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Abstract

Video question answering (VideoQA) has re-
cently gained considerable attention in the field
of computer vision, aiming to generate an-
swers rely on both linguistic and visual rea-
soning. However, existing methods often align
visual or textual features directly with large
language models, which limits the deep seman-
tic association between modalities and hinders
a comprehensive understanding of the inter-
actions within spatial and temporal contexts,
ultimately leading to sub-optimal reasoning
performance. To address this issue, we pro-
pose a novel temporal-aware framework for
multi-modal video question answering, dubbed
VideoQA-TA, which enhances reasoning ability
and accuracy of VideoQA by aligning videos
and questions at fine-grained levels. Specifi-
cally, an effective Spatial-Temporal Attention
mechanism (STA) is designed for video aggre-
gation, transforming video features into spatial
and temporal representations while attending
to information at different levels. Furthermore,
a Temporal Object Injection strategy (TOI) is
proposed to align object-level and frame-level
information within videos, which further im-
proves the accuracy by injecting explicit tem-
poral information. Experimental results on
MSVD-QA, MSRVTT-QA, and ActivityNet-
QA datasets demonstrate the superior perfor-
mance of our proposed method compared with
the current SOTAs, meanwhile, visualization
analysis further verifies the effectiveness of in-
corporating temporal information to videos .

1 Introduction

Visual question answering (VQA) poses a meaning-
ful task and has drawn increasing interest in recent
years (Li et al., 2024; Hong et al., 2024) due to
its potential for advancing the integration of visual
and linguistic understanding. Thanks to the de-
velopment of language modeling and multimodal

"https://github.com/YALYAshley/VideoQA-TA
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Question: What is the orange cat beating up?

VideoQA-TA

Previous
methods

'

VideoLM
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Answer: The video does not provide any
information about what the cat is beating up. Answer: The video shows the orange cat
However, it is clear that the cat is standing attacking a black cat that is weaving towards
towards another cat. it.

Cannot provide an accurate answer

A

Figure 1: Comparison between our proposed method
VideoQA-TA and the recent VideoQA method like
Video-LLaVA. Like most prior methods, Video-LLaVA
is a one-stage suited for VideoQA. Thus, as illustrated
in the figure, it fails to answer a question that requires
reasoning about temporal in a video. In comparison, our
method can make temporal reasoning efficiently and
produce the correct answer.

learning (Han et al., 2023; Zha et al., 2024), video
question answering (VideoQA) has achieved re-
markable progress in understanding and reasoning
over both visual and linguistic information simulta-
neously, enabling more accurate and context-aware
responses to complex questions based on video con-
tents, e.g., human-machine interaction (Yu et al.,
2024; Zou et al., 2024; Ma et al., 2021), intelli-
gent driving (Park et al., 2024; Xu et al., 2024),
and intelligent interaction (Huang et al.). Despite
the achievements, traditional multimodal models
lack deep semantic alignment between modalities,
limiting their ability to understand multimodal con-
texts. Moreover, these models exhibit weak capa-
bilities in modeling spatial-temporal information
and long-sequence dependencies, failing to effec-
tively capture interaction relationships in complex
scenarios.

To this end, Large Language Models (LLMs)
(Ataallah et al., 2024; Liu et al., 2024; Islam and
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Moushi, 2024) have been recently proposed and
shown remarkable improvements in accuracy rea-
soning, enabling their widespread application in
VideoQA tasks. Thanks to the well-designed visual
encoder followed by LLMs, some attempts (Zhang
et al., 2023b,a; Li et al., 2023b; Song et al., 2024b;
Cheng et al., 2024a) strive to aggregate the entire
video into a coarse-grained global representation,
i.e., complex long-range temporal modeling, while
struggling to accurately capture and preserve the
temporal coherence and inter-frame dependencies
throughout video sequences. As shown in Figure
1, Video-LLaVA (Lin et al., 2023) fails to identify
what the orange cat is attacking: "The video does
not provide any information about what the cat is
beating up". This lack of temporal understanding
may prevent the model from correctly identifying
and describing the development of events in the
video, resulting in inaccurate or incomplete descrip-
tions.

