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Abstract

Recent advancements in large language models
(LLMs) have significantly enhanced their cod-
ing capabilities. However, existing benchmarks
predominantly focused on simplified or isolated
aspects of coding, such as single-file code gen-
eration or repository issue debugging, falling
short of measuring the full spectrum of chal-
lenges raised by real-world programming activ-
ities. In this case study, we explore the perfor-
mance of LLMs across the entire software de-
velopment lifecycle with DevEval, encompass-
ing stages including software design, environ-
ment setup, implementation, acceptance testing,
and unit testing. DevEval features four pro-
gramming languages, multiple domains, high-
quality data collection, and carefully designed
and verified metrics for each task. Empirical
studies show that current LLMs, including GPT-
4, fail to solve the challenges presented within
DevEval. Our findings offer actionable insights
for the future development of LLMs toward
real-world programming applications. !

1 Introduction

Given its practical value and reasoning challenges,
programming has become an important domain
to deploy and evaluate large language models
(LLMs), leading to popular products like GitHub
Copilot and benchmarks like HumanEval (Chen
et al., 2021) and APPS (Hendrycks et al., 2021).
While these earlier coding tasks focused on
generating a single code file or even a single
method from simple instructions, recent works
such as SWE-bench (Jimenez et al., 2023) and
RepoBench (Liu et al., 2023b) evaluate LLMs on
repository-level tasks, which feature longer, more
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involved NL2Code problems. Still, these bench-
marks concentrate on narrow aspects of software
development, leaving a gap in comprehensive stud-
ies that encompass the full software development
lifecycle across its various phases.

To address these shortcomings and fill this gap,
we present DevEval, a comprehensive case study
that mirrors real-world software development. De-
vEval generally evaluates models on the task of
constructing a multi-file codebase starting from a
product requirement document (PRD) of detailed
specifications. Subscribing to the traditional Wa-
terfall software development model (Royce, 1987),
DevEval breaks down this process into a diverse
set of inter-related development stages, i.e., soft-
ware design, environment setup, implementation,
acceptance and unit testing, as visualized in Fig-
ure 1 and Table 1. In contrast to previous works,
DevEval is the first to evaluate models’ software
design and environment setup capabilities. One sig-
nificant challenge in this study lies in the scarcity of
publicly available repositories that include the full
range of software development artifacts, particu-
larly design documents and comprehensive testing
programs. To overcome this, we curated a collec-
tion of 22 repositories across four programming
languages (Python, C/C++, Java, JavaScript), span-
ning various domains such as machine learning,
web services, and command-line utilities. By en-
compassing the multi-faceted, interconnected steps
of software development under a single framework,
DevEval provides a holistic view of LLMs’ capa-
bilities for automated software production, moving
beyond the conventional focus on code completion.

Through a comprehensive experimental study,
our findings indicate that tested models struggle
significantly with the challenges presented. GPT-
4-Turbo achieves the highest scores amongst all
evaluated models, yet it obtains less than 10% on
our repository-level implementation task. Other
tasks prove relatively more manageable for mod-
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Figure 1: Our DevEval features multiple stages of software development, including software design, environment
setup, implementation, and testing (both acceptance and unit testing).

Task ‘ Input' Output Environment Evaluation
. ML Diaeramst . .
Software Design PRD v : lagrams’, N/A Subjective Evaluation
Architecture Design
Environment Setup PRD, UML Diagrams, Dependency Files Base Pass Rate on Usage Examples

Architecture Design

PRD, UML Diagrams,

Implementation Architecture Design Implementation Code Reference Unit & Acceptance Testing
PRD, UML Diagrams,

Acceptance Testing | Architecture Design, Acceptance Testing Code Reference Oracle Test
Implementation Code*
PRD, UML Diagrams,

Unit Testing Architecture Design, Unit Testing Code Reference Oracle Test & Coverage

Implementation Code

Table 1: Task design in DevEval. {: following our modular evaluation protocol, the input for each task are reference.
I: includes UML class and sequence diagrams. *: implementation source code is optional for acceptance testing.

els; however, even GPT-4-Turbo struggles to attain
scores exceeding 40% on the more complicated
ones. For instance, models generally fail to gener-
ate executable tests, with oracle test scores falling
below 40%. Despite this, the generated testing code
demonstrates potential in code coverage, achieving
as high as 79.4% when it is executable. Further-
more, our investigation into different prompting
methods shows that prompts with external infor-
mation and execution feedback could yield notable
and consistent improvements. Importantly, quali-
tative analysis shows that models demonstrate dif-
ficulties in handling Makefile and Gradle, config-
uring function arguments and employing advanced
object-oriented programming techniques. Overall,
DevEval introduces a novel challenge for existing
LLMs, and our investigation sheds light on funda-
mental issues, paving the way for future research.

2 Related Work

Initial code generation datasets focused on
self-contained, Python-based completion prob-

lems (Chen et al., 2021; Hendrycks et al., 2021;
Austin et al., 2021), while later works ex-
panded complexity by increasing language cov-
erage (Zheng et al., 2023b; Cassano et al., 2023),
enhancing execution-based test coverage (Liu et al.,
2023a; Wang et al., 2022), incorporating dependen-
cies (Lai et al., 2022; Ding et al., 2023; Liu et al.,
2023c), introducing interactive environments (Yin
et al., 2022; Yang et al., 2023), and developing
short-form task suites (Lu et al., 2021; Muen-
nighoff et al., 2023). DevEval aligns with re-
cent repository-scale coding works (Jimenez et al.,
2023; Liu et al., 2023b; Zhang et al., 2023). How-
ever, our work distinctly evaluates LLMs’ ability
to create entire codebases from extensive natural
language descriptions, offering a more compre-
hensive test of LLM capabilities. In automatic
programming, role-play frameworks with commu-
nicative agents (Hong et al., 2023; Li et al., 2023;
Qian et al., 2023a,b) like MetaGPT (Hong et al.,
2023) integrate structured workflows and task mod-
ularity, similar to our approach. Compare against
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MetaGPT, DevEval stands out by providing a struc-
tured evaluation across all phases of the software
development lifecycle. Additionally, there is a
growing trend in agent-based frameworks specially
targeting software engineering tasks (Yang et al.,
2024; Zhang et al., 2024; Liu et al., 2024; Wang
et al., 2024a).

3 DevEval

In this section, we discuss the design of DevEval,
including task specifications and the evaluation cri-
teria (summarized in Table 1). Adhering to the
modular approach, our design utilizes reference
inputs for each task. This strategy enables and con-
centrates on evaluating the efficacy of models in
executing specific tasks. 2

3.1 Task 1: Software Design

During this phase, the model is tasked with inter-
preting the PRD to create the design of the system
before development. The first subtask involves the
generation of the UML class diagram using Mer-
maid syntax, which models the structural aspects of
software systems, detailing the classes within the
system, their attributes, operations and the relation-
ship among them. Class diagrams help developers
understand the system’s foundation before devel-
opment begins. The second subtask focuses on the
creation of the UML sequence diagram using Mer-
maid syntax. These diagrams clarify the collabora-
tion among components of the system by mapping
out the interaction between objects and processes
over time, illustrating the sequence of messages ex-
changed between objects to implement the system’s
functionality. The final subtask fomulates architec-
tural designs using hierarchical file tree structures,
aiming to establish a structured framework for the
source code, build scripts and necessary auxiliary
files. The architectural design ensures a cohesive
structure for coding, testing and maintenance.
Evaluation. Since the Software Design tasks
are open-ended, we employ the LLM-as-a-judge
approach (Zheng et al., 2023a; Wang et al., 2023;
Chiang and Lee, 2023) to conduct the automatic
evaluation. The evaluation is anchored by two prin-
cipal metrics: general principles and faithfulness.

Notably, our framework can be adeptly configured to
facilitate end-to-end evaluations, utilizing the intermediate
outputs generated by models across multiple tasks. Moreover,
DevEval can also function in a Copilot mode, empowering
human users to intervene and refine model outputs, thus en-
hancing the collaborative synergy between human expertise
and automated systems.

The general principles metric plays a crucial
role, with each task sharing common elements
while maintaining specific criteria. For all the sub-
tasks, principles like cohesion and decoupling, and
practicability are fundamental. Cohesion and de-
coupling emphasize the importance of clarity and
functionality within individual elements (classes
or sequences) and reducing dependencies between
different components. In terms of practicability, all
tasks require designs to be readable, understand-
able, and modular, facilitating ease in development,
testing, and maintenance. Meanwhile, each task
has its unique focus areas: UML Class diagrams
are evaluated on complexity; UML Sequence dia-
grams concentrate on uniformity, integration, and
interaction complexity; Architecture Design high-
lights the distinction between design and coding,
and conformance to practical standards. Subse-
quently, the faithfulness metric gauges the extent
to which models adhere to specified instructions.

3.2 Task 2: Environment Setup

In the second phase of DevEval, models are pro-
vided with the PRD, UML diagrams, and architec-
ture design to generate a dependency file for ini-
tializing the development environment. This step
is followed by the deployment of a standard instal-
lation command utilizing the generated file. For
Python, the Conda environment manager is em-
ployed; for Java and JavaScript, Gradle and NPM
are utilized respectively.®> Setting up an environ-
ment often encounters challenges such as missing
or outdated dependencies, along with version con-
flicts, all of which must be resolved to ensure a
seamless development environment. Our research
aims to investigate the potential of LLMs in au-
tomating this cumbersome process, thereby enhanc-
ing production efficiency.

Evaluation. The evaluation centers on the execu-
tion of dependency files across each programming
language within a predetermined base environment
delineated in a Docker file. This is followed by the
execution of the repository’s example usage code.
The principal metric for evaluation in this task is
the success rate of the executed example code.

31t is noteworthy that our evaluation does not contain an
Environment Setup task for C/C++ due to the absence of a
universally acknowledged and user-friendly dependency man-
agement system for these languages (Miranda and Pimentel,
2018).
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3.3 Task 3: Implementation

For this task, models are provided with the PRD,
UML diagrams and architecture design, and are
then instructed to develop code for each source
code file as specified in the architecture design.
Diverging from existing benchmarks on repository-
level code generation (Liu et al., 2023b), the im-
plementation task in DevEval is dedicated to as-
sessing LLMs in generating an entire code repos-
itory from scratch. A key innovation in our in-
vestigations is the detailed level of requirements
provided to the LLMs. In contrast to similar sys-
tems like MetaGPT (Hong et al., 2023) and Chat-
Dev (Qian et al., 2023a,b), which generate outputs
from brief requirement descriptions typically under
100 words, DevEval offers document-level detail
to guide the models. This approach ensures the
products are more precisely aligned with expecta-
tions, and further acceptance testing is employed
for verification. As a result, our evaluations better
reflect real-world software development scenarios
where detailed requirements are essential to capture
complex specifications and ensure product quality.

To more accurately simulate real-world develop-
ment practices and ensure rigorous evaluation, the
implementation task in DevEval involves supply-
ing LLMs with comprehensive inputs including the
PRD, UML class and sequence diagrams, and ar-
chitecture design. The models are then prompted to
generate code files. Given the constraint of output
length, we adopt a sequential generation approach,
prompting the models to produce one code file per
interaction. Regarding the planning aspect, recent
studies have explored prompting LLMs or training
a specific planner (Yao et al., 2023; Besta et al.,
2023; Wang et al., 2024b). Considering the struc-
tured nature of code files and the inherent depen-
dencies among them, we utilize these dependencies
as a clue for effective planning. The generation pro-
cess is guided to adhere to a partial order derived
from a predefined directed acyclic graph, thereby
ensuring structured and logical code development.
We leave the exploration of planning generated by
models themselves for future work.

Evaluation. For the evaluation of the implemen-
tation task, an automated testing framework has
been developed. This framework, tailored to the
specific programming language in use, integrates
PyTest for Python, GTest for C++, JUnit for
Java, and Jest for JavaScript. The evaluation
procedure involves executing reference acceptance

and unit tests within a predefined reference envi-
ronment. Then the evaluation metric is determined
by the pass rate of these tests.

‘ Python ‘ C/C++ ‘ Java ‘ JavaScript!
NLP CV DB CV DB
Domain® DL ALGO | ALGO ALGO WEB
API Tool Tool Tool
#Repo | 10 | 5 | 5 | 2
Avg.
#Code File 22 ‘ 7.0 ‘ 5.4 ‘ 6.0
Avg.
#Code Line 276 ‘ 495 ‘ 524 ‘ 617
Avg.
#Accep. Tests 30 ‘ >4 ‘ 24 ‘ 2
Avg.
#Unit Tests 124 ‘ 11.8 ‘ 8.2 ‘
Ave. ‘ 91.8 ‘ 95.0 ‘ 64.9% ‘

Coverage

Table 2: DevEval Statistics. {: DevEval covers a
range of domains including NLP, computer vision, deep
learning, algorithm implementation, API applications,
Database applications, web service (both frontend and
backend), and general tools and utilities. I: We do not
include unit testing for JavaScript as checking functional
correctness is not applicable to pure static web pages.
Correctness of page rendering and user interaction han-
dling is checked using acceptance tests. *: Interfaces
with thirty-party libraries that are not used to implement
the designated functionalities are not supplied with test
cases, resulting in relatively lower overall test coverage.

3.4 Task 4: Acceptance Testing

For this task, models are provided with the PRD,
UML diagrams, and architecture design, with the
option to include the implementation source code
to generate acceptance test code. Acceptance test-
ing is critical to verify that the software adheres
to requirements and operates effectively. In the
context of applications featuring command-line in-
terfaces, acceptance tests interact with the software
via shell commands, as specified in the PRD, and
subsequently evaluate the accuracy of the output
generated. For libraries, acceptance tests are imple-
mented through code that invokes the library’s API,
followed by assertions made on the responses of the
API. Applying this evaluative approach to LLMs
provides valuable insights into their practical ef-
fectiveness and dependability within the domain of
software development.

Evaluation. The evaluation of this task involves
running the generated acceptance tests against the
benchmark implementation code in the same test-
ing framework developed for the evaluation for the
implementation task.

In this phase, the Oracle Test methodology is
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employed to assess the accuracy of acceptance
tests generated by the model, which are comprised
of both test input and expected output. The test-
ing framework conducts an execution of the ref-
erence implementation of the software using the
input devised by the model, subsequently compar-
ing the software’s actual output against the model-
predicted output. This approach facilitates an un-
derstanding of the extent to which LLMs can ac-
curately interpret and predict the correct behavior
of the subject software, as delineated in its design
documentation.

3.5 Task 5: Unit Testing

In this phase, models are given the PRD, UML dia-
grams, and architecture design to generate unit test
codes that facilitate a comprehensive understand-
ing of the software. Unit testing serves as a fun-
damental approach to safeguard code integrity and
operational accuracy. Distinguished from broader
acceptance testing, which focuses on the overall
functionality and viability of the software, unit test-
ing examines individual code segments for adher-
ence to specified functionalities. The increasing
reliance on LLMs for streamlining software de-
velopment processes underscores the criticality of
their adeptness in writing effective unit tests, a
competency integral to the software’s reliability
and overall robustness.

Evaluation. The evaluation of LLM-generated
unit tests is conducted through their application
on the reference source code, employing the pre-
viously delineated testing framework. Similar to
the acceptance testing evaluation, this phase lever-
ages the Oracle Test, wherein the actual output of
code units under specific test inputs is compared to
anticipated outputs, as delineated by the oracle.

In addition, code coverage metrics are incorpo-
rated, providing a quantitative understanding of test
comprehensiveness. Utilizing statement coverage
analysis tools integrated within the aforementioned
testing frameworks, coverage is mathematically ex-
pressed as:

Number of Executed Statements ) X 100%’

Coverage = ( Total Number of Statements

where the number of executed statements de-
notes the count of distinct executable statements
within the code that are executed at least once dur-
ing the testing process, while the total number of
statements represents the aggregate count of all ex-
ecutable statements present in the codebase that are
subject to potential execution.

3.6 Dataset

The dataset construction process involved three
phases: repository preparation, code cleanup, and
document preparation. We first selected high-
quality repositories from a GitHub dump, applying
filters to ensure manageable complexity for evalu-
ation. Postgraduate student annotators then set up
the environments, executed the code to verify func-
tionality, and cleaned the repositories by removing
unnecessary files and running or creating unit and
acceptance tests to ensure oracle test standards. Fi-
nally, they prepared standard software design docu-
ments, including UML diagrams and architecture
designs, following specific guidelines. The curated
dataset consists of 22 repositories across Python,
C/C++, Java, and JavaScript, with varying com-
plexities and multi-file structures, as detailed in
Table 2. Appendix B provides more details.

4 Experiments

4.1 Setup

Models and the Baseline System We evalu-
ate three prominent pre-trained model families
with different model sizes, including both pro-
prietary and open-source models: OpenAl GPT
(OpenAl, 2023), CodeLlama (Roziere et al., 2023),
DeepSeek-Coder (Guo et al., 2024). Specifically,
our experiments involve GPT-3.5-Turbo, GPT-4-
Turbo from OpenAl GPT*, CodeLlama-Instruct
7B/13B/34B, and DeepSeek-Coder-Instruct mod-
els 1.3B/6.7B/33B. Regarding the baseline system,
we extend ChatDev (Qian et al., 2023a,b) for De-
vEval, adding support for UML diagrams, architec-
ture design, environment setup, and multi-language
execution, with structured PRDs and feedback to
reduce hallucinations. Further details are provided
in the Appendix C.

Prompting Methods In our baseline system,
we explore three prompting methods: No-Review,
Normal-Review, and Execution-Feedback. No-
Review represents a basic zero-shot prompting with
built-in task prompts. Normal-Review involves a
dual-role interaction, where the first role gener-
ates a solution and the second role reviews and,
where necessary, corrects it. This mode is designed
to evaluate the impact of review on model perfor-
mance, in the absence of external inputs. Execution-
Feedback, on the other hand, adds more dynamic

*We utilize gpt-3.5-turbo-1106,
gpt-4-0125-preview, respectively.
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Task ‘ Implementation
. . Pass@ Pass@
Evaluation Metric (%) Accept. Test’  Unit Test¥
GPT-4-Turbo
No-Review 3.0 0.0
Normal-Review 3.0 0.0
Execution-Feedback 8.9 42
CodeLlama-34B-Instruct
No-Review 0.0 1.4
Normal-Review 0.0 1.4
Execution-Feedback 0.0 1.4
DeepSeek-Coder-33B-Instruct
No-Review 1.5 4.2
Normal-Review 1.5 4.2
Execution-Feedback 1.5 4.2

Table 3: Results of different prompting methods of the
Implementation task on a subset of DevEval. §: all
results are averaged across all repositories and weighted
by the number of code lines, which measures the diffi-
culty of each repository.

interaction to the review process. This feedback
includes runtime results, error messages, and per-
formance metrics. Such information could enable
the reviewing role to make more informed deci-
sions, potentially leading to more accurate and ef-
fective solutions. For computational efficiency, we
conduct a single review for all review-involved
prompting methods.

Task | Unit Testing

Evaluation Metric (%) ‘ Oracle Test} Coverage$

GPT-4-Turbo
No-Review w/ Src Code 35.1 34.3 (54.8)
Normal-Review w/ Src Code 22.6 25.8 (68.7)
Codellama-34B-Instruct
No-Review w/ Src Code 10.7 18.3 (73.2)
Normal-Review w/ Src Code 12.6 27.0 (72.1)
DeepSeek-Coder-33B-Instruct
No-Review w/ Src Code 27.2 37.9 (75.8)
Normal-Review w/ Src Code 225 35.5(71.0)

Table 4: Results of different prompting methods of the
Unit Testing task on a subset of DevEval. §: the Ora-
cle Test results are averaged across all repositories and
weighted uniformly. $: the results on the left side are
averaged across all repositories and weighted uniformly,
showing the overall scores. The results on the right side
in the parenthesis are averaged across all valid reposito-
ries and weighted uniformly, where models have gener-
ated executable testing code.

4.2 Main Results

Results across prompting methods We first con-
duct experiments to examine the effects of different
prompting methods on a subset of DevEval us-

Task ‘ Accept. Testing
Evaluation Metric (%) ‘ Oracle Test$
GPT-4-Turbo
No-Review 3.6
Normal-Review 7.7
Normal-Review w/ Src Code 14.9
CodeLlama-34B-Instruct
No-Review 0.0
Normal-Review 0.0
Normal-Review w/ Src Code 0.0
DeepSeek-Coder-33B-Instruct
No-Review 0.0
Normal-Review 4.2
Normal-Review w/ Src Code 15.6

Table 5: Results of different prompting methods of the
Acceptance Testing task on a subset of DevEval. §: all
results are averaged across all repositories and weighted
uniformly.

ing three representative models: GPT-4-Turbo,
CodeLlama-34B-Instruct, and DeepSeek-Coder-
33B-Instruct.

Table 3 illustrates the results of the im-
plementation task for our study. In general,
Execution-Feedback leads to the optimal perfor-
mance, where GPT-4-Turbo benefits the most, espe-
cially on acceptance tests. In contrast, CodeLlama-
34B-Instruct and DeepSeek-Coder-33B exhibited
no improvement with any review process. We note
that the efficacy of the review process could be
understated as our automated testing is too rigor-
ous and sparse to reflect the improvements. We
observe that, despite no substantial improvements
on reference tests, the code quality notably im-
proved with Execution-Feedback prompt. How-
ever, there is no significant improvements using
the Normal-Review setting compared with the
No-Review setting. Models consistently provide
unhelpful suggestions, such as the addition of un-
necessary error handling or reorganization. This
indicates that the models are unable to comprehend
complicated code by merely reading it, lacking
external knowledge like execution feedback.

For the testing tasks, which are relatively easier
than the implementation, there are various obser-
vations. In Table 4, we find no clear evidence that
the review process brings stable benefits to unit
testing. However, on the acceptance testing in Ta-
ble 5, Normal-Review brings enhancement to the
performance. The degradation in unit testing per-
formance with review mainly stems from extended
input length challenging models’ long-context com-

7516



Task Environment Setup Implementation Acceptance Testing Unit Testing
Pass@ Pass@ Pass@

Evaluation Metric (%) Example Usage§ Accept. Test?  Unit Test¥ Oracle Test: Oracle Test3  Coverage
GPT-3.5-Turbo 33.3 4.2 43 11.7 28.7 24.6 (61.4)
GPT-4-Turbo 41.7 7.1 8.0 29.2 36.5 33.2 (66.3)
CodeLlama-7B-Instruct 8.3 0.0 0.0 0.0 3.0 3.6 (71.0)
CodeLlama-13B-Instruct 25.0 0.6 0.0 0.0 5.1 8.6 (57.6)
CodeLlama-34B-Instruct 16.7 0.6 0.5 4.5 21.1 25.4 (72.6)
DeepSeek-Coder-1.3B-Instruct 8.3 0.0 0.1 0.0 5.6 2.7 (27.0)
DeepSeek-Coder-6.7B-Instruct 25.0 29 39 20.5% 23.5 28.2 (70.6)
DeepSeek-Coder-33B-Instruct 16.7 4.4 5.5 13.6 32.8 35.7(79.4)

Table 6: Tasks 2 to 5 results on DevEval.ltalic figures: test cases for the Environment Setup task are quite scarce
compared to other tasks, therefore the results are more influenced by the randomness®. §: all results are averaged
across all repositories and weighted uniformly. §: all results are averaged across all repositories and weighted
by the number of code lines. $: the results on the left side are averaged across all repositories and weighted
uniformly, showing the overall scores. The results on the right side in the parenthesis are averaged across all valid
repositories and weighted uniformly, where models have generated executable testing code. ©: the model has

generated meaningless but executable testing code.

prehension. Imprecise reviewer suggestions may
also reduce output quality. Regarding the visibil-
ity of implementation source code, it is common
practice not to expose source code and execution
feedback for acceptance testing, while it’s allowed
to employ the source code as input for unit testing.
As shown in Table 5, models can barely generate
executable acceptance testing code and incorporat-
ing source code as additional input dramatically
increases the performance.

Results across models Table 6 illustrates the
main results on DevEval with optimal prompting
methods applied for each task.> We find that GPT-
4-Turbo demonstrates superior performance com-
pared to other models, while all models are far from
satisfactory. DevEval can effectively distinguish
between models of varying capabilities. Smaller
models, such as CodelLlama-7B/13B-Instruct and
DeepSeek-Coder-1.3B-Instruct, demonstrate inher-
ent limitations, frequently unable to generate syn-
tactically accurate code or follow the instructions.
These models tend to generate mere code skele-
tons or fill the function body with only comments.
Larger open-sourced models and GPT models,
while generating more reasonable code, still strug-
gle with the subtleties of complex code structure
and logic, such as variable type conversion, func-
tion arguments and object-oriented classes.

SExecution-Feedback is used for Environment Setup
and Implementation; Normal-Review w/ Src Code for Ac-
ceptance Testing; No-Review w/ Src Code for Unit Test-
ing as Normal-Review w/ Src Code shows no clear advan-
tage.

Results across tasks Generally, the models’ per-
formances on the implementation task are all below
the 10% pass rate. The highest-performing model,
GPT-4-Turbo, registers only a 7.1% pass rate on
reference acceptance tests and 8.0% on unit tests,
while some other models score zero, failing all
reference tests. Despite prior research such as Hu-
manEval (Chen et al., 2021) indicating that models
can manage simple code-writing tasks, substantial
challenges remain in more complex coding scenar-
ios within DevEval. We break down the imple-
mentation results into different languages in Fig-
ure 8 and find that models particularly struggle in
handling Java and C/C++, whose stringent syntax
requirements tend to magnify the models’ deficien-
cies in managing intricate details. This points to the
necessity for more enriched and diverse training
data across programming languages to bridge this
competency gap.

Compared with the implementation task, other
tasks are relatively simple but still challenging. Re-
garding the environment setup task, we note that
the test cases for the environment setup task are
quite scarce compared to other tasks®, therefore
the results are more influenced by the randomness.
Roughly speaking, GPT-4-Turbo reaches a 41.7%
pass rate in building environments, while open-

®Except for C/C++ and easy Python repositories that are
absent, only 12 repositories are involved in the environment
setup task. We will resolve this issue in future work. How-
ever, DevEval contains rich test cases for other tasks. Table
2 evidences that DevEval features fruitful tests for the imple-
mentation task. For the testing generation tasks, our prompts
depict fine-grained requirements and ensure the quantity of
generated testing cases.
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sourced models largely fall behind it. For the test-
ing tasks, GPT-4-Turbo still obtains the highest
scores and open-sourced models perform worse.
We identify an outlier that DeepSeek-Coder-6.7B-
Instruct achieves the highest score among open-
sourced models and approach GPT-4-Turbo in ac-
ceptance testing. The model somehow cheats on
this task by generating meaningless but executable
testing code (detail in Section E.4). With respect to
the unit testing, the overall Oracle Test and Cover-
age scores are quite low, which are averaged across
all repositories. However, for those generated test-
ing codes that can be successfully executed (obtain
non-zero Oracle Test score), the coverage scores
are relatively high, suggesting the models’ promis-
ing capability on this problem.

Results on software design Table 7 shows the
results of software design using GPT-4-Turbo as
the Judge and GPT-3.5-Turbo as the baseline for
comparison. More details on how we evaluate the
software design are found in Appendix D. GPT-
4-Turbo dominantly outperforms GPT-3.5-Turbo
with extraordinarily high win rates in all cases. Re-
garding the open-sourced models, as the size in-
creases, models consistently produce higher quality
design documents on both metrics, while they are
relatively inferior on faithfulness.

We compare the LL.M-as-a-Judge results with
human majority annotations. Low agreements are
observed with tie considered, which aligns with
previous studies (Zheng et al., 2023a). It is reason-
able as a tie is hard to define and judge, especially
for highly complicated and structured software de-
sign documents. Without tie, GPT-4-Turbo reaches
79.2% and 83.2% agreements on the general prin-
ciples and faithfulness metrics, respectively. This
means GPT-4-Turbo’s judgments align with the
majority of humans and could serve as a good al-
ternative for automated software design evaluation.

4.3 Analysis

Our experiments reveal several challenges faced
by LLMs, such as difficulties in generating ac-
curate Makefiles and Gradle files, handling func-
tion redefinitions, and managing file references in
multi-file repositories. Models also struggle with
correct function parameter usage, naming conven-
tions, type handling, and managing variable scope.
Furthermore, they frequently fabricate variables or
misinterpret data files, leading to hallucination is-
sues. For more detailed experimental findings and

w/ Tie w/o Tie
Gt F G F
GPT-4-Turbo 97.9 97.9 | 100.0 100.0
CodeLlama-7B-Instruct 42 83 4.2 4.5
CodeLlama-13B-Instruct 18.8 14.6 10.5 5.3
CodeLlama-34B-Instruct 39.6 333 333 214
DeepSeek-Coder-1.3B-Instruct | 16.7 16.7 5.5 5.6
DeepSeek-Coder-6.7B-Instruct | 354 354 | 31.6 294
DeepSeek-Coder-33B-Instruct | 52.1 50.0 | 53.8  50.0

Agree w/ Human Majority | 604 516| 792 832

Table 7: Win rate of pairwise comparison against GPT-
3.5-Turbo on Software Desgin on a subset of DevEval .
Results are averaged across different repositories and
sub-tasks uniformly. {: general principles. 1: faithful-
ness. w/ Tie: inconsistent results are considered as a tie.
We also report agreement with Human Majority.

analysis, please refer to the Appendix E.

5 Conclusion

The DevEval framework presents a leap forward
in studying LL.Ms within the domain of automated
software development. By employing a multi-stage
evaluation process, DevEval comprehensively as-
sesses LLMs across a spectrum of tasks including
design, environment setup, implementation, and
testing. Empirical findings reveal that pre-trained
models like GPT-4-Turbo are still confronted with
substantial challenges within DevEval. Through
analysis, we identify models’ limitations in under-
standing the complex repository structures and han-
dling the nuanced demands of comprehensive soft-
ware development. These insights elucidate critical
pathways for future model development.

6 Limitations

One limitation of our work is the limited number
of repositories used in the study, with only 22 cu-
rated examples across four programming languages.
This relatively small dataset may not fully capture
the wide variety of challenges and complexities
present in real-world software development. Al-
though we selected diverse repositories to represent
different domains and programming paradigms, a
broader and more extensive collection of reposi-
tories would provide a more comprehensive eval-
uation of LLM performance. Future work could
address this by incorporating additional reposito-
ries to better generalize the findings.
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Appendix

A Software Engineering Tasks with a
Running Example

We describe concepts of software engineering tasks
using one of the subjects of DevEval, named Actor
Relationship Game. The Actor Relationship Game
is a Java-based application that allows users to ex-
plore connections between popular actors through
their movie collaborations, using data from The
Movie Database (TMDB) API. It constructs an
actor graph and identifies the shortest path of rela-
tionships between any two actors.

A.1 Software Design

Software design is the process by which an agent
creates a specification of a software artifact, in-
tended to accomplish goals, using a set of primitive
components and subject to constraints. It is a phase
in the software development lifecycle that bridges
the gap between software requirements analysis
and the actual implementation of the software sys-
tem.

During the software design phase, software en-
gineers or designers define the way a software ap-
plication will work to meet the specified require-
ments in the form of a Product Requirement Docu-
ment (PRD). They create diagrams that determine
the data structures, software architecture, interface
designs, and module specifications with Unified
Markup Language (UML) diagrams.

A good software design is crucial as it impacts
the quality, maintainability, performance, scalabil-
ity, and robustness of the software product. It facil-
itates a smoother implementation phase, allows for
better understanding and communication among
team members, and helps in identifying potential
issues early in the development process.

A.1.1 Class Diagrams

Class diagrams are a cornerstone of object-oriented
design, offering a static snapshot of the system
structure. These diagrams illustrate the classes
within the system, their attributes, methods, and
the relationships among the classes, such as inheri-
tance and associations. Class diagrams are instru-
mental in providing an abstract representation of
the system’s components and their interactions, fa-
cilitating a deeper understanding of the software’s
overall architecture and design patterns.

Figure 2 shows the class diagram of the Ac-
tor Relationship Game repository. This UML
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Figure 2: UML Class Diagram for the Example Repository

ActorGraphUtil GraphCreation TMDBApi ActorGraph GameplayInterface Main
createGraph()
searchPopularActors()
return popular actors data
addActor()
addMovie()
addActorToMovie()
saveGraphToFile()
return actorGraph.ser
loadGraph()
findConnectionWithPath()
return connection path
display results
ActorGraphUtil GraphCreation TMDBApi ActorGraph GameplayInterface Main

Figure 3: UML Sequence Diagram for the Example Repository

class diagram delineates the architecture of a
system designed to model and analyze the net-
work of relationships between actors and movies
through an Actor Graph. It encompasses
classes such as ‘Actor® and ‘Movie‘ to represent
individual entities, alongside an ActorGraph

class that serves as a repository and manage-
ment layer for these entities and their asso-
ciations.  Utility and operational classes like
ActorGraphUtil, GameplayInterface,
and GraphCreation provide mechanisms for
manipulating the graph—ranging from data inges-
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tion using the TMDBApi to utility functions and
gameplay interfaces that leverage the graph for
various applications. The relationships between
classes, including associations, aggregations, and
dependencies, are meticulously outlined to depict
interactions such as actors appearing in movies and
the construction and utilization of the actor-movie
graph for finding connections and supporting game-
play or analysis tasks.

A.1.2 Sequence Diagrams

Sequence diagrams, different than class diagrams,
focus on the dynamic aspects of the system. They
depict how objects interact with each other across
time, outlining the sequence of messages ex-
changed between objects to accomplish a specific
functionality or process within the system. Se-
quence diagrams are invaluable for visualizing and
analyzing the flow of operations, timing constraints,
and the interaction patterns among system compo-
nents, making them essential for detailed behav-
ioral analysis.

The  sequence  diagram of Actor
Relationship Game repository 1is illus-
trated in Figure 3. This diagram illustrates the flow
of operations for creating, populating, and utilizing
an actor-movie graph. Initially, the Main function
triggers the graph creation process by calling
createGraph () on the GraphCreation
module, which then interacts with the TMDBAp1 to
fetch popular actors’ data. Upon receiving this data,
GraphCreation populates the ActorGraph
with actors, movies, and their associations.
After constructing the graph, GraphCreation
delegates the responsibility of saving this graph
to a file to ActorGraphUtil, which then
returns a serialized file (actorGraph.ser)
back to Main. Subsequently, Main instructs
the GameplayInterface to load this graph
and use it to find connections between actors via
findConnectionWithPath (), a method in
ActorGraph. The path found is then returned to
GameplayInterface, which finally displays
the results back in the Main function. This
sequence encapsulates a complete lifecycle
from graph creation, through data population
and serialization, to utilization for finding actor
connections, showcasing a systematic approach to
managing and analyzing actor-movie relationships.

A.1.3 Architecture Design

Architecture design using file tree representation
refers to a method of visualizing and organizing
the structural layout of a software system’s com-
ponents in a hierarchical format. This approach
delineates the organization of software modules,
packages, libraries, and other assets in a tree-like
structure, where each node represents a file or a
directory containing more files or directories. Such
a representation is crucial in conveying the archi-
tectural blueprint of a software project, illustrating
how its various parts are interrelated.

The text-based representation of the file tree for
the Actor Relationship Game repository, including
test classes for each Java class, is shown as below.

/
|  .gitignore
| src
|  acceptanceTest
java
LA,Actor;relationshipﬁgame
L ARG_AcceptanceTest. java
L main
L seva
LA,Actor;relationshipfgame
Actor. java
Movie. java
ActorGraph. java
ActorGraphUtil.java
GameplayInterface.java
GraphCreation. java

TMDBApi. java

| test
Lg,java

LA,Actor_relationship_game
ActorTest. java
MovieTest. java
ActorGraphTest. java
ActorGraphUtilTest. java
GameplayInterfaceTest. java
GraphCreationTest. java
TMDBApiTest. java

I build.gradle

README .md

A.2 Software Development

Software development is the comprehensive pro-
cess of programming, documenting, optimization,
and fixing involved in creating and maintaining
applications, frameworks, or other software com-
ponents. It encompasses all the activities that re-
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sult in software products and involves a series of
steps known as the software development lifecycle
(SDLC).

* Environment Setup is the process of prepar-
ing and configuring the necessary hardware
and software tools required to build and run
software applications. This setup is crucial to
provide a consistent, controlled, and efficient
workspace for developers to code, test, and
deploy their applications. The environment
can be set up on an individual’s local machine,
on a remote server, or in a containerized envi-
ronment.

e Implementation is when developers write
code according to the software design doc-
uments, using programming languages and
tools suitable for the repository.

A.3 Quality Assurance

Quality Assurance (QA) is the systematic process
of ensuring that the software being developed meets
the specified quality standards and requirements
before it is released.

Software testing is an integral part of QA; in-
volves the execution of a software component or
system component to evaluate one or more proper-
ties of interest. Software testing typically includes:

* Unit Testing is the process of testing indi-
vidual units or components of a software ap-
plication to ensure their behaviors. A unit is
the smallest testable part of any software and
usually has one or a few inputs and usually a
single output. In procedural programming, a
unit could be an entire module, but it is more
commonly an individual function or proce-
dure.

¢ Acceptance Testing is a level of software test-
ing where a system is tested for acceptability.
It provides the final assurance that the soft-
ware meets the PRD and is ready for use by
end-users.

Code Listing 1 is part of the unit test
suite for the Actor Relationship Game Reposi-
tory, specifically designed to validate the func-
tionality of the Actor class. Using the
JUnit framework, it defines two test cases:
testActorIdAndName and testMovielIds.
The first test, test Actor IdAndName, instanti-
ates an Actor object with a specific ID and name

("101" and "John Doe", respectively) and asserts
that the get Id () and getName () methods cor-
rectly return these values, ensuring the actor’s iden-
tity is accurately stored and retrievable. The second
test, testMovieIds, creates another Actor ob-
ject and adds two movie IDs ("201" and "202") to
the actor’s list of movie IDs. It then verifies that
these movie IDs are indeed associated with the ac-
tor by checking if the actor’s getMovieIds ()

set contains the added IDs. Together, these tests
check the integrity of the Act or class’s basic func-
tionalities: maintaining an actor’s identity and man-
aging their associated movie IDs.

Listing 1: Example Unit Test

package Actor_relationship_game;

import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.x;

class ActorTest {
@Test
void testActorIdAndName () {
Actor actor = new Actor ("101", "John Doe");
assertEquals ("101", actor.getId());

assertEquals ("John Doe", actor.getName());
}
@Test
void testMovielIds () {
Actor actor = new Actor("102", "Jane Smith")

i

actor.getMovieIds () .add("201");

actor.getMovieIds () .add("202");

assertTrue (actor.getMovielIds () .contains ("201
"))

assertTrue (actor.getMovielIds () .contains ("202
"))

In Code Listing 2, the example acceptance test
is designed to verify the functionality of gener-
ating and comparing actor lists from graph data.
It employs the runGradleTask method to exe-
cute specific Gradle tasks for creating graph data
and generating actor lists into specified file paths,
using parameters for file names to differentiate
between reference and test data. The test first
runs the runGraphCreation task with paths
for both reference and test graphs, followed by
the runActorGraphUtil task to generate ac-
tor lists from these graphs into specified file paths.
Once the actor lists are generated, the test reads
lines from both the reference and test actor list files
and then iterates through each line in the reference
actor list, followed by an assertion that each actor
from the reference list is also present in the test
list. This process effectively checks the integrity
and consistency of the actor list generation feature
by ensuring that the test actor list replicates the
reference list accurately, thereby validating the ap-
plication’s capability to process and output graph-
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related data correctly.

Listing 2: Example Acceptance Test

@Test
public void testActorList () throws IOException,
InterruptedException{
runGradleTask ("runGraphCreation -PfileName="+
referenceGraphPath) ;
runGradleTask ("runGraphCreation
testGraphPath) ;
runGradleTask ("runActorGraphUtil -PgraphPath="+
referenceGraphPath+" -PfilePath="+
referenceActorPath);
runGradleTask ("runActorGraphUtil -PgraphPath="+
testGraphPath+" -PfilePath="+testActorPath)

PfileName="+

i

List<String> referencelines = Files.readAllLines
(Paths.get (referenceActorPath));

List<String> testlLines = Files.readAllLines(
Paths.get (testActorPath));

for (String referenceline:referencelLines) {
assertTrue (containsLine (testLines,
referenceline));

B Dataset

B.1 Dataset Construction

The data preparation process in our work consists
of three distinct phases: repository preparation,
code cleanup, and document preparation.

The initial phase, repository preparation, in-
volves selecting high-quality, well-structured can-
didate repositories from a GitHub dump. Recog-
nizing the impracticality of constructing a reposi-
tory from scratch, we employed a filtering process
to identify suitable candidates. Moreover, we im-
posed a constraint on the total number of lines of
code to ensure the repositories’ complexity remains
manageable, facilitating the evaluation of current
LLMs.

During the code cleanup phase, our postgraduate
student annotators were tasked with setting up the
required environment as stipulated in the reposito-
ries’ README files. They then executed the code
to verify its functionality. Following this sanity
check, the annotators were instructed to meticu-
lously refine the code repositories. This refinement
included the removal of unnecessary auxiliary files.
To ascertain code quality, the annotators were also
required to run existing unit and acceptance tests,
or to develop additional tests, ensuring they meet
the standards of the oracle test and achieve satisfac-
tory coverage.

The final phase, document preparation, involved
the creation of standard software design documents,
namely, UML class and sequence diagrams, and

architecture designs, for each repository. We pro-
vide annotators with specific guidelines and tem-
plates for these documents. The annotators were
responsible for ensuring that these design docu-
ments corresponds accurately and cohesively with
the respective code repositories.

B.2 Dataset Statistics

In Table 2, we present an exhaustive statistical
breakdown of our datasets. DevEval contains a col-
lection of 22 curated repositories, spanning across
four widely-used programming languages (Python,
C/C++, Java, JavaScript) and a diverse range of do-
mains. The dataset is characterized by its multi-file
structure. The Python repositories in our dataset
are relatively straightforward, with each repository
comprising approximately two files and an aver-
age of 276 lines of code. In contrast, the reposi-
tories pertaining to statically-typed programming
languages, namely C/C++ and Java, are more com-
plex, featuring an increased count of code files
and lines. For JavaScript, our usage of the Vue.js
framework necessitates that models adeptly navi-
gate the framework’s templates and development
paradigms. Consequently, JavaScript repositories
exhibit the highest number of code files and lines,
posing a substantial challenge for LLMs. Addition-
ally, we have prepared extensive reference accep-
tance and unit tests for each repository to facilitate
rigorous evaluation of the implementation task.

C The Baseline System

We introduce our baseline system formulated for
DevEval, building upon the foundations of Chat-
Dev (Qian et al., 2023a,b). ChatDev is a virtual,
chat-powered software development system that
adheres to the conventional waterfall model. It bi-
furcates the development process into four primary
tasks (dubbed as phrases in ChatDev): design, cod-
ing, testing, and documentation. Within this sys-
tem, multiple LLM agents assume diverse roles
such as programmers, reviewers, and testers, perti-
nent to each phase. ChatDev is characterized by its
utilization of a chat chain mechanism, which seg-
ments each phase into smaller, atomic tasks. This
approach enables context-sensitive, multi-turn dia-
logues between two distinct roles, facilitating the
proposal and validation of solutions for individual
tasks.

In contrast to ChatDev, our development of base-
line system incorporates several features and en-
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hancements. We have restructured the task design
to align closely with the evaluation criteria of De-
vEval. Specifically, this includes the integration
of comprehensive input to the system, exempli-
fied by well-structured PRDs. This integration is
crucial in addressing and examining the issue of
hallucination in controlled experimental settings.
Moreover, our baseline system expands upon the ca-
pabilities of ChatDev, supporting a wider range of
tasks, including standard Object-Oriented program-
ming designs (UML class and sequence diagrams),
repository planning (architecture design), environ-
ment setup, and acceptance testing. A significant
advancement in our baseline system is its compat-
ibility with multiple programming languages and
their corresponding runtime environments. This
feature is coupled with the provision of comprehen-
sive execution feedback to the system.

Implementation Details We utilize LMDeploy
for the deployment of CodelLlama and DeepSeek-
Coder models.” Acknowledging the potential for
extensive input context in DevEval tasks, we config-
ure the context length to 32K for these models. For
the Software Design task, we set the temperature
parameter to 0.2, while for the remaining four tasks,
we use a temperature of 0. Other hyperparameters
in the experiment are maintained at default settings.
All code-related tasks are rigorously evaluated in
an isolated sandbox environment, utilizing Docker
technology.

D Software Design Evaluation

We follow previous work (Zheng et al., 2023a) to
conduct a pairwise comparison to determine which
response is better, focusing on the metrics of gen-
eral principles and faithfulness (see the correspond-
ing prompts in Figures 4, 5, 6). To reduce the
expenditure of the OpenAl GPT API and human
effort, the scope of our evaluation was confined to
a subset of our dataset. This process involves 192
pairs across eight repositories, eight models, and
three sub-tasks. Regarding the LLM judge, we use
GPT-4-Turbo as the judge and GPT-3.5-Turbo as
the baseline model. To mitigate the issue of po-
sition bias (Zheng et al., 2023a; Shi et al., 2024),
i.e., LLM judges preferring response at a certain
position regardless of the content, the evaluation
was executed in a dual mode, evaluating each pair
twice in different orders (384 pairs in total), with in-
consistent decisions being considered as a tie. For

"nttps://github.com/InternlM/1lmdeploy

the human evaluation, we shuffle the order of two
responses and annotate each pair thrice to obtain
the human majority.

The customized LLM-as-a-Judge prompt for
evaluating software design is detailed in Fig. 7,
structured to facilitate pairwise comparisons in
accordance with predefined evaluation guidelines.
The LLM’s judgments are extracted by employing
regular expressions to identify the selection spec-
ified after "Choice:" within the judges’ responses.

E Experimental Discussions

E.1 Model Capacity

Challenges in Creating C/C++ Makefile and
Java Gradle LLMs often face challenges in gen-
erating accurate Makefile for C/C++ and Gradle
files for Java. Frequently, the generated files are
deficient in critical components like source code
files, necessary dependencies and essential tasks.
In C/C++ and Java repositories, approximately
90% of compilation and execution errors can be
attributed to these issues. We find that even GPT-
4-Turbo occasionally fail in basic syntax errors on
compilation files. This is potentially caused by in-
sufficient training data related to these compilation
tools.

Function Redefinition in Multi-file Repositories
Models face significant challenges in multi-file
repositories contexts, particularly with function re-
definitions. Specifically, if a global function is
required for the entire repository, it can be defined
in any file, and other files just need to correctly
reference it. But they tend to redundantly imple-
ment the same function across multiple files, suit-
able for single-file repositories but erroneous in
multi-file scenarios. In C/C++, models incorrectly
handle header (.h) and implementation (.cpp) files,
leading to redundant declarations and conflicting
implementations. These issues highlight a gap in
the models’ understanding of file-specific roles in
programming languages.

File Reference and Linkage Errors Correct file
referencing is essential in multi-file programming
repositories. Models, especially those with larger
parameters, generally perform well in establishing
basic reference logic, such as using “import” in
Python and “#include” in C++. However, without
review, reference errors are common, likely due to
the models’ sequential code generation approach,
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Evaluation Guidance for UML Class

* Cohesion and Decoupling: The design should aim for high cohesion within individual classes and low coupling
between different classes. High cohesion ensures that each class is dedicated to a singular task or concept, enhancing
clarity and functionality. Low coupling reduces dependencies among classes, facilitating easier maintenance and
scalability.

Complexity: Utilize metrics such as the total number of classes, the average number of methods per class, and
the depth of the inheritance tree to evaluate complexity. It’s important to discern between conceptual classes and
attributes; not every noun should become a class. The complexity level should be appropriately balanced, aligning
with the specific requirements detailed in the repository’s Product Requirement Document (PRD).

Practicability: A practical design should be readable and understandable, offering a clear and comprehensive repre-
sentation of the software’s structures, functionalities, and behaviors. This enhances ease in programming, testing,
and maintenance. Modularity should be evident, with each component serving a distinct function, streamlining
the development process. Interfaces need to be designed for simplicity, facilitating smooth interactions within the
software and with external environments. The design must also support robust testing strategies, enabling thorough
validation through unit and acceptance tests, ensuring the design’s viability in real-world applications.

Ensure that the design aligns with the given PRD strictly, achieving all the functionalities based on the requirements
without making any hallucinations and additions. Ensure that the conceptual classes and their relationships
accurately represent the essentials outlined in the PRD. This includes a detailed focus on the associations between
classes, their cardinalities, and the types of relationships such as inheritance, aggregation, and composition. Clarity
in class names and the optional inclusion of attributes are key for aligning with the repository’s vision.

Figure 4: Evaluation Guidance for UML Class.

-

Evaluation Guidance for UML Sequence

Uniformity and Integration: The design should demonstrate a consistent style and integrated approach, ensuring all
components work seamlessly together.

Cohesion and Decoupling: Evaluate the sequence diagram for its cohesion within sequences and coupling between
different parts of the system. The goal is to ensure each sequence is focused, with minimal dependencies between
different system components. Strive for high cohesion within sequences and low coupling between them.
Interaction complexity: This metric assesses the interaction complexity of the sequence diagram, focusing on the
number of messages, depth of nested calls, and the number of participating objects. It also examines how the
sequence of messages and the roles of key objects are portrayed in these interactions. The ideal level of complexity
should be in line with the specific requirements detailed in the repository’s PRD

Practicability: This comprehensive metric includes aspects of readability, understandability, class and method
representation, and the overall clarity in depicting system interactions and functionalities. Evaluate the diagram’s
ease of interpretation for development, testing, and maintenance, its ability to represent the functionality and
purpose of each class, document object creation instances, and demonstrate the modularity and interface simplicity
that support efficient and reliable system operation.

Evaluate how accurately and comprehensively the sequence diagram reflects the system’s intended behavior and
requirements specified in the PRD. This includes how well it captures system events, both with and without
parameters, and the accuracy with which it reflects the impact of these events on the system’s behavior. Also
Evaluate how accurately and comprehensively the sequence diagram reflects the structural design outlined in the
given UML class diagrams, ensuring a coherent and consistent development process.

Figure 5: Evaluation Guidance for UML Sequence.

which limits their ability to correct earlier mistakes.  through review. This indicates a need for mod-
More complex reference issues also arise. Mod- els to better grasp the intricacies of programming
els often struggle to differentiate between global  language structures and conventions.

functions and class methods, leading to reference

errors when attempting to access class methods

directly. These errors are challenging to rectify
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Evaluation Guidance for Architecture Design

Uniformity and Integration: The design should demonstrate a consistent style and integrated approach, ensuring all
components work seamlessly together, ensuring high cohesion and decoupling.

Distinction Between Design and Coding: Recognize that the design process is distinct from coding; good design
lays the groundwork for effective coding but is not synonymous with it.

Practicability: Evaluate the architecture’s practicability by assessing its organization, readability and modularity,
and efficiency. The design should feature a logical and clear structure, evidenced by a well-organized file tree and
distinct class locations in proper directories.

» Conformance: Evaluate the architecture for its conformance to community and industry standards. The file tree
structure, coding practices including naming conventions, documentation and other structural elements should
adhere to the widely accepted conventions by the open-source community and best practices of the programming
language used, such as C/C++, Python, Java and JavaScript.

¢ The architecture must be in strict accordance with the given PRD and UML class diagrams. It should accurately
reflect the requirements specified in the PRD and the structural design outlined in the UML diagrams, ensuring a
coherent and consistent development process.

Figure 6: Evaluation Guidance for Architecture Design.

Please evaluate the two responses (Response 1, Response 2) based on the provided scoring criteria.

Scoring criteria: <Evaluating Guidance>

- If the response is incomplete or misses any required key component, regard it as a bad one.
- If the response is verbose and/or repetitive, consider it negatively based on the extent.

- If the response is well-formatted and clearly-structured, give it extra credit.

Important: You should act as an IMPARTIAL judge and be as OBJECTIVE as possible. AVOID ANY POSITION
BIASES and ensure that the ORDER in which the responses were presented DOES NOT influence your decision.

Please choose from the following two options based on the scoring criteria:
- A. Response 1 is better than Response 2.

- B. Response 2 is better than Response 1.

- C. Tie.

Question:
<Question Start> {question} <Question End>

Response 1:
<Response 1 Start> {response 1} <Response 1 End>

Response 2:
<Response 2 Start> {response 2} <Response 2 End>

Reference answer 8
<Reference Answer Start> {reference answer} <Reference Answer End>

Please provide detailed reasons for your choice. Also, you should pay adequate and the same attention o both
responses. Your output should be in the following format:

Choice: A
Reason:

1. xxxxx
2. XXXXX

Figure 7: LLM-as-a-Judge prompt for software design evaluation

E.2 Instruction Following area. It inaccurately modifies function and variable
names, disrupting the code’s functionality. For in-
stance, in “Graph BFS DFS”, we instruct the use
of the “top()” method for stack access, yet GPT-
4-Turbo incorrectly labels it as “getTop()”. Fur-

Naming Errors Proper naming in code is crucial
for readability and maintainability. Larger models,
like GPT-4-Turbo, while capable of generating syn-
tactically correct code, exhibit deficiencies in this
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Codellama-34B-Instruct

Python C++

Java

Figure 8: Performance Break Down on Different Languages. The results are averaged across all repositories and

weighted by the number of code lines

thermore, the model’s lack of attention to plurals
and capitalization aggravates these errors. Despite
reviews, this issue remains inadequately addressed.

Function Parameters and Overloading Errors
We observe that even some large models, such as
GPT-4-Turbo, neglect the correct number of func-
tion parameters, missing critical ones. Function
overloading is another similar nuanced aspect that
many models mishandle. They often overlook the
necessity of multiple constructors or methods with
varying parameters. For example, in a task like
“area_calculation”, models fail to create both pa-
rameterized and parameterless constructors, focus-
ing solely on the former. This oversight is not sig-
nificantly rectified in the review stages, as models
mistakenly attribute the errors to the test program.
They stubbornly resist correcting their generated
code, even when provided with clear instructions.

Type Errors Models demonstrate a lack of sen-
sitivity to type conversions, especially in strongly-
typed languages like C/C++. Errors in matching
const types and misusing pointer types are com-
mon, and these missteps are not readily resolved
in the review process. However, in weakly-typed
languages like Python, such issues are less critical
but still present a concern for code accuracy.

Variable Scope and Lifecycle Mismanagement
Models frequently misuse variables beyond their in-
tended scope or lifecycle. For example, they might
attempt to use a loop control variable outside its
loop. Another issue is the misunderstanding of pri-

vate and public members in classes, where models
inappropriately access private elements from out-
side the class. This indicates a gap in the models’
understanding of encapsulation and scope manage-
ment in object-oriented programming.

E.3 Hallucination

Fabrication of Variables A significant challenge
is the models’ propensity to fabricate non-existent
local variables, a problem typically rectified during
review. This issue suggests a fundamental limita-
tion in the models’ sequential generation process.
Unable to retroactively integrate essential variable
definitions, the models end up introducing imag-
inary variables in the code, resulting in apparent
inaccuracies.

Misinterpretation of Data Files Models also ex-
hibit a tendency to incorrectly interpret data files
as Python libraries. They attempt to import meth-
ods from these non-existent libraries, leading to
further reference errors. This behavior underscores
the intricacy involved in handling file references
accurately within code generation tasks.

E.4 Limitations in Testing

In Acceptance Testing task, we employ an
execution-based evaluation method for the gener-
ated tests, foregoing manual quality assessments.
This approach assumes a test is valid if it can accu-
rately assess standard implementation code. How-
ever, we observed that smaller models, such as
DeepSeek-Coder-6.7B-Instruct, tend to game this
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method. They set arbitrary criteria and invariably
provide positive feedback, thereby circumventing
a genuine evaluation.

Larger models like GPT-4-Turbo fell short of our
expectations. They persistently recall and utilize
methods in the original repository code, instead of
our specially designed versions, leading to frequent
import errors. This issue is exemplified in our tests
with the “GeoText” and “Stocktrends” repositories.
We modified the original repositories by remov-
ing “__init__.py” files, expecting models could
correctly handle import relationships without them,
based on our provided file structures. However, the
models continued to follow the import logic of the
original repositories, leading to hallucination and
inaccurate test generation. This indicates a training
data bias, where these models are predisposed to
original repository code and show a reluctance to
adjust to new circumstance.

To prevent meaningless but executable testing
code, structured test templates with explicit instruc-
tions and incomplete assertion statements can po-
tentially guide and force models toward meaningful
test generation.

F Repositories statistics in DevEval

Table 8 shows the repository statistics within De-
vEval.
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Text L D . #code | #code | #code | #acceptance | #unit | Unit test
& anguage omain files lines | tokens tests tests | coverage
TextCNN | Python | DL,NLP | 5 | 403 | 1566 | 1 |10 |99
ArXivdigest | Python | SE,API | 1 | 198 | 901 | 4 | 38 | 94
chakin | Python | NLP | 1 | 62 | 225 | 1 |1 | 86
readtime | Python | ALGO | 3 | 284 | 920 | 4 | 8 | 95
hone | Python | SE | 4 | 274 | 844 | 5 |7 | 90
Stocktrends | Python | ALGO | 1 | 384 | 1350 | 2 |7 | 8
GeoText | Python | NLP | 2 | 470 | 1701 | 5 |4 | 98
lice | Python | SE | 2 | 376 | 1329 | 6 | 25 | 88
PSO | Python | ALGO | 2 | 168 | 578 | 1 |5 | 93
hybrid images | Python | ALGO,CV | 1 | 144 | 746 | 1 |19 | 90
Actor Relationship ‘ Java ‘ALGO, API‘ 8 ‘ 493 ‘ 1453 ‘ 4 ‘ 16 ‘ 64.32
Game
Leftist Trees and
Fibonacci Heaps Java ALGO 3 632 2009 2 2 45.32
Comparison
Redis | Java | SE,DB | 9 | 779 | 2546 | 1 | 17 | 786
idcenter | Java | SE | 4 | 333 | 1140 | 3 | 4 | 542
mage Java SE.CV 30| 382 | 1397 2 2 | 7134
similarity
xlsx2csv | C/C++ | SE | 10 | 476 | 1440 | 5 | 8 | 9517
people C/C++ | SE,DB 6 | 540 | 2043 7 9 | 9514
management
Area CIC++ SE 7 | 162 | 307 3 30| 9048
Calculation
Graph BFSDFS | C/C++ | ALGO | 5 | 667 | 2828 | 5 | 22 | 1
Logistic Management | /. | SE 7 | 630 | 2007 7 17 | 99.11
System
listen-now-frontend | JS | Web | 6 | 232 | 492 | 1 o | 7
register | IS | Wweb | 6 | 223 | 741 | 3 o |
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