
Proceedings of the 31st International Conference on Computational Linguistics, pages 7292–7306
January 19–24, 2025. ©2025 Association for Computational Linguistics

7292

In-context Continual Learning Assisted by an External Continual Learner

Saleh Momeni 1, Sahisnu Mazumder 2, Zixuan Ke 3, Bing Liu 1

1 Department of Computer Science, University of Illinois Chicago, USA
2 Intel Labs, USA 3 Salesforce AI Research, USA
smomen3@uic.edu, sahisnumazumder@gmail.com,

zixuan.ke@salesforce.com, liub@uic.edu

Abstract

Existing continual learning (CL) methods
mainly rely on fine-tuning or adapting large lan-
guage models (LLMs). They still suffer from
catastrophic forgetting (CF). Little work has
been done to exploit in-context learning (ICL)
to leverage the extensive knowledge within
LLMs for CL without updating any parame-
ters. However, incrementally learning each new
task in ICL necessitates adding training exam-
ples from each class of the task to the prompt,
which hampers scalability as the prompt length
increases. This issue not only leads to exces-
sively long prompts that exceed the input token
limit of the underlying LLM but also degrades
the model’s performance due to the overex-
tended context. To address this, we introduce
InCA, a novel approach that integrates an ex-
ternal continual learner (ECL) with ICL to
enable scalable CL without CF. The ECL is
built incrementally to pre-select a small subset
of likely classes for each test instance. By re-
stricting the ICL prompt to only these selected
classes, InCA prevents prompt lengths from
becoming excessively long, while maintaining
high performance. Experimental results demon-
strate that InCA significantly outperforms ex-
isting CL baselines, achieving substantial per-
formance gains.

1 Introduction

Continual learning (CL) aims to enable models
to learn a sequence of tasks incrementally (Chen
and Liu, 2018; De Lange et al., 2021). CL is typ-
ically categorized into three main settings: task-
incremental learning, class-incremental learning
(CIL), and domain-incremental learning (Van de
Ven and Tolias, 2019). In this paper, we focus
on the CIL setting (Rebuffi et al., 2017), where
each task has a set of distinctive classes, and
a single model is developed to handle all tasks
and classes. At test time, no task information
is provided for each test instance. This differs

from task-incremental learning, which provides
the task-id for each test instance, making classi-
fication much easier. CIL requires a unified model
that can distinguish all classes seen thus far. In
domain-incremental learning, all tasks have the
same classes but are from different domains.

There are two key challenges in CIL. (1) Catas-
trophic forgetting (CF), which refers to the per-
formance deterioration of earlier tasks due to pa-
rameter updates in learning new tasks (McCloskey
and Cohen, 1989). (2) Inter-task class separation
(ICS), which refers to the phenomenon that with-
out accessing the previous task data, the learning
of a new task has difficulty in establishing decision
boundaries between the new and old classes (Kim
et al., 2023). Although the CL community has
studied CF extensively, the challenge of ICS has
only been identified recently in (Kim et al., 2022).
Both challenges disappear in in-context CIL with
LLMs. A simple method to apply in-context learn-
ing to CIL is to incrementally add few-shot train-
ing examples for each new class to the in-context
prompt. This prompt includes examples from all
classes encountered so far along with instructions
for classification. Since the LLM parameters re-
main unchanged, CF is inherently avoided, and ICS
is addressed by encompassing all classes and their
examples within the same prompt.

Unfortunately, this approach is not scalable for
CIL because the prompt length rapidly increases
with each new task or class added, quickly exceed-
ing the token limits of LLMs. Although summa-
rizing the training examples can increase the num-
ber of classes that can be learned (i.e., included
in the prompt), the underlying scalability problem
persists. Moreover, including excessive and often
irrelevant information from various classes leads to
significant performance degradation (see Section
6). Even with the recently introduced long-context
LLMs (Chen et al., 2024; Reid et al., 2024), our ex-
periments demonstrate that the performance degra-
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dation persists despite the increased token capacity.
In this paper, we introduce InCA (In-context

Continual Learning Assisted by an External Con-
tinual Learner), a novel method that overcomes
the scalability and performance limitations of in-
context CIL while retaining the advantages of in-
context learning – specifically, avoiding CF and
ICS problems. InCA leverages an external contin-
ual learner (ECL) that both benefits from and en-
hances the LLM’s in-context learning capabilities.
The ECL aims to reduce the number of candidate
classes to a small set of k classes that are most
likely to include the correct class. For each input
instance, we first prompt the LLM to generate a list
of tags–descriptive topics or keywords that capture
the essential semantics of the input text (see Figure
1 for an illustrative example). Each class in the
dataset is represented by a Gaussian distribution
over the embeddings of these tags, characterized
by a mean vector and a shared covariance matrix.
The ECL then computes the Mahalanobis distance
(De Maesschalck et al., 2000) between the input’s
tag embeddings and each class distribution to iden-
tify the top k most similar classes. These selected
classes are then used to construct an in-context
learning prompt, efficiently managing the token
limit while removing irrelevant information.1

Unlike traditional CL methods, our ECL requires
no additional training – it only incrementally ac-
cumulates and updates class means and a shared
covariance matrix derived from the embeddings
of the tags generated by the LLM. This approach
inherently avoids CF. Moreover, representing each
class with a Gaussian distribution addresses the
ICS problem, as different classes are naturally dis-
tinguished by their statistical distributions. While
the ECL alone (e.g., performing top-1 classifica-
tion based on Mahalanobis distance) can be applied
to CIL, its standalone accuracy is limited. How-
ever, when integrated with the LLM’s in-context
learning, InCA significantly improves performance,
as demonstrated in our experiments (see Section
6). This approach effectively balances scalability
and accuracy, making in-context CIL feasible and
efficient.