With these in mind, we propose a temporal-
aware framework for multi-modal video ques-
tion answering, named VideoQA-TA, which en-
sures that the model can understand videos from
both spatial and temporal perspectives, achieving
video question answering (VideoQA). Specifically,
VideoQA-TA first adopts a structure similar to the
existing multi-modal models, which includes a
visual encoder to extract visual features, a text
encoder to obtain text features, and a fine-tuned
large language model for answer prediction. Then,
we use a Spatial-Temporal Attention mechanism
(STA) for video aggregation to obtain the spatial
and temporal salient regions in the video to improve
the accuracy of VideoQA. Meanwhile, Temporal
Object Injection strategy (TOI) for video align-
ment is proposed to prevent the direct embedding
of object information from making it incomprehen-
sible to large models. We use the visual detection
ability of RAM++ model to mine informative ob-
ject cues for video understanding and a prompt
template is sophisticatedly designed to facilitate
better integration of video, object, and question fea-
tures. Eventually, the answer is obtained through
the fine-tuned Vicuna (Zheng et al., 2024). Our
main contributions are summarized as follows:

* We devise a spatial-temporal attention mech-
anism for video aggregation, which utilizes
spatial and temporal attention to focus on rel-
evant video contents at different levels, thus
removing irrelevant information.

* We propose a temporal object injection strat-
egy for video alignment, this strategy injects
explicit information into the model, aligns
spatial and temporal data from object-level
and frame-level to improve object relationship
clarity and compositional reasoning.

* Experimental results show that proposed
method performs well on MSVD-QA,
MSVTT-QA, and ActivityNet-QA datasets,
which are evaluated by Top-1 accuracy and
GPT-3.52.

2 Related Work

2.1 Video Question Answering

The main challenge in VideoQA is the semantic gap
between visual understanding and natural language,
and many studies (Xiao et al., 2024; Liao et al.,
2024) have been proposed to address this issue.
MoReVQA (Min et al., 2024) adopts a decomposed
multi-stage reasoning framework, which, in con-
trast to earlier approaches with a single planning
stage, significantly enhances robustness and accu-
racy in complex VideoQA scenarios. This improve-
ment is achieved through event parsing, video con-
tent grounding, and a final reasoning stage. Video-
LLaMA (Zhang et al., 2023b), LLoVi (Zhang et al.,
2023a) integrate visual encoders, text encoders,
and the alignment of embedding spaces with LLMs
to utilize the reasoning capabilities of these mod-
els to answer questions. MovieChat (Song et al.,
2024a), Glance and Focus (Bai et al., 2024a) com-
bine different levels of semantic information by pre-
training two-way dynamic memory networks and
using memory cues to achieve VideoQA. Video-
LLaVA (Lin et al., 2023) combines text encoder
in Llama, allowing the model to learn interactions
between modalities from a unified visual represen-
tation. Using LLM is efficiently improve the accu-
racy of VideoQA (Wu et al., 2024; Liu and Wan,
2024). In this paper, we use pre-trained Vicuna for
VideoQA.

2.2 Learning with Temporal Relation

Temporal information injection (Zhou and Wu,
2023; Ma et al., 2024) has greatly succeeded on
many vision and language tasks. Some methods
(Jiang et al., 2020; Li et al., 2023c) incorporate at-
tention mechanism modules within the feature ex-

Zhttps://openai.com/index/gpt-3-5-turbo-fine-tuning-and-
api-updates/
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Figure 2: Our proposed method VideoQA-TA framework. F; represents the video features, f1, f2, 3 represents
the different patches in the same frames, fi1, fi4n, fi represents the same patches in different frames. q1, g2, gm

represents the questions.

traction components for temporal, thereby identify-
ing temporal data corresponding to questions. Gao
et al. (Gao et al., 2023) introduces a multi-scale
temporal attention framework that refines temporal
focus at varying granularities, enhancing the identi-
fication of key temporal segments. Bai et al. (Bai
et al., 2024b) incorporates event-based attention
to detect key events, ensuring precise alignment
of temporal data with the question. Furthermore,
other methods (Zhang et al., 2021; Ahmad et al.,
2023) propose a temporal module to capture local
and global contexts, establishing inter- and intra-
modal correlations. Nie et al. (Nie et al., 2024)
introduces a dynamic graph convolution, adapting
graph structures in real-time to better capture com-
plex temporal relationships. These correlations
facilitate the semantic alignment of visual and tex-
tual data, thereby enhancing the understanding of
the underlying relationships within and across the
different modalities. Given this, it is crucial to con-
struct different strategies performing the temporal
correlation information among videos. In this pa-
per, we use a spatial-temporal attention mechanism
to aggregate spatial and temporal associations and

propose a temporal object injection strategy to align
fine-grained levels information in VideoQA tasks,
which can enhance the performance of temporal
reasoning and improve answer accuracy.

3 Methodology

We propose a temporal-aware framework for multi-
modal video question answering, named VideoQA-
TA, as shown in Figure 2. In this section, we will
elaborate the each component of our VideoQA-
TA. Specifically, section 3.1 introduces feature
extraction, section 3.2 presents Spatial-Temporal
Attention mechanism (STA) for video aggregation,
section 3.3 details Temporal Object Injection strat-
egy (TOI) for video alignment, and section 3.4 is
answer prediction.

3.1 Feature Extraction

For videos, like most multi-modal VideoQA tasks,
the pretrained CLIP ViT-G serves as the frozen vi-
sual encoder to extract embeddings of each frame
individually, and obtains video features F; =
{Fi}il, € RNNpXC gy = {0 € RN,
where f! denotes the ¢-th frame containing N,
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patches, IV; is the number of frames, and C' denotes
the embedding dimension. Concurrently, the pre-
trained RAM++ serves as the frozen object detec-
tion encoder to extract object labels L; = {I"}],
and bounding boxes B; = {b'}\" |, where I} and
b} denote the ¢-th frame containing N,, objects, b}’
is composed of [z1, y1, T2, y2] , 1 denotes the hor-
izontal coordinate of the top-left corner, y; denotes
the vertical coordinate of the top-left corner, x2
denotes the horizontal coordinate of the top-right
corner, and ¥y denotes the vertical coordinate of
the top-right corner. For language, we tokenize
the question Q = {g,}, € R¥=*C into a se-
quence of words, where [V,,, denotes the sequence
length of the question (i.e., the number of words),
and ¢,,, represents the m-th word in the sequence.
The tokenized sequence is then fed into BLIP-2 for
further processing.

3.2 Spatial-Temporal Attention

Considering the spatial information within indi-
vidual frames while also paying attention to the
temporal changes between frames, we utilize STA,
which builds upon the MA-TMM (He et al., 2024)
architecture by incorporating spatial attention and
temporal attention to improve feature extraction
performance in VideoQA tasks.

Spatial attention. We represent as varying de-
grees of attention and aggregates with spatial fea-
tures Fyp, = {fp} r € RN>XC" o focus on
salient spatial areas of videos. We aggregate the
t-th vector of the spatial features in ¢-th frame, de-
noted as F} ;, and average features across time di-
mension:

exXp (Wspa,i : Ft,i)

As a,t — 1
ret Zj exp (Wopa,j - Ft,j) )
1 T
Fapa = 75 ) (Aspas Fr) Woe ()
t=1

where Wpq i, Wepa,j and Wspa denote learnable

spatial attention weight, respectively.

Temporal attention. We use temporal features
Frem = {fi}t, € RN (o represent frames
that are more critical for understanding the video
content. Similar to the spatial attention:

exXp (Wtem,i : Ft,i)
> xp (Wiem,j - Fi5)

3)

Atem,p =

Wtem (4)

where Wiem, i, Wtem’ ; and W.,,, denote learnable
temporal attention weight, respectively.

3.3 Temporal Object Injection Strategy

We focus on adaptively generating meaningful
temporal information that can provide relevant in-
formation about what is happening in the video
to the LLM, thus facilitating fine-grained levels
alignment, as is shown in Appendix A. Given
object label L; and bounding box B, from each
frame, we use a unified sampling strategy, which
can construct a temporal sequence, denoted as
E = Concat[Prompt, L, By]. In details, we con-
struct a logical representation < object — frame—
bounding box >, connecting different informa-
tion of the object using semantic relationships. For
the same object, by retrieving the bounding boxes
in different frames within video, we inject infor-
mation that includes both spatial information and
temporal sequence characteristics. During the ex-
perimental phase, such information may contain
lengthy (>1K characters), noisy, and potentially re-
dundant/irrelevant textual input sequences, which
encounter difficulties. To address this problem, we
design a more specialized LLM prompt template
that incorporates object features, thereby enhancing
the input of video temporal features. The specific
prompt template as follows:

"This video showcases various objects appear-
ing in different frames. Below are the de-
tails of each frame along with the coordi-
nates of the objects (formatted as [z1, y1, Z2, Y2,
where (z1,y1) are the top-left corner and
(z2,y2) are the bottom-right corner): In the
{frame_id}, it includes: {object_name} with
{object_bonding_box}, {object_name} with
{object_bonding_box}...."

where {frame_id} equals t, {object_name}
equals Ly, {object_bonding_box} equals B;. E
is used as input to the Q-former, obtaining specific
visual context-aware representations and frame de-
scriptions. Through this design, not only the static
attributes of the object in a frame is preserved, but
the dynamic characteristics of the object over time
are also captured through the temporally serialized
object labels and bounding boxes.

For aligning the visual embedding to the textual
and prompt inputs embedding, we maintain a dy-
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namic memory via the Q-Former. The language
memory bank stores the question features extracted
from the frozen word embedding, which can be
formulated as:

Qq = aWq )
Ko =[all. [la]Wk (6)
Vo =lall.--[la]Wv (7)

where ¢, denotes the learned important information
that has been learned and is specific to each video
up to the current timestep ¢, Wg, Wy, Wy denote
learnable weight matrix for transforming the input
query ¢; into the query, key and value space, re-
spectively. QQq, K, V, represent the query, key and
value vectors, respectively. |- || -] is the concate-
nation operator. Then we apply the self-attention
operation to obtain Q" = {¢/, })\™ :

T
Q =o(), ®)
where d}, is a factor in self-attention.

We represent the input Fj,, and Fi.,, as the set
of question-dependent video features, that is go-
ing to be useful for VideoQA task. Then, we fuse
spatial features, temporal features, object features
and question features through a cross-attention to
achieve fine-grained level alignment, where the
spatial features, temporal features and object fea-
tures are regarded as key and value vectors while
question features and object features serve as query
vector. Formally, the updated aligned features Fj:

Fii = MLP([Fopal| Fiem| | E]) )
Foi = MLP(Q'||E)) (10)
Fy = o (PR py () A

where P, Pk, Py same as MeMViT (Wu et al.,
2022), which pools spatial-temporal dimensions of
Q,K,and V.

3.4 Answer Prediction

We learn a projection layer that correlates video
features to text, with the language model being
frozen, which can be written as:

zZi = Fiwproj (12)

where z; denotes the textual feature representa-
tion obtained through the projection layer, Wy,,.,;
denotes the learnable parameters with projection

layer. Same as MA-TMM, we quantify the rel-
evance between the question and the video con-
tent by calculating cosine similarity between the
aligned features of question and video, thus pro-
viding accurate answers for VideoQA task. We
utilize an annotated dataset that includes video and
text pairs and perform supervised learning through
with standard cross-entropy loss. This supervised
approach enables the model to predict answer A
in an autoregressive manner, enhancing prediction
accuracy. The formula is as follows:

L= —ZlogP(ai | 2i, i)

7

(13)

where g; is the input question, and a; represents the
corresponding answer. We adjust the parameters
of the Q-Former while keeping the weights of the
visual encoder and the language model fixed.

4 Experimental Setup

4.1 Datasets and Implementation Details

We conduct experiments on MSVD-QA, MSRVTT-
QA, and ActivityNet-QA datasets. Detailed dataset
information is provided in Appendix B.

‘We initialize the video encoder with CLIP (ViT-
G) 3(Radford et al., 2021), the object detection with
pre-trained RAM++ (Huang et al., 2023), and the
word embedding with BLIP-2 (Li et al., 2023a).
We use the pre-trained Q-Former weights from In-
structBLIP # and adopt Vicuna-7B (Zheng et al.,
2024) as the LLM. All the experiments are con-
ducted on 4 A40 GPUs. We use the AdamW op-
timizer with a weight decay 0.05 and betas (0.9,
0.999). Cross-entropy loss is employed with an
initial learning rate of 1 X e¢~*, the batch size of
32 per GPU, and training for 5 epochs. We extract
video frames from each video at 10 fps, based on
the annotations of each dataset.

