantial computational resources, specialized
expertise, and significant time investment, making
the development of S2TT systems from scratch
a highly resource-intensive endeavor. To address
these limitations, the shift in S2TT development
is toward end-to-end models, which significantly
reduce these issues (Bérard et al., 2016; Bérard
et al., 2018; Bentivogli et al., 2021). Nevertheless,
even with end-to-end models, significant data and
computational resources are still required for their
development, leaving resource demands a critical
concern.

Recent advancements in deep learning and the
increasing availability of large-scale, pre-trained
multilingual models for both ASR and MT offer
a promising path forward. These models, trained
on vast amounts of multilingual data, provide a
foundation for developing robust S2TT systems
without the need for training from scratch. By
leveraging these pre-trained models, it becomes
possible to substantially reduce computational and
resource demands while maintaining high-quality
translations. This approach is especially relevant in
industry scenarios where cost-effective yet accurate
S2TT solutions are required. Building on this idea,
we propose an integrated approach that combines
a large pre-trained speech model with a smaller,
multilingual NMT system. Unlike larger models,
our system is easier to adapt to the specific needs
of end users who may not require translations into
hundreds of languages. This allows for greater
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flexibility and customization in multilingual S2TT
tasks. This approach greatly reduces computational
demands by minimizing the amount of training
required, enabling high-quality translations with
fewer resources.

The remainder of this paper is organized as fol-
lows: Section 2 reviews related work. In Section 3,
we present the large pre-trained speech models.
We describe the multilingual neural MT network
and the hybridization approach implemented. Sec-
tion 4 gives details of the experimental setup. The
results are presented and discussed in Section 5
where we also benchmark our approach against
SeamlessM4T (Barrault et al., 2023), a state-of-the-
art S2TT model. Finally, Section 6 concludes and
outlines further research.

2 Related Works

Data scarcity and modeling complexity are two
major challenges hindering the performance of
end-to-end systems (Xu et al., 2023). The first
challenge arises from the inherent complexity of
speech translation, which combines transcription
and translation, making it difficult to optimize a sin-
gle model for both cross-modal and cross-lingual
tasks in a unified step. Secondly, ASR datasets tend
to be significantly smaller than MT datasets, and
the limited availability of ST datasets further am-
plifies this discrepancy. To mitigate data scarcity,
researchers have adopted techniques like data aug-
mentation (Tsiamas et al., 2023), pretraining (Ao
et al., 2021), and knowledge distillation (Liu et al.,
2019), which leverage external datasets. In parallel,
multi-task learning strategies have been explored
to reduce the modeling burden (Zhang et al., 2019;
Weiss et al., 2017).

Recent advancements explored multi-tasking
in large-scale training, yielding impressive re-
sults on Speech-to-Text benchmarks. For ex-
ample, Whisper (Radford et al., 2023) and
SeamlessM4T (Barrault et al., 2023) incorporate
for training a very large amount of multilingual
speech data. Building on these large pre-trained
speech models, various studies have investigated
hybrid systems that leverage such models. In (Khu-
rana et al., 2022), the authors focus on learning
multilingual speech-text embeddings at the sen-
tence level, ensuring semantic alignment across lan-
guages by aligning embeddings to a multilingual,
pre-trained text encoder. A closely related work
to ours is presented in (Gow-Smith et al., 2023),

where the authors develop a system aimed at im-
proving speech translation quality in low-resource
settings coupling two large pre-trained models, an
ASR network and an MT network. Similarly, in
(Chen et al., 2024), a framework is introduced for
leveraging large language models (LLMs) to build
S2TT systems, with innovations in model architec-
ture, optimization, ASR-augmented training, mul-
tilingual data augmentation, and dual-LoRA opti-
mization.

Our approach differs from these works in that
we pair a large pre-trained speech model with a
smaller, task-oriented neural MT model. Our main
goal being to develop cost-effective, accurate S2TT
systems tailored for industry applications.

3 Speech-to-Text Translation

This work presents a hybrid solution for parameter-
efficient training, integrating speech representation
features from a pre-trained speech model into a
multilingual Neural Machine Translation (NMT)
system. The NMT model, originally designed to
generate text in multilingual environments, can be
transformed into a multi-modality model capable of
performing ASR and multilingual S2TT. The over-
all hybrid architecture is presented in Figure 1. Our
multilingual NMT network (right-most module) re-
ceives speech representations (black squares) gen-
erated by a speech module (left models). Speech
representations are initially reshaped to conform to
the word embedding format required by the NMT
encoder. Consequently, our S2TT network con-
sists of a speech encoder, a reshape module, and
the NMT encoder/decoder network. Note that the
speech encoder and reshape module take the place
of the word embedding component of the NMT
encoder.

This hybrid configuration allows us to convert
a multilingual NMT model into a multi-functional
system by leveraging data from both ASR and
NMT. The hybridization enables the extraction of
audio features from various multilingual speech
representation models, and the efficiency of pa-
rameter training is achieved by only modifying the
parameters of the lower layers of the NMT encoder.

3.1 Large Pre-trained Speech Models

In our hybrid approach, large pre-trained speech
models (LPSM) are kept frozen and used to gen-
erate speech representations, which substitute the
input word embedding of the NMT network. The
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Figure 1: Architecture of our hybrid model combining LPSM and a NMT networks. Three speech networks (left)
and one translation network (right). Speech modules produce vector representations, X , which are used as input of
the NMT network. Representations X are first reshaped to align with the NMT encoder format. Translations are
generated from the outputs Z by applying a linear projection followed by a softmax function.

speech representations X consist of the outputs
after the K lower encoder layers:

LPSMKENC(a) = X, with X ∈ RN×M

with a the audio signal, N the sequence length and
M the embedding dimension.

We assess the effectiveness of three distinct
LPSMs to generate utterance representations,
which we briefly describe in the next lines:

• wav2vec21 (Baevski et al., 2020) is a speech
model that converts raw audio, resampled at
16 kHz, into vector representations for tasks
like ASR. Pre-trained on 4.5 million hours
of audio using self-supervised learning, it
predicts masked segments of the waveform,
akin to masked language modeling in NLP.
Trained with connectionist temporal classifi-
cation (CTC), it offers highly efficient and
accurate speech recognition with minimal re-
liance on labeled data. We extract embeddings
representations X from the last k = 12th

layer, with a variable sequence length N , and
M = 768 corresponding to the hidden layer
dimension.

• mHuBERT-1472 (Boito et al., 2024) is a
highly efficient multilingual speech repre-
sentation model trained on 90, 430 hours

1https://huggingface.co/facebook/
wav2vec2-base

2https://huggingface.co/utter-project/
mHuBERT-147

of open-license speech data across 147 lan-
guages. It outperforms larger models, includ-
ing wav2vec2, despite having only 95M pa-
rameters. This model offers an exceptional
balance between high performance and param-
eter efficiency, making it a promising tool for
multilingual speech tasks. In our hybridiza-
tion work we extracted embeddings X from
the last k = 12th layer, with a variable se-
quence length N , and M = 768 correspond-
ing to the hidden layer dimension.

• Whisper3 (Radford et al., 2023) is a speech
recognition model tailored for multilingual
recognition, translation, and language identifi-
cation. Its Transformer-based architecture in-
tegrates multiple speech processing tasks into
a single, unified model. It processes audio
using an 80-channel log-magnitude Mel spec-
trogram, resampled at 16 kHz, and employs
30 seconds of context to improve accuracy,
implying a fixed sequence length N = 1500.
The model is released in various sizes. Table 1
provides some details. In our hybridization
work we employ the Medium version, and use
as embedding X , the representations resulting
from the K = 6th and K = 24th layers of
the encoder, with a hidden layer dimension
M = 1024.

3.2 Neural MT Model

Our hybrid approach relies on a multilingual NMT
model, which we develop using an in-house imple-

3https://huggingface.co/openai/whisper-medium

https://huggingface.co/facebook/wav2vec2-base
https://huggingface.co/facebook/wav2vec2-base
https://huggingface.co/utter-project/mHuBERT-147
https://huggingface.co/utter-project/mHuBERT-147
https://huggingface.co/openai/whisper-medium
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Model Layers Width Heads Size
Tiny 4 384 6 39M
Base 6 512 8 74M
Small 12 768 12 244M
Medium 24 1024 16 769M
Large 32 1280 20 1550M

Table 1: Various versions of the Whisper model fam-
ily, detailing the number of layers, embedding width,
number of attention heads, and total parameter count for
each version.

mentation of the state-of-the-art Transformer archi-
tecture4 (Vaswani et al., 2017). Table 2 gives some
details of the network architecture. The model was
trained with a mix of open-source bi-texts covering
the 4 language pair directions, involving French,
English and Arabic. Corpora is obtained from the
Opus web site5. The training dataset comprises
over 110 million sentence pairs, focusing on news,
blog, and dialogue data to closely align with the
intended use case. The training dataset is balanced
as much as possible across all language pair di-
rections to achieve an optimal final checkpoint for
each language combination.

size of word embedding 1, 024
size of hidden layers 1, 024
size of inner feed forward layer 4, 096
number of heads 16
number of layers 6

Table 2: NMT Network specifications.

To enable our model to translate into three lan-
guages, we prepend the token ⟨lang⟩ at the start of
the source stream to indicate the language of the
target sentence. During inference, the token guides
the model to produce the translation in the specified
target language. Source and target training pairs
are formatted as follows:

source = ⟨lang⟩ source sentence ⟨eos⟩
target = ⟨bos⟩ target sentence ⟨eos⟩

It is important to note that the NMT model is
trained from scratch using written text corpora,
which are generally more formal, grammatically
correct, and well-structured than speech utterances,
typically following standard grammar rules and

4https://opennmt.net/
5https://opus.nlpl.eu/

punctuation. However, the model is ultimately in-
tended to translate speech utterances.

3.3 Hybrid S2TT Models
Hybrid models are built upon a standard neural
MT network, initially trained for multilingual text
translation, coupled with a speech model, as shown
in Figure 1. Adaptation is performed to enable
our models to perform speech translation and tran-
scription. Note that we fine-tune our models with
both speech translations and transcriptions, thus
allowing our models to perform both tasks.

As previously discussed, we integrate audio rep-
resentation features by utilizing the encoder of
a speech representation model. The encoder is
frozen during the adaptation process. It serves
solely for feature extraction and embedding of
the speech signal. The LPSMs generate embed-
dings X with varying embedding lengths, and
for fixed (Whisper) and variable (wav2vec2 and
mHuBERT-147) sequence length. To achieve seam-
less integration with the NMT encoder, address-
ing this inconsistency is crucial. We employ the
module Reshape to adjust the embeddings output
by the speech models into vectors that align with
the dimensional requirements of the NMT encoder.
The Reshape function is trained in conjunction
with the lower L layers of the NMT model’s en-
coder.

Reshape Speech Embeddings
To address embedding dimension mismatch, a
linear projection layer (M × 1, 024) is used. Thus,
adjusting the size of the embeddings produced by
the speech encoder, M , to the size of embeddings
required by the NMT encoder, 1, 024.

To address the very large fixed sequence length
mismatch of the Whisper encoder, we apply a
convolutional layer with a kernel size of 3, a stride
of 1 to reduce the sequence length from 1500 to
100 embedding vectors. This allows them to be
used as inputs to the NMT encoder.

Models producing variable sequence length em-
beddings, wav2vec2 and mHuBERT-147, must en-
sure that do not exceed 1, 024, the maximum se-
quence length of the NMT model. Larger se-
quences are filtered out. When working with vari-
able sequence length embeddings, batches contain-
ing examples with different sequence length are
padded to the batch’s maximum sequence length,
using a ⟨pad⟩ token not considered when comput-
ing the loss during training. Figure 2 illustrates

https://opennmt.net/
https://opus.nlpl.eu/
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the Reshape function applied to different speech
representations.

Figure 2: Reshape function applied to speech represen-
tations X to ensure embedding size of 1, 024 and shorter
sequence lengths. Left path corresponds to wav2vec2
and mHuBERT models; the right path corresponds to the
Whisper model (medium size).

To enable our model to translate into three lan-
guages, speech reshaped embeddings are appended
with the embedding vector of token ⟨lang⟩, to spec-
ify the target language used. This vector is obtained
with the embedding layer of the NMT encoder.

Formally, the following equations describe how
the audio signal a is first converted into speech
representations X (1). After a reshape operation
to adjust its format (2), these are transformed into
NMT encoder representations Y (3)6, which will
then be processed by the NMT decoder producing
Z (4):

X = LPSMKENC(a) (1)

X ′ = EMB(⟨lang⟩) · Reshape(X) (2)

Y = NMTENC(X
′) (3)

Z = NMTDEC(Y ) (4)

where · indicates vector concatenation. Transla-
tions are finally generated from Z by applying a
linear projection followed by softmax function.

Tied Speech and Transcription Embeddings
As illustrated in Figure 3 and drawing inspiration
from (Khurana et al., 2022), our aim is to gener-
ate speech embedding vectors Ys, that are closely
aligned with the corresponding transcription em-
beddings Yt. This approach enables the learning
of semantically-aligned multimodal sentence-level
representations. By creating speech embeddings
that the NMT decoder is already familiar with, we
streamline the learning process to produce accu-
rate translations, ultimately improving the system’s

6In training, the L lowest layers are fine-tuned while six
are used for inference.

overall performance. Notice also that the vectors
Ys and Yt are extracted from the L-th layer of the
encoder, not necessarily the final layer.

To bias the model towards learning to produce
speech embeddings Ys close to those originally
produced for the text transcriptions, Yt, we use
an additional term in the loss function that con-
siders the distance between p = 1

Ns

∑Ns
i=1 Ysi and

q = 1
Nt

∑Nt
i=1 Yti , consisting of average pooling

versions of Ys and Yt respectively. Thus, we up-
date the loss function with the normalized cosine
distance between speech and text sentence repre-
sentations.

L = λ LNMT + (1− λ) (1− cos(p, q))

where LNMT is the regular cross-entropy loss of
the NMT network (built for translations) and λ is
a parameter that indicates the weight of each term
in the final loss L. Notice also that training with
this extended loss function can only be performed
for datasets composed of triplets ⟨audio speech,
transcription, translation⟩.

Figure 3: The NMT encoder is fine-tuned to generate
p, the sentence representation of the audio signal, so
that it aligns closely with q, the representation of the
corresponding transcription. Note that q is produced
using a frozen version of the NMT encoder, which was
originally trained to work in conjunction with an NMT
decoder for producing translations.

It is important to highlight that we utilize two
versions of the NMT encoder. The first processes
speech embeddings X and generates representa-
tions Ys, which are then used by the NMT decoder.
The second is a frozen version of the text-based



7629

NMT encoder, producing representations Yt.7 By
keeping it frozen and aligning the speech embed-
dings Ys with the corresponding transcription em-
beddings Yt, we facilitate consistency with the rep-
resentations that the NMT decoder is already famil-
iar with handling.

4 Experimental Framework

4.1 Datasets

To adapt our models, we use relevant files (includ-
ing Arabic, French and English) of the open-source
dataset CoVoST 2 (Wang et al., 2021): A large-
scale S2TT corpus with 2, 900 hours of speech,
covering translations from 21 languages into En-
glish, and from English into 15 languages.

Additionally, we use Fleurs dataset (Conneau
et al., 2022) for testing on the en-fr direction.

Table 3 details the amount of data for each task
and language pair. Speech translations are only
available in CoVoST 2 for two of our language pairs
(fr-en and en-ar), The remaining pairs (fr-ar, en-fr)
consist of translations of existing transcriptions.8

For the fr-ar language pair, we use CoVoST2 fr-en
and translate the English transcripts into Arabic.
For en-fr, we utilize English audio and translate the
corresponding English transcripts into French.

Source Lang Train Test
ASR

CoVoST2 fr 200,000 15,531
CoVoST2 en 200,000 14,760

S2TT
CoVoST2 fr-en 200,000 14,760

CoVoST2* fr-ar 200,000 -
CoVoST2* en-fr 200,000 -
CoVoST2 en-ar 200,000 15,531

Fleurs en-fr - 3,643

Table 3: Corpus Statistics. Datasets used for each task,
including source, language and the number of training,
and test sentences (or utterances). Machine-translated
datasets are marked with an asterisk (*).

In summary, we use 2,239 hours of speech for
training and 182 hours for testing. It is important
to note that the ASR and S2TT training datasets
are imbalanced, with the S2TT dataset contain-

7This second version of the NMT encoder is only used for
training, not employed at inference time.

8Machine translations are performed using the open-source
NLLB 3.3B model https://huggingface.co/facebook/
nllb-200-3.3B

ing roughly twice as many examples as the ASR
dataset. Additionally, while we built an S2TT
model for 4 language pair directions, we only eval-
uated it on 3, as no test set was available for the
fr-ar direction.

4.2 Networks

The NMT model training work employs a sin-
gle NVIDIA V100 GPU (32GB). We use the lazy
Adam algorithm (Kingma and Ba, 2015) for op-
timization. We set warm-up steps to 4, 000 and
update learning rate for every 8 iterations. We
limit the source and target sentence lengths to 150
tokens based on BPE (Sennrich et al., 2016) pre-
processing. A total of 28K BPE merge operations
are separately computed for each language. We
finally use a joint Arabic, French and English vo-
cabulary of 50K tokens. In inference we use a
beam size of 5.

Our Hybrid models are trained using a single
NVIDIA V100 GPU (32GB) during up to 500, 000
updates, with a maximum batch size of 400 source
tokens and updates of the model after accumulating
25 batches. We validate every 5, 000 updates and
perform early stopping on a separate validation set
excluded from the training set.

5 Results

Table 4 presents a summary of results for several
networks and configurations. BLEU (Post, 2018)
and WER9 are used as metrics for S2TT and ASR
evaluation, respectively. WER scores are computed
over normalized transcriptions10. Bold face is used
to outline best scores of each test set.

The columns LPSM Enc and Dec show the num-
ber of layers used during inference by the Speech
Encoder and Decoder, respectively. Columns NMT
Enc and Dec indicate the number of fine-tuned
encoder/decoder layers in the NMT model. For
inference, 6 encoder and 6 decoder layers of the
NMT model are consistently utilized. Column Size
indicates the number of model parameters used by
each system during inference. The Avg columns
(with gray background) display the average results
of the reference S2TT and ASR tests. Column
Avg1 indicates the average translation BLEU scores
for CoVoST2 in-domain test sets (en-ar and fr-en)

9https://huggingface.co/spaces/
evaluate-metric/wer

10Normalization performed with BasicTextNormalizer
of the transformers.models.whisper library.

https://huggingface.co/facebook/nllb-200-3.3B
https://huggingface.co/facebook/nllb-200-3.3B
https://huggingface.co/spaces/evaluate-metric/wer
https://huggingface.co/spaces/evaluate-metric/wer
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Model
LPSM Inf NMT Opt

Size
BLEU↑ WER↓

Enc Dec Enc Dec en-ar fr-en Avg1 en-fr Avg2 en fr Avg
Cascade

whisper+nllb 24 24 - - 4.1B 19.40 33.46 26.43 43.91 32.26 10.34 14.96 12.65
whisper+nmt 24 24 - - 997M 19.72 31.37 25.55 41.22 30.77 10.34 14.96 12.65

Whisper fine-tunned
whisper 24 24 - - 769M 16.10 33.83 24.97 31.19 27.02 17.21 14.15 15.68

SOTA
seamless_m

-
1.2B 21.61 39.12 30.37 37.47 32.73 8.15 12.20 10.18

seamless_l 2.3B 24.30 40.72 32.51 42.77 35.93 6.79 11.14 8.97
Hybrid (this work)

wav2vec-nmt
12 - 2 - 271M 15.00 21.38 18.19 26.14 20.84 30.12 37.27 33.70
12 - 4 - 271M 15.39 24.32 19.86 25.77 21.83 27.94 30.36 29.15
12 - 6 - 271M 15.41 24.34 19.88 24.90 21.55 27.10 28.72 27.91

mhubert-nmt

12 - 2 - 271M 16.62 31.41 24.02 24.88 24.30 22.20 18.06 20.13
12 - 4 - 271M 17.44 32.47 24.96 25.24 25.10 20.51 15.69 18.10
12 - 6 - 271M 16.75 31.78 24.27 24.29 24.27 20.16 15.43 17.80

whisper-nmt

6 - 2 - 263M 10.74 26.34 18.54 18.92 18.67 34.58 25.65 30.12
24 - 2 - 488M 21.48 35.73 28.61 30.27 29.20 14.22 12.72 13.47
24 - 4 - 488M 21.74 35.92 28.83 30.40 29.35 13.95 12.33 13.14
24 - 6 - 488M 21.80 35.90 28.85 30.30 29.33 13.51 12.06 12.79
24 - 6 6 488M 22.41 35.77 29.10 30.29 29.50 13.54 11.31 12.43

whisper-nmttied 24 - 2 - 488M 21.55 35.57 28.56 29.39 28.83 14.46 12.76 13.61

Table 4: Translation (BLEU) and recognition (WER) results across various model configurations. The column
LPSM Inf specifies the number of encoder/decoder layers during inference, while NMT Opt shows the number of
NMT encoder/decoder layers optimized during training. The Size column denotes the total number of parameters
used during inference.

while column Avg2 averages all translation test set
results.

System whisper+nmt is a cascade system per-
forming transcriptions with the LPSM followed by
the NMT network.

System whisper involves fine-tuning the entire
Whisper model for both ASR and S2TT tasks using
exactly the same training datasets than are used
for the rest of optimizations. Notably, this is the
only configuration where the LPSM model is fine-
tuned, leading to significantly longer training times
(nearly two weeks) and with BLEU results behind
those of the cascade model.

Systems seamless_m and seamless_l are re-
spectively the medium and large versions of the
same network (SeamlessM4T). As anticipated, they
achieve state-of-the-art results in both tasks (av-
eraging 32.73 and 35.93 respectively). However,
they are the models with the largest number of
parameters, requiring the most resources.

The next set of results correspond to our hy-
brid systems whisper-nmt, mhubert-nmt and
wav2vec-nmt, which couple the evaluated LPSMs
with our NMT model. Different configurations
are evaluated for each. Hybrid models are no-
tably smaller in size, and with the LPSMs kept

frozen, they require minimal training iterations.
Fine-tuning the hybrid models with our training
dataset took between 1 and 5 days, depending on
the number of NMT parameters optimized.

Regarding whisper-nmt and following (Pasad
et al., 2021; Gow-Smith et al., 2023) which argue
that some speech representation models tend to
have a higher abstraction from the speech signal
in the middle layers, we evaluate using the 6th

encoding layer of the Whisper model as feature
extractor. However, the best results are achieved
when whisper-nmt employs the full encoder to
produce speech representations Y with all its 24
layers. Varying the number of fine-tuned NMT
encoder layers (2, 4, or 6) results in a modest im-
pact, with differences of less than 1 BLEU point
across all hybrid networks. The mhubert-nmt
and wav2vec-nmt systems consistently produce
significantly lower BLEU scores compared to the
whisper-nmt system.

Optimizing the NMT decoder fully has little im-
pact on the average BLEU of 0.17 points. Con-
cerning whisper-nmttied, which employs an alter-
native loss function to align the NMT encoder’s
speech representations with those generated by the
same encoder for corresponding transcriptions, the
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results do not improve over the system without tied
representations.11

The best hybrid results are around 3 BLEU
points lower than seamless_m and comparable
to those of the cascade system. It’s important to
note that the hybrid system is significantly smaller,
with over four times fewer parameters than the
seamless_l model and half the size of both the
cascade and seamless_m models. Additionally, it
was trained with substantially fewer resources than
the seamless models.

Note that for the en-ar and fr-en translation direc-
tions, our best hybrid system’s results are closer to
the top scores, trailing by around 3.5 BLEU points.
In contrast, for en-fr, the hybrid system lags more
than 10 BLEU points behind. This discrepancy
arises because we fine-tune our hybrid models us-
ing the CoVoST 2 dataset, which is also used for
en-ar and fr-en testing, while en-fr testing data is
comes from the Fleurs dataset. Our smaller hybrid
systems are more adversely affected by domain
shifts compared to the larger models.

Regarding the ASR evaluation, seamless_l ob-
tains best results (8.97) with less than 3 WER
points than those obtained by the original Whisper
whisper+nmt (12.65). When Whisper is opti-
mized to achieve translation abilities its ASR per-
formance is lowered with a WER score of 15.68.

With respect to hybrid models, similar to the
translation accuracy results, both wav2vec-nmt
and mhubert-nmt show poorer performance com-
pared to whisper-nmt, which achieves its best re-
sults with the optimization of 6 encoder and 6 de-
coder layers, reaching an average WER score of
12.43. Notably, the WER for French speech is
particularly impressive (11.31), comparable to the
results obtained by the best system seamless_l
(11.14) and more than 3 points lower than the WER
achieved by the original Whisper model (14.96).

Finally, Table 5 compares some of the systems
presented in this work in terms of model size (num-
ber of parameters) and inference time, with re-
sults reported relative to our whisper-nmt network.
Note that for inference, we use Hugging Face12 li-
braries on a single NVIDIA V100 GPU (32GB)
with comparable inference settings. As shown, the
system presented in this work achieves the best

11The results for the tied embeddings experiment were ob-
tained after fewer learning iterations due to time constraints.
We will present results with a comparable number of iterations
in the camera-ready version of the paper.

12https://huggingface.co/

efficiency, primarily due to its use of the smallest
number of parameters.

Model Size Time
whisper-nmt ×1.0 ×1.0
whisper+nllb ×8.4 ×4.0
whisper ×1.6 ×1.1
seamless_m ×2.5 ×2.2
seamless_l ×4.7 ×4.3

Table 5: Number of parameters (Size) and inference
time (Time) of different networks reported relative to
the whisper-nmt network results.

6 Conclusions and Further Work

We developed a Speech-to-Text Translation system
that minimizes the need for extensive computa-
tional resources and large datasets. By leveraging
pre-trained models and implementing efficient hy-
brid approaches, we evaluated several LPSMs in
a real-world industry scenario, demonstrating that
highly accurate S2TT systems can be built with
minimal resources, making them more accessible
without the need for extensive infrastructure. Fur-
thermore, our system has also been shown to de-
liver accurate ASR performance.

We are currently addressing the domain shift
issue observed in our NMT model. Our plan is
to develop a more robust model using a broader
range of bilingual texts, in contrast to the current
approach, which relied on corpora closely match-
ing the speech style. We plan to develop a fast infer-
ence library to implement the proposed hybridiza-
tion, ensuring efficient execution of our system on
both CPU and GPU platforms, a crucial feature for
industrial applications. We are also exploring a sys-
tem capable of both transcription and translation
by means of a synchronized dual decoder.
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man, Roldano Cattoni, Maha Elbayad, Marcello Fed-
erico, Xutai Ma, Satoshi Nakamura, Matteo Negri,
Jan Niehues, Juan Pino, Elizabeth Salesky, Sebas-
tian Stüker, Katsuhito Sudoh, Marco Turchi, Alexan-
der Waibel, Changhan Wang, and Matthew Wies-

https://huggingface.co/


7632

ner. 2021. Findings of the IWSLT 2021 Evaluation
Campaign. In Proceedings of the 18th International
Conference on Spoken Language Translation (IWSLT
2021), pages 1–29, Bangkok, Thailand (online). As-
sociation for Computational Linguistics.

Junyi Ao, Rui Wang, Long Zhou, Shujie Liu, Shuo
Ren, Yu Wu, Tom Ko, Qing Li, Yu Zhang, Zhi-
hua Wei, Yao Qian, Jinyu Li, and Furu Wei.
2021. Speecht5: Unified-modal encoder-decoder
pre-training for spoken language processing. In
10.48550/arXiv.2110.07205.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: a framework
for self-supervised learning of speech representations.
In Proceedings of the 34th International Conference
on Neural Information Processing Systems, NIPS ’20,
Red Hook, NY, USA. Curran Associates Inc.

Loïc Barrault, Yu-An Chung, Mariano Meglioli,
David Dale, Ning Dong, Paul-Ambroise Duquenne,
Hady Elsahar, Hongyu Gong, Kevin Heffernan,
John Hoffman, Christopher Klaiber, Pengwei Li,
Daniel Licht, Jean Maillard, Alice Rakotoari-
son, Kaushik Sadagopan, Guillaume Wenzek, and
Skyler Wang. 2023. Seamlessm4t-massively
multilingual & multimodal machine translation.
10.48550/arXiv.2308.11596.

Luisa Bentivogli, Mauro Cettolo, Marco Gaido, Alina
Karakanta, Alberto Martinelli, Matteo Negri, and
Marco Turchi. 2021. Cascade versus direct speech
translation: Do the differences still make a differ-
ence? In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 2873–2887, Online. Association for Computa-
tional Linguistics.

Alexandre Bérard, Olivier Pietquin, Laurent Besacier,
and Christophe Servan. 2016. Listen and Trans-
late: A Proof of Concept for End-to-End Speech-to-
Text Translation. In NIPS Workshop on end-to-end
learning for speech and audio processing, Barcelona,
Spain.

Marcely Zanon Boito, Vivek Iyer, Nikolaos Lagos,
Laurent Besacier, and Ioan Calapodescu. 2024.
mHuBERT-147: A Compact Multilingual HuBERT
Model. In Interspeech 2024.

Alexandre Bérard, Laurent Besacier, Ali Can Ko-
cabiyikoglu, and Olivier Pietquin. 2018. End-to-end
automatic speech translation of audiobooks. In 2018
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6224–6228.

Xi Chen, Songyang Zhang, Qibing Bai, Kai Chen, and
Satoshi Nakamura. 2024. LLaST: Improved end-
to-end speech translation system leveraged by large
language models. In Findings of the Association for
Computational Linguistics ACL 2024, pages 6976–
6987, Bangkok, Thailand and virtual meeting. Asso-
ciation for Computational Linguistics.

Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang,
Vera Axelrod, Siddharth Dalmia, Jason Riesa, Clara
Rivera, and Ankur Bapna. 2022. Fleurs: Few-shot
learning evaluation of universal representations of
speech. arXiv preprint arXiv:2205.12446.

Edward Gow-Smith, Alexandre Berard, Marcely
Zanon Boito, and Ioan Calapodescu. 2023. NAVER
LABS Europe’s multilingual speech translation sys-
tems for the IWSLT 2023 low-resource track. In
Proceedings of the 20th International Conference on
Spoken Language Translation (IWSLT 2023), pages
144–158, Toronto, Canada (in-person and online).
Association for Computational Linguistics.

Sameer Khurana, Antoine Laurent, and James Glass.
2022. Samu-xlsr: Semantically-aligned multimodal
utterance-level cross-lingual speech representation.
IEEE Journal of Selected Topics in Signal Processing,
16(6):1493–1504.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Y. Liu, H. Xiong, J. Zhang, Z. He, H. Wu, H. Wang,
and C. Zong. 2019. End-to-end speech-translation
with knowledge distillation. Proc. Interspeech 2019,
pages 1128–1132.

Satoshi Nakamura, Konstantin Markov, Hiromi
Nakaiwa, Gen ichiro Kikui, Hisashi Kawai, Takatoshi
Jitsuhiro, Jin-Song Zhang, Hirofumi Yamamoto, Ei-
ichiro Sumita, and Seiichi Yamamoto. 2006. The
atr multilingual speech-to-speech translation system.
IEEE Transactions on Audio, Speech, and Language
Processing, 14:365–376.

Hermann Ney. 1999. Speech translation: Cou-
pling of recognition and translation. In
10.1109/ICASSP.1999.758176, volume 1, pages
517–520 vol.1.

Ankita Pasad, Ju-Chieh Chou, and Karen Livescu. 2021.
Layer-wise analysis of a self-supervised speech rep-
resentation model. In 2021 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU),
pages 914–921.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak super-
vision. In Proceedings of the 40th International Con-
ference on Machine Learning, ICML’23. JMLR.org.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual

https://doi.org/10.18653/v1/2021.iwslt-1.1
https://doi.org/10.18653/v1/2021.iwslt-1.1
https://doi.org/10.18653/v1/2021.acl-long.224
https://doi.org/10.18653/v1/2021.acl-long.224
https://doi.org/10.18653/v1/2021.acl-long.224
https://hal.science/hal-01408086
https://hal.science/hal-01408086
https://hal.science/hal-01408086
https://doi.org/10.1109/ICASSP.2018.8461690
https://doi.org/10.1109/ICASSP.2018.8461690
https://aclanthology.org/2024.findings-acl.416
https://aclanthology.org/2024.findings-acl.416
https://aclanthology.org/2024.findings-acl.416
https://arxiv.org/abs/2205.12446
https://arxiv.org/abs/2205.12446
https://arxiv.org/abs/2205.12446
https://doi.org/10.18653/v1/2023.iwslt-1.10
https://doi.org/10.18653/v1/2023.iwslt-1.10
https://doi.org/10.18653/v1/2023.iwslt-1.10
https://doi.org/10.1109/JSTSP.2022.3192714
https://doi.org/10.1109/JSTSP.2022.3192714
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.21437/Interspeech.2019-2582
https://doi.org/10.21437/Interspeech.2019-2582
https://doi.org/10.1109/ASRU51503.2021.9688093
https://doi.org/10.1109/ASRU51503.2021.9688093
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162


7633

Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Fred Stentiford and M.G. Steer. 1988. Machine transla-
tion of speech. British Telecom Technology Journal,
6:116–123.

Ioannis Tsiamas, José Fonollosa, and Marta Costa-jussà.
2023. SegAugment: Maximizing the utility of speech
translation data with segmentation-based augmenta-
tions. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 8569–8588,
Singapore. Association for Computational Linguis-
tics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

A. Waibel, A.N. Jain, A.E. McNair, H. Saito, A.G.
Hauptmann, and J. Tebelskis. 1991. Janus: a
speech-to-speech translation system using connec-
tionist and symbolic processing strategies. In [Pro-
ceedings] ICASSP 91: 1991 International Confer-
ence on Acoustics, Speech, and Signal Processing,
pages 793–796 vol.2.

Changhan Wang, Anne Wu, Jiatao Gu, and Juan Pino.
2021. Covost 2 and massively multilingual speech
translation. In Interspeech 2021, pages 2247–2251.

Ron J. Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui
Wu, and Z. Chen. 2017. Sequence-to-sequence mod-
els can directly translate foreign speech. In Inter-
speech.

Chen Xu, Rong Ye, Qianqian Dong, Chengqi Zhao, Tom
Ko, Mingxuan Wang, Tong Xiao, and Jingbo Zhu.
2023. Recent advances in direct speech-to-text trans-
lation. In Proceedings of the Thirty-Second Inter-
national Joint Conference on Artificial Intelligence,
IJCAI-23, pages 6796–6804. International Joint Con-
ferences on Artificial Intelligence Organization. Sur-
vey Track.

Pei Zhang, Niyu Ge, Boxing Chen, and Kai Fan. 2019.
Lattice transformer for speech translation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6475–
6484, Florence, Italy. Association for Computational
Linguistics.

https://doi.org/10.18653/v1/2023.findings-emnlp.574
https://doi.org/10.18653/v1/2023.findings-emnlp.574
https://doi.org/10.18653/v1/2023.findings-emnlp.574
https://doi.org/10.1109/ICASSP.1991.150456
https://doi.org/10.1109/ICASSP.1991.150456
https://doi.org/10.1109/ICASSP.1991.150456
https://doi.org/10.21437/Interspeech.2021-2027
https://doi.org/10.21437/Interspeech.2021-2027
https://api.semanticscholar.org/CorpusID:7857444
https://api.semanticscholar.org/CorpusID:7857444
https://doi.org/10.24963/ijcai.2023/761
https://doi.org/10.24963/ijcai.2023/761
https://doi.org/10.18653/v1/P19-1649

	Introduction
	Related Works
	Speech-to-Text Translation
	Large Pre-trained Speech Models
	Neural MT Model
	Hybrid S2TT Models

	Experimental Framework
	Datasets
	Networks

	Results
	Conclusions and Further Work