To summarize, our contributions are as follows:

1. We introduce the novel paradigm of in-context
CIL, which, to the best of our knowledge, has

1Our experiments demonstrate that the ECL achieves high
top-k recall, ensuring that the correct class is almost always
included in the top k classes to be used in the final in-context
learning prompt.

not been previously studied.

2. We propose InCA, a new method that ad-
dresses token limit constraints and perfor-
mance degradation caused by overextended
context in in-context CIL.

3. Our method surpasses existing state-of-the-art
CIL baselines, achieving significant perfor-
mance improvements across different bench-
mark datasets.

2 Related Works

There is a large body of literature on continual
learning. The main focus is on dealing with CF.
Existing techniques can be broadly classified into
a few categories. (1) Regularization, which uses
a regularizer to ensure that important network pa-
rameters from previous tasks are minimally altered
when learning new tasks, thereby reducing CF (Li
et al., 2022; Liu et al., 2019). (2) Replay, which
stores some training samples from previous tasks.
When learning a new task, the model is trained
using both the new task data and the stored replay
data to mitigate CF (Liu et al., 2021a; Qin et al.,
2022; Huang et al., 2021). Some replay methods
do not store actual data but learn data generators
to generate data similar to those from previous
tasks (Shin et al., 2017; He and Jaeger, 2018). (3)
Architectural-based, which encompasses various
methods aimed at managing CF through structural
modifications. Some techniques expand the net-
work’s capacity as new tasks are learned (Wang
et al., 2022a; Yan et al., 2021; Qin et al., 2023).
Some do parameter isolation, which trains sub-
networks for each task by using masks to prevent
updates to critical parameters or neurons from pre-
vious tasks, or by ensuring that new task parame-
ters are orthogonal to those of prior tasks (Ke et al.,
2021a, 2023; Konishi et al., 2023; Serra et al., 2018;
Gururangan et al., 2022; Zhu et al., 2022; Geng
et al., 2021; Lin et al., 2022; Liu et al., 2023).

Moreover, some methods incorporate parameter-
efficient fine-tuning (PEFT) techniques such as
low-rank adaptation (LoRA) (Hu et al., 2021) and
prompt-tuning to allocate task-specific parameters
for each new task (Razdaibiedina et al., 2023; Wang
et al., 2022b, 2024b). These systems often im-
plement various mechanisms to predict the task-
id, which is essential for selecting the appropriate
model for CIL. They may utilize a separate net-
work, entropy, or out-of-distribution detection to
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predict the task-id (Rajasegaran et al., 2020; Abati
et al., 2020; Kim et al., 2023). Our work differs
from these approaches as it does not require task-
id prediction. While the aforementioned methods
train a different model for each task and rely on
task-ids, our approach allows for adding one class
at a time with no task-id prediction. Our ECL di-
rectly predicts the most probable classes.

In the field of NLP, CL has been employed to
address a variety of problems, including text classi-
fication (Chuang et al., 2020), sentiment analysis
(Ke et al., 2021a), topic modeling (Gupta et al.,
2020), slot filling (Shen et al., 2019), question an-
swering (Greco et al., 2019), language learning (Li
et al., 2019; Liang et al., 2024; Zhao et al., 2024b),
and the pre-training of language models (Ke et al.,
2023; Qin et al., 2022). Pre-trained models are
commonly utilized in most NLP-related continual
learning tasks, serving as a standard practice (Ke
et al., 2021b; Wang et al., 2024c). For further in-
sights and a comprehensive overview, refer to sur-
veys (Ke and Liu, 2022; Wang et al., 2024a).

Our approach differs from the aforementioned
methods that adapt or fine-tune pre-trained lan-
guage models, as we primarily leverage in-context
learning for CIL. While advancements in LLMs
have improved few-shot and instruction-based
prompting (Wei et al., 2022; Yao et al., 2024; Hao
et al., 2023), they fail to address CL challenges,
such as growing prompt sizes that quickly exceed
token limits. Moreover, even with long-context
LLMs (Reid et al., 2024; Dubey et al., 2024), ex-
tended prompts containing excessive and often ir-
relevant information can lead to significant perfor-
mance degradation. InCA overcomes these issues
by using an external continual learner that can be
updated without CF.

InCA bears some resemblance to retrieval-
augmented generation (RAG) (Zhao et al., 2024a),
which uses a retriever to gather information to pro-
vide domain-specific knowledge for enhancing con-
tent generation. However, InCA is fundamentally
different, as our ECL is a coarse-grained classifier
that tries to identify the most similar classes rather
than retrieving domain- or task-specific content.
Additionally, due to the incremental nature of CIL,
our ECL must be built incrementally and handle CF
and ICS without storing data from previous tasks –
challenges that retrievers do not encounter.

3 Problem Formulation

We study class-incremental learning in the text
classification domain. CIL involves learning a se-
quence of tasks arriving sequentially (Kim et al.,
2023). Let B be the number of tasks encountered
so far. Each task b (1 ≤ b ≤ B) is associated with a
training dataset Db = {(x(i)b , y

(i)
b )}nb

i=1, where nb is
the total number of instances in Db, x

(i)
b denotes an

input (text) instance, and y
(i)
b is its corresponding

class label. Let Yb be the set of classes belonging
to b (i.e., the set of all classes in Db). For any two
tasks b and b′, their corresponding class sets are
disjoint (Yb ∩ Yb′ = ∅ for b ̸= b′). The overall
class set for all B tasks is defined as

⋃B
b=1Yb = Y.

The goal is to construct a unified predictive func-
tion f : X → Y capable of classifying any given
test instance x across all tasks/classes seen so far,
despite the restriction that no data from previous
tasks are retained during training, i.e., replay-free.

4 Proposed InCA Method

This section presents InCA (In-context Contin-
ual Learning Assisted by an External Continual
Learner), a framework designed to address the chal-
lenges of CIL by leveraging the in-context learning
capabilities of LLMs. InCA has three main stages:
(1) tag generation, where semantic tags are ex-
tracted from the input text using the LLM (Section
4.1); (2) external continual learning, which iden-
tifies the top k most probable classes based on the
generated tags through Gaussian class modeling
and Mahalanobis distance scoring (Section 4.2);
and (3) in-context learning with class summaries,
where the LLM predicts the final class label for the
input text using summaries of the top k candidate
classes (Section 4.3). Figure 1 depicts the overall
framework.

4.1 Tag Generation

To capture the essential semantic information from
an input text x, we generate a list of tags that
include topics, keywords, important entities, and
other relevant elements. For example, a customer’s
banking query processed by our framework (see
Figure 1) might generate tags such as “banking” or
“paycheck deposit” while omitting less pertinent in-
formation. Additionally, the tags are automatically
extended to include related terms that commonly
appear in similar contexts. For instance, the tag
“paycheck deposit” may be extended to include
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Figure 1: Overview of the InCA framework. The diagram depicts the stages of generating semantic tags for the
input, identifying the most similar classes via the ECL, and constructing the prediction prompt with class summaries,
which together enables efficient in-context continual learning without retaining any training data.

terms like “transfer funds” or “payroll processing”.
Tags are generated by prompting the LLM to pro-
duce both primary tags and related terms. The
specific prompt used for tag generation is detailed
in Appendix A.2.

4.2 External Continual Learner

The ECL leverages the generated tags to iden-
tify the k most probable classes for a given input,
thereby filtering out the irrelevant context. As men-
tioned earlier, the ECL operates by accumulating
statistics without additional training and thus, in-
herently avoids CF.

Gaussian Class Representation: Each class is
modeled as a Gaussian distribution, with a mean
vector and a shared covariance matrix. This repre-
sentation helps mitigate the ICS problem by allow-
ing classes to have independent distributions. How-
ever, since the covariance matrix has high dimen-
sionality, storing a separate covariance matrix for
each class would result in excessive space consump-
tion. To address this, we assume that all classes
share the same covariance matrix, drastically re-
ducing the space required.

Let Tj = [t1,j , t2,j . . . , tR,j ] be the list of all tags
generated by the LLM for class j, where R is the
total number of tags generated from all training
instances of class j. We employ the widely-used
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019) model to encode each tag tr,j ∈ Tj into a
h-dimensional embedding vector zr,j ∈ Rh. The
mean vector µj ∈ Rh for class j is computed as

the average of all its tag embeddings:

µj =
1

R

R∑
r=1

zr,j

The shared covariance matrix Σ ∈ Rh×h is up-
dated incrementally as new classes are introduced.
The contribution of class j to the shared covariance
matrix, denoted as ∆j , is based on the deviations
of its tag embeddings from the mean (Park et al.,
2018):

∆j =
1

R

R∑
r=1

(zr,j − µj)(zr,j − µj)
T

The overall shared covariance matrix is updated
after each new class is processed:

Σj =
(j − 1)Σj−1 +∆j

j
,

where Σj denotes the shared covariance matrix
after processing class j, assuming that classes
{1, 2, . . . , j − 1} have been previously learned.

Mahalanobis Distance Scoring: For each test
instance, the ECL uses the Mahalanobis distance
(De Maesschalck et al., 2000) to select the top k
most similar classes. Let {zi}mi=1 be the set of
tag embeddings generated for the input instance
x. The Mahalanobis distance between an embed-
ding zi and the Gaussian distribution for class j is
computed as:

d(zi, µj ,Σ) =
√
(zi − µj)TΣ−1(zi − µj)
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Here, Σ represents the shared covariance matrix
updated up to the current point when the inference
is performed. The overall distance of the test in-
stance x from the class is the average Mahalanobis
distance over all tag embeddings:

d(x, µj ,Σ) =
1

m

m∑
i=1

d(zi, µj ,Σ)

The top k classes with the smallest Mahalanobis
distances are selected for the final prediction step.

4.3 In-context Learning with Class
Summaries

Once the top k candidate classes are identified by
the ECL, in-context learning is applied using class
summaries to determine the final prediction. Stor-
ing and using too many training examples for in-
context learning would be impractical and ineffi-
cient for continual learning. Instead, for each class,
we generate a summary at the time of its introduc-
tion, serving as a compact representation of the
class.

Generating Class Summaries: The summary
for each class is generated by prompting the LLM
using a small subset of randomly selected training
examples of the class. The prompt used for gener-
ating the summary is given in Appendix A.1. Each
summary captures the essential characteristics or
information of the class, allowing for efficient in-
context learning without storing lots of examples.

Prediction with In-context Learning: During
prediction, the test instance is concatenated with
the summaries of the top k classes to form a sin-
gle prompt. The LLM processes this prompt and
predicts the class label based on the context pro-
vided. The prompt format for this prediction stage
is detailed in Appendix A.3.

To summarize, InCA stores only a mean embed-
ding vector for each class and a shared covariance
matrix for all classes encountered so far. Thus,
the amount of information saved in the CIL pro-
cess is very small. The whole process involves no
training and it is replay-free, i.e., no previous task
data is stored to help deal with CF. Moreover, as
explained earlier, it avoids both the CF and ICS
problems that have plagued the existing CIL tech-
niques.

5 Experiment Setup

In this section, we describe the datasets, baselines,
implementation details, and evaluation metrics.

Datasets: We utilize four datasets for our ex-
periments: CLINC (Larson et al., 2019), Bank-
ing (Casanueva et al., 2020), HWU (Liu et al.,
2021b), and DBpedia (Auer et al., 2007). The
intent classification datasets – CLINC, Banking,
and HWU comprise of 150, 77, and 64 classes, re-
spectively. DBpedia is a topic classification dataset
with 70 classes. For the train/test splits, we allocate
10k/750 samples for CLINC, 10k/1k samples for
Banking, 9k/1k samples for HWU, and 10k/1k sam-
ples for DBpedia.2 InCA can incrementally learn
each class one by one. For baselines, we adhere to
the standard CIL protocol by splitting the classes
into disjoint tasks, each composed of a subset of
classes. Multiple runs with different task splits are
conducted, and the accuracy values are averaged to
minimize the influence of any specific task split on
overall performance.

Baselines: We evaluate our proposed method
against several baselines. The Vanilla baseline
sequentially fine-tunes the LLM on each task with-
out any specific mechanism to mitigate CF. EWC
(Kirkpatrick et al., 2017) is a regularization-based
technique that mitigates CF by preserving im-
portant parameters for previous tasks through a
quadratic penalty. L2P (Wang et al., 2022b) freezes
the LLM’s parameters and learns a set of train-
able prompts to guide the model during inference.
LAMOL (Sun et al., 2020) employs pseudo-replay,
generating pseudo-examples of previous tasks to
interleave with new task data in training, thus main-
taining performance on past tasks. VAG (Shao
et al., 2023) leverages vocabulary sparsity to se-
lectively generate relevant outputs for each task
through label generation, rather than traditional
classification objective. JOINT learns all the
classes together as a single task. It is not a con-
tinual learning setting and its accuracy is regarded
as the upper-bound accuracy of CIL.

Additionally, we compare our method against
several long-context LLMs, where all class sum-
maries are directly included in the final in-context
learning prompt (see Section 4.3) without using the
ECL. Specifically, we evaluate using Mistral (with
a 32K context window) (Jiang et al., 2023), Llama3
(128K) (Dubey et al., 2024), and Gemini (2M)
(Reid et al., 2024), each trained to support these
extended context lengths. We also include compar-

2Note that we do not use datasets for some other NLP tasks
(e.g., dialogue generation, summarization, translation, etc.)
because they are not suitable for class-incremental learning.
More details can be found in Section 9.
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Fine-tuning based Methods

Dataset #Tasks Vanilla EWC L2P LAMOL VAG InCA JOINT

CLINC 10 51.27±1.26 54.22±1.14 52.53±1.72 58.42±0.84 76.42±0.90 94.40 97.60
Banking 7 27.77±2.46 29.10±1.78 25.78±1.21 42.60±1.36 59.34±1.28 84.90 92.50
DBpedia 7 39.02±2.68 40.30±2.89 42.84±5.47 48.61±1.82 65.40±1.52 84.20 95.70
HWU 8 38.38±4.01 42.72±2.62 28.77±3.18 44.85±1.57 56.88±1.22 86.61 90.43

Table 1: Final accuracy (%) of InCA compared with various fine-tuning based baselines. The gray column shows
the results in the JOINT setting, which is not continual learning and regarded as the upper bound. Experiments are
conducted with three different task splits to minimize the influence of any specific task split on performance.

isons with LongLlama (128K) (Tworkowski et al.,
2024) and LongAlpaca (16K) (Chen et al., 2024),
which adapt pre-trained LLMs for handling longer
contexts.

Implementation Details: We use the Mistral-
7B model for all experiments and ablations, except
for one where we evaluate our framework with dif-
ferent LLMs, specified accordingly. For generating
summaries, we use 20 training instances per class
in the summarizing prompt. 3 In the ablation with
limited data, we use all available instances when
there are fewer than 20. We limit the length of
the summaries to a maximum of 256 tokens. To
determine the optimal k value for the ECL, we use
a small validation set. Despite varying values for k
across different datasets, it never exceeds 3 in any
dataset during our experiments, indicating that in-
cluding only 3 class summaries in the final prompt
is sufficient for accurate prediction, even with 150
classes as in the CLINC dataset.

For the Vanilla, EWC, and JOINT systems,
we perform parameter-efficient fine-tuning using
LoRA adaptors (Hu et al., 2021). This approach
is selected due to the large model size and PEFT’s
better adaptation to the task with limited data. Fol-
lowing (Shao et al., 2023), we employ a label gen-
eration objective instead of a classification head, as
generation loss helps mitigate CF. For LAMOL and
VAG, we had to use their original language models,
BART for VAG and GPT-2 for LAMOL, because
LAMOL’s code is incompatible with Mistral, while
VAG’s use of an encoder-decoder architecture also
results in incompatibility. For embedding the tags,
we use a small SBERT paraphrase-MiniLM-L6-v2
model. All pre-trained models are obtained from
the Transformers library (Wolf et al., 2020).

Experiments were conducted on a single A100
GPU with 80GB VRAM. The baseline models im-

3We also tested with more than 20 instances per class for
summaries but observed no noticeable improvement.

plemented were trained for 10 epochs per task with
a batch size of 8, employing early stopping and
the Adam optimizer with a learning rate of 2e-5.
The LAMOL and VAG models were executed us-
ing their official configurations and hyperparam-
eter settings. All models were maintained at 32-
bit precision during training and inference, except
for long-context settings, where 8-bit quantization
(Dettmers et al., 2022) was employed due to the
extended prompt length and VRAM requirements.

Evaluation Metric: We measure classification
accuracy after all tasks/classes have been processed,
referred to as Last or Final accuracy. All experi-
ments are conducted three times and the accuracy is
averaged, except for the zero-training LLM setups,
which are deterministic.

6 Main Results

Surpassing Traditional CIL: The proposed InCA
demonstrates a clear advantage over traditional CIL
methods involving training, as seen in Table 1. It
significantly outperforms all the baselines across
all datasets. Despite employing a range of strate-
gies such as regularization, parameter freezing,
and pseudo-replay, none of the baseline methods
achieved comparable performance.

As outlined in Section 1, CF occurs when updat-
ing model parameters for a new task disrupts the
knowledge acquired from previously learned tasks.
Our proposed system, InCA, avoids CF as it oper-
ates without any training. Although InCA’s perfor-
mance remains below the upper bound achieved by
JOINT fine-tuning, this is mainly due to the limita-
tions of in-context learning, which may not match
the task-specific optimization of fine-tuning.

InCA vs. Long-context Setting: The lim-
ited context window of LLMs becomes a signif-
icant challenge as the number of classes increases.
InCA addresses this by using an external continual
learner to identify the most relevant classes and
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Figure 2: Comparison of recall between our ECL and the text retriever (TR) at various values of k. The ECL
operates without storing any replay data (buffer size = 0), while the TR maintains a buffer of instances to retrieve
the most similar ones during inference. For the TR, we evaluate performance across different buffer sizes. When the
TR’s buffer size is zero, we store the embeddings of class summaries for retrieval, rather than training instances.

construct a precise prediction prompt. In contrast,
extending the context window of the LLM to in-
clude more information is an alternative approach.
To assess the effectiveness of our approach, we
compared InCA against the long-context setting
of LLMs, where all class summaries are passed
directly into the prediction prompt.

We conducted experiments using several long-
context models, including Mistral, Llama3, and
Gemini 1.5 flash, both with and without the
assistance of the ECL. Additionally, we tested
LongLlama and LongAlpaca, which adapt stan-
dard LLMs to handle long-context tasks. Since
these models are not instruction-tuned, they are not
suitable for generating the tags required by InCA.
Consequently, we used these models only in the
long-context setting, utilizing class summaries gen-
erated by Mistral, as their own summaries may not
match the quality of instruction-tuned models.

The results, shown in Table 2, reveal that the
long-context models without the ECL performed
significantly worse than InCA. Even with Gem-
ini, which has a 2M token context window, per-
formance degraded when overloaded with exces-
sive context. This demonstrates that extending the
context length is not sufficient, as overextended
prompts hamper the model’s ability to focus on the
relevant information. In contrast, InCA ensures
that only the most relevant class information (sum-
maries) is included in the prompt, resulting in more
accurate predictions and also, faster inference times
due to the shorter prompts.

7 Ablation Results
Tag-based ECL vs. Text Retrieval: Given the
resemblance between our approach and retrieval-
augmented generation, we benchmark our tag-
based classifier against a retrieval method based on

Model CLINC Banking DBpedia HWU
Mistral-7B 94.40% 84.90% 84.20% 86.61%
Llama3-8B 95.73% 84.30% 87.60% 87.45%
Gemini 1.5 flash 95.32% 86.15% 91.63% 89.22%

Without ECL
Mistral-7B 86.93% 65.90% 65.30% 81.04%
Llama3-8B 83.73% 77.80% 72.70% 83.27%
Gemini 1.5 flash 93.86% 83.52% 79.64% 87.27%
LongAlpaca-7B 45.87% 33.20% 24.90% 35.97%
LongAlpaca-13B 51.20% 63.60% 59.10% 62.83%
LongLlama-3B 62.00% 52.80% 38.90% 58.46%
LongLlama-7B 84.67% 73.10% 61.00% 77.88%

Table 2: Comparison of InCA against long-context
LLMs (without ECL), where all class summaries are
included in the prediction prompt. For LongLlama and
LongAlpaca models, class summaries are generated us-
ing Mistral, as they are not instruction-tuned.

text similarity. We adopt a common RAG frame-
work, maintaining a pool of training instances for
each class and using SBERT to retrieve the most
similar instances during inference based on text
similarity. It is important to note that this method is
not applicable to CL since it involves storing origi-
nal instances; we use it solely for comparison. We
retrieve instances until we have obtained instances
from k distinct classes, after which we measure the
recall and compare these results to our ECL, which
operates without a buffer (i.e., no replay data).

The results illustrated in Figure 2 demonstrate
that our tag-based ECL consistently outperforms
text retrieval across all scenarios, even when the
text retriever has access to a substantial buffer of
training instances. The same SBERT model is used
for embedding both tags and input text. The supe-
rior performance of the ECL is particularly note-
worthy as it does not require storing any instances,
highlighting its effectiveness, especially in contexts
where storing training instances is impractical.

In-context Learning Boosts Accuracy: The ef-
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Figure 3: Accuracy of InCA and ECL recall at different k values. The solid portion of each bar represents the
accuracy of the model using in-context learning (ICL) with the top k classes retrieved by the ECL. The leftmost
column (k=1) represents the accuracy of ECL alone, where the most similar class is predicted without ICL. The
dashed region indicates cases where the correct label is within the top k classes retrieved by the ECL but the model’s
prediction is incorrect. Therefore, the total height of each bar (solid plus dashed) represents the ECL’s recall of the
correct classes at that k value.

fectiveness of the in-context learning and the InCA
approach becomes evident when comparing the
model’s final accuracy with the top-1 accuracy of
the ECL alone. As shown in Figure 3, the final
accuracy of InCA is significantly higher than the
ECL’s top-1 accuracy. This demonstrates the added
value of in-context learning. Although the ECL
alone may not be highly accurate, it effectively nar-
rows down the relevant classes, enabling in-context
learning to focus on a smaller subset and improve
the overall performance.

Impact of Data Size: To assess the impact of
training data size on model performance, we con-
ducted experiments under constrained data condi-
tions. As shown in Figure 4, we compared InCA
with the JOINT fine-tuning method across varying
data sizes. InCA consistently maintains perfor-
mance comparable to that of the full dataset, even
with significantly reduced training data (e.g., 10 ex-
amples per class). Remarkably, under these limited
data conditions, InCA outperforms the JOINT fine-
tuning method, often considered the upper bound.
These results highlight InCA’s robustness and ef-
fectiveness under limited data availability.

Figure 4: Performance comparison of InCA and JOINT
fine-tuning across different data sizes. InCA demon-
strates robust performance with limited data, partic-
ularly excelling over the fine-tuned model in data-
constrained situations.

8 Conclusion

Existing continual learning (CL) research in NLP
has primarily focused on fine-tuning or adapting
LLMs for individual tasks, either by learning train-
able prompts or adapters or updating the LLM’s
parameters. While these approaches can improve
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CL accuracy, their effectiveness remains limited
due to catastrophic forgetting (CF). On the other
hand, in-context learning with LLMs has proven
highly effective across various NLP tasks. How-
ever, its application to CL is hindered by the limited
context window of LLMs. As the number of tasks
increases, the in-context prompt grows, often ex-
ceeding the token limit or leading to performance
degradation due to overextended context, which
may include irrelevant information. This paper pro-
posed a novel method to address these challenges
by leveraging an external continual learner. Our
method is replay-free and does not fine-tune or
adapt the LLM, treating it solely as a black box.
Experiments show that our method markedly out-
performs baselines, without suffering from CF.

9 Limitations and Future Work

One limitation of this work is that experiments
are conducted exclusively on text classification
datasets. This focus may limit the generalizabil-
ity of our model to other types of NLP tasks (e.g.,
dialogue generation, summarization, translation,
sentiment analysis, etc), which have different data
characteristics and task requirements and are not
suitable for class-incremental learning because
they are not classification tasks with many classes
that may be learned incrementally. Although sen-
timent analysis is often solved as a classification
task, it has a fixed number of classes, i.e., positive,
negative, and neutral. These other tasks are more
suitable for task-incremental learning or domain-
incremental learning (Ke and Liu, 2022). We
believe some variations of the proposed method
should apply to the other NLP tasks. Designing
one general method that is suitable for multiple
different NLP tasks will be an interesting future
research direction.
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intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI, pages 38–45.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2024. Longlora:
Efficient fine-tuning of long-context large language
models. The Twelfth International Conference on
Learning Representations.

Zhiyuan Chen and Bing Liu. 2018. Lifelong machine
learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 12(3):1–207.

Yung-Sung Chuang, Shang-Yu Su, and Yun-Nung Chen.
2020. Lifelong language knowledge distillation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2914–2924.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh,
and Tinne Tuytelaars. 2021. A continual learning sur-
vey: Defying forgetting in classification tasks. IEEE
transactions on pattern analysis and machine intelli-
gence, 44(7):3366–3385.

Roy De Maesschalck, Delphine Jouan-Rimbaud, and
Désiré L Massart. 2000. The mahalanobis distance.
Chemometrics and intelligent laboratory systems,
50(1):1–18.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Llm. int8 (): 8-bit matrix mul-
tiplication for transformers at scale, 2022. CoRR
abs/2208.07339.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Binzong Geng, Fajie Yuan, Qiancheng Xu, Ying Shen,
Ruifeng Xu, and Min Yang. 2021. Continual learning
for task-oriented dialogue system with iterative net-
work pruning, expanding and masking. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 517–523.

Claudio Greco, Barbara Plank, Raquel Fernández, and
Raffaella Bernardi. 2019. Psycholinguistics meets



7301

continual learning: Measuring catastrophic forget-
ting in visual question answering. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3601–3605.

Pankaj Gupta, Yatin Chaudhary, Thomas Runkler, and
Hinrich Schuetze. 2020. Neural topic modeling with
continual lifelong learning. In International Con-
ference on Machine Learning, pages 3907–3917.
PMLR.

Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A
Smith, and Luke Zettlemoyer. 2022. Demix layers:
Disentangling domains for modular language mod-
eling. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5557–5576.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen
Wang, Daisy Wang, and Zhiting Hu. 2023. Rea-
soning with language model is planning with world
model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 8154–8173.

Xu He and Herbert Jaeger. 2018. Overcoming catas-
trophic interference using conceptor-aided backprop-
agation. In International Conference on Learning
Representations.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang,
and Diyi Yang. 2021. Continual learning for text clas-
sification with information disentanglement based
regularization. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 2736–2746.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Zixuan Ke and Bing Liu. 2022. Continual learning of
natural language processing tasks: A survey. arXiv
preprint arXiv:2211.12701.

Zixuan Ke, Bing Liu, Nianzu Ma, Hu Xu, and Lei Shu.
2021a. Achieving forgetting prevention and knowl-
edge transfer in continual learning. Advances in Neu-
ral Information Processing Systems, 34.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi,
Gyuhak Kim, and Bing Liu. 2023. Continual pre-
training of language models. Proceedings of Inter-
naional Conference and Learning Representations
(ICLR-2023).

Zixuan Ke, Hu Xu, and Bing Liu. 2021b. Adapting bert
for continual learning of a sequence of aspect senti-
ment classification tasks. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4746–4755.

Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, Zix-
uan Ke, and Bing Liu. 2022. A theoretical study on
solving continual learning. In Advances in Neural
Information Processing Systems.

Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, and
Bing Liu. 2023. Learnability and algorithm for con-
tinual learning. In International Conference on Ma-
chine Learning, pages 16877–16896. PMLR.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Tatsuya Konishi, Mori Kurokawa, Chihiro Ono, Zixuan
Ke, Gyuhak Kim, and Bing Liu. 2023. Parameter-
level soft-masking for continual learning. In Inter-
national Conference on Machine Learning, pages
17492–17505. PMLR.

Stefan Larson, Anish Mahendran, Joseph J Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K Kummerfeld, Kevin Leach, Michael A
Laurenzano, Lingjia Tang, et al. 2019. An evaluation
dataset for intent classification and out-of-scope pre-
diction. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1311–1316.

Dingcheng Li, Zheng Chen, Eunah Cho, Jie Hao, Xi-
aohu Liu, Fan Xing, Chenlei Guo, and Yang Liu.
2022. Overcoming catastrophic forgetting during
domain adaptation of seq2seq language generation.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5441–5454.

Yuanpeng Li, Liang Zhao, Kenneth Church, and Mo-
hamed Elhoseiny. 2019. Compositional language
continual learning. In International Conference on
Learning Representations.

Yunlong Liang, Fandong Meng, Jiaan Wang, Jinan Xu,
Yufeng Chen, and Jie Zhou. 2024. Continual learning
with semi-supervised contrastive distillation for incre-
mental neural machine translation. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 10914–10928.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang.
2022. Beyond not-forgetting: Continual learning



7302

with backward knowledge transfer. Advances in
Neural Information Processing Systems, 35:16165–
16177.

Junpeng Liu, Kaiyu Huang, Hao Yu, Jiuyi Li, Jinsong
Su, and Degen Huang. 2023. Continual learning
for multilingual neural machine translation via dual
importance-based model division. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 12011–12027.

Qingbin Liu, Xiaoyan Yu, Shizhu He, Kang Liu,
and Jun Zhao. 2021a. Lifelong intent detection
via multi-strategy rebalancing. arXiv preprint
arXiv:2108.04445.

Tianlin Liu, Lyle Ungar, and João Sedoc. 2019. Contin-
ual learning for sentence representations using con-
ceptors. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers).

Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and
Verena Rieser. 2021b. Benchmarking natural lan-
guage understanding services for building conversa-
tional agents. In Increasing Naturalness and Flexi-
bility in Spoken Dialogue Interaction: 10th Interna-
tional Workshop on Spoken Dialogue Systems, pages
165–183. Springer.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109–165. Else-
vier.

Kun Il Park, M Park, et al. 2018. Fundamentals of prob-
ability and stochastic processes with applications to
communications. Springer.

Chengwei Qin, Chen Chen, and Shafiq Joty. 2023. Life-
long sequence generation with dynamic module ex-
pansion and adaptation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 6701–6714.

Yujia Qin, Jiajie Zhang, Yankai Lin, Zhiyuan Liu, Peng
Li, Maosong Sun, and Jie Zhou. 2022. Elle: Ef-
ficient lifelong pre-training for emerging data. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 2789–2810.

Jathushan Rajasegaran, Salman Khan, Munawar Hayat,
Fahad Shahbaz Khan, and Mubarak Shah. 2020.
itaml: An incremental task-agnostic meta-learning
approach. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 13588–13597.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Ma-
dian Khabsa, Mike Lewis, and Amjad Almahairi.
2023. Progressive prompts: Continual learning for
language models. In The Eleventh International Con-
ference on Learning Representations.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. 2017. icarl: In-
cremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi-
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un-
locking multimodal understanding across millions of
tokens of context. arXiv preprint arXiv:2403.05530.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982–3992.

Joan Serra, Didac Suris, Marius Miron, and Alexandros
Karatzoglou. 2018. Overcoming catastrophic forget-
ting with hard attention to the task. In International
Conference on Machine Learning, pages 4548–4557.
PMLR.

Yijia Shao, Yiduo Guo, Dongyan Zhao, and Bing Liu.
2023. Class-incremental learning based on label gen-
eration. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 1263–1276.

Yilin Shen, Xiangyu Zeng, and Hongxia Jin. 2019. A
progressive model to enable continual learning for
semantic slot filling. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1279–1284.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon
Kim. 2017. Continual learning with deep generative
replay. Advances in neural information processing
systems, 30.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. 2020.
Lamol: Language modeling for lifelong language
learning. In International Conference on Learning
Representations.

Szymon Tworkowski, Konrad Staniszewski, Mikołaj
Pacek, Yuhuai Wu, Henryk Michalewski, and Piotr
Miłoś. 2024. Focused transformer: Contrastive train-
ing for context scaling. Advances in Neural Informa-
tion Processing Systems, 36.

Gido M Van de Ven and Andreas S Tolias. 2019. Three
scenarios for continual learning. arXiv preprint
arXiv:1904.07734.

Fu-Yun Wang, Da-Wei Zhou, Liu Liu, Han-Jia Ye, Yatao
Bian, De-Chuan Zhan, and Peilin Zhao. 2022a. Beef:
Bi-compatible class-incremental learning via energy-
based expansion and fusion. In The Eleventh Inter-
national Conference on Learning Representations.



7303

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu.
2024a. A comprehensive survey of continual learn-
ing: theory, method and application. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence.

Mingyang Wang, Heike Adel, Lukas Lange, Jannik
Strötgen, and Hinrich Schütze. 2024b. Rehearsal-
free modular and compositional continual learning
for language models. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 2: Short Papers),
pages 469–480.

Yifan Wang, Yafei Liu, Chufan Shi, Haoling Li, Chen
Chen, Haonan Lu, and Yujiu Yang. 2024c. Inscl: A
data-efficient continual learning paradigm for fine-
tuning large language models with instructions. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 663–677.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,
Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot,
Jennifer Dy, and Tomas Pfister. 2022b. Learning to
prompt for continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 139–149.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Shipeng Yan, Jiangwei Xie, and Xuming He. 2021. Der:
Dynamically expandable representation for class in-
cremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 3014–3023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren
Wang, Yunteng Geng, Fangcheng Fu, Ling Yang,
Wentao Zhang, and Bin Cui. 2024a. Retrieval-
augmented generation for ai-generated content: A
survey. arXiv preprint arXiv:2402.19473.

Weixiang Zhao, Shilong Wang, Yulin Hu, Yanyan Zhao,
Bing Qin, Xuanyu Zhang, Qing Yang, Dongliang Xu,
and Wanxiang Che. 2024b. Sapt: A shared attention
framework for parameter-efficient continual learning

of large language models. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11641–
11661.

Qi Zhu, Bing Li, Fei Mi, Xiaoyan Zhu, and Minlie
Huang. 2022. Continual prompt tuning for dialog
state tracking. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1124–1137.



7304

A Prompts and Examples

In this section, we detail the prompts used in various parts of our model. The provided prompts and
examples are from the CLINC dataset. For different datasets, we use slightly modified versions of the
same prompts based on the task at hand (e.g., intent classification, topic classification).

A.1 Summarization Prompt

Prompt

prompt = (
Review the following user queries and provide a summary of the intent.
Keep the summary generic and avoid referencing any named entities that
appear in the queries.

Queries: {user_queries}
Summary:

)

Example

Review the following user queries and provide a summary of the intent. Keep the summary generic
and avoid referencing any named entities that appear in the queries.

Queries:

• how would i apply for an american express

• show me the application for a visa card

• can you apply for idaho independent card for me

• do you have any information on how to open a new credit card

• is this where i apply for a new credit card

• is it possible to apply for a new credit card

• walk me through applying for a visa card

• what’s the procedure to apply for a new credit card

• i want to put in an application for a line of a credit card how do i do that

• does bank of america give credit cards to people like me

Summary:

The intent of these queries is to apply for a new credit card. Users are looking for information on
the application process, requirements, and specific credit card types. Some users are interested in
applying for a specific credit card, such as an American Express or a Visa card, while others are
looking for general information on how to open a new credit card.
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A.2 Tag Generation Prompt

Prompt

prompt = (
Generate descriptive tags for the following queries. Focus on user
intention, relevant entities, and keywords. Extend these tags to
related, unmentioned terms that are contextually relevant.

Guidelines:
Topic: Identify user intention or subject area the query pertains to.
Entity Recognition: Focus on recognizable entities common in similar
queries.
Keywords: Extract specific terms or verbs that define the query's intent.
Related Tags: Include tags that are related to user intention, even if
not directly mentioned, to provide broader contextual understanding.

Examples: {example_section}

Query: {user_query}
Tags:

)

Example

Generate descriptive tags for the following queries. Focus on user intention, relevant entities, and
keywords. Extend these tags to related, unmentioned terms that are contextually relevant.

Guidelines:

Topic: Identify user intention or subject area the query pertains to.
Entity Recognition: Focus on recognizable entities common in similar queries.
Keywords: Extract specific terms or verbs that define the query’s intent.
Related Tags: Include tags that are related to user intention, even if not directly mentioned, to
provide broader contextual understanding.

Examples:

Query: "Should I wear a coat today?"
Tags: weather advice, inquiry, clothing, temperature, coat, wear
Query: "Book a table for two at a popular Italian restaurant downtown?"
Tags: dining reservation, Italian cuisine, booking, restaurant, table, request
Query: "How can I send money to a foreign bank account using the app?"
Tags: international money transfer, send money, app, foreign bank, digital transfer

Query: do i have to pay for carry-ons on delta
Tags: airline fees, carry-on, delta airlines, travel, pay, luggage
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A.3 Prediction Prompt

Prompt

prompt = (
Based on the given query, classify the user's intent into one of the
following categories: {retrieved_classes}

{class_summaries}

Query: {user_query}
Class:

)

Example

Based on the given query, classify the user’s intent into one of the following categories: di-
rect_deposit, income, payday

direct_deposit:
The users are inquiring about the process of setting up a Direct Deposit for their paychecks or
bank accounts. They want to know how to arrange for their checks to deposit directly into their
accounts and are looking for instructions or guidance on how to do this. Some users are specifically
interested in setting up Direct Deposit at certain banks, while others are seeking general information
on how Direct Deposit works.

income:
The users are inquiring about their current or past income, salary, or earnings from their job. They
want to know how much money they make or earned, and sometimes they want to calculate their
total income. Some users are also interested in knowing the amount they bring in annually or their
compensation.

payday:
The users are inquiring about the timing of their next paycheck or payment. They want to know
how often they are paid, when they can expect to be paid next, and when their next payment will
be deposited. They are also interested in knowing the date or day on which they will receive their
next check or be paid. Some users want to be informed about the date their most recent payment
was made, while others want to plan for their next upcoming payment.

Query: get my paycheck to direct deposit
Class: direct_deposit


	Introduction
	Related Works
	Problem Formulation
	Proposed InCA Method
	Tag Generation
	External Continual Learner
	In-context Learning with Class Summaries

	Experiment Setup
	Main Results
	Ablation Results
	Conclusion
	Limitations and Future Work
	Prompts and Examples
	Summarization Prompt
	Tag Generation Prompt
	Prediction Prompt