4.2 Evaluation Metrics

We use Top-1 accuracy (Top-1 acc.), accuracy
(Acc.) and score by GPT-3.5 for test metrics to eval-
uate models. Top-1 acc. is determined by checking
whether each predicted answer matches the true
answer, which can be formulated as:

N
1
Top-1 acc = N ; I(pred;; =gt;)  (14)

3https://huggingface.co/openai/clip-vit-large-patch 14
*https://github.com/salesforce/LAVIS/tree/main
/projects/instructblip
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Method LLM MSVD-QA MSRVTT-QA ActivityNet-QA
Traditional methods without LLM

mPLUG-2(Xu et al., 2023) - 58.1 48.0 -
Short VideoQA

Video-LLaMA (Zhang et al., 2023b) Vicuna - 7B 58.3 46.5 45.5
Video-LLaMA2(Cheng et al., 2024b) Vicuna - 7B 60.6 46.9 51.8
Video-ChatGPT(Maaz et al., 2024) Vicuna - 7B 59.5 46.8 46.1
Video-LLaVA(Lin et al., 2023) Vicuna - 7B 60.1 47.3 48.4
Long-term VideoQA

Chat-UniVi(Jin et al., 2024) Vicuna - 7B 59.8 47.2 50.3
LLaMA-VID(Li et al., 2023b) Vicuna - 7B 60.6 47.1 50.7
LLaMA-VID(Li et al., 2023b) Vicuna-13B 59.8 47.4 514
MiniGPT4-Video(Ataallah et al., 2024) Llama 2-7B 59.6 48.9 49.8
MiniGPT4-Video(Ataallah et al., 2024) Mistral - 7B 58.7 47.5 48.6
MA-LMM(He et al., 2024) Vicuna - 7B 60.6 48.5 49.8
VideoQA-TA Vicuna - 7B 66.5 51.3 52.2

Table 1: Comparison with state-of-the-art methods on the VideoQA task in Top-1 acc.. The best result is highlighted

in bold, and the second best is underlined.

where N is the total number of prediction samples,
pred; 1) is the first answer in the list of predicted
answers for ¢-th samples, gt; is the ground-truth an-
swer for i-th samples, I(-) is the indicator function,
which equals 1 the condition is true and 0 other-
wise. Acc. evaluates the correctness of predicted
answers against correct answers using the GPT-3.5
model. It measures the proportion of correct pre-
dictions (labeled ’yes’) out of the total number of
predictions (both ’yes’ and 'no’). Score, on the
other hand, quantifies the degree of correctness of
each prediction on a scale from O to 5, with higher
scores indicating a closer match between the pre-
dicted and correct answers.

4.3 Baselines

In order to validate the effectiveness of the pro-
posed method, we compare with three kinds of
baselines. Traditional methods without LLM: 1)
mPLUG-2 (Xu et al., 2023), a modular multimodal
model for text, image, and video tasks.

Short VideoQA methods: 2) Video-LLaMA
(Zhang et al., 2023b), unifies visual representa-
tion with the linguistic feature space, enhancing
video analysis with LLaMA foundation, 3) Video-
LLaMAZ2 (Cheng et al., 2024b), integrates custom
spatial-tiemporal convolution (STC) connectors
and jointly trained audio branches, advancing video
comprehension skills, 4) Video-ChatGPT (Maaz
et al., 2024), integrates multimodal discussions
with contextual awareness, and 5) Video-LLaVA
(Lin et al., 2023), combines language and visual

processing, optimizing for video-related tasks and
interactions.

Long-term VideoQA methods: 6) Chat-UniVi
(Jin et al., 2024), a unified visual representation,
7) LLaMA-VID (Li et al., 2023b), assigns the
value of two tokens to an image within LLMs, 8)
MiniGPT4-Video (Ataallah et al., 2024), uses inter-
leaved visual-textual tokens, and 9) MA-LMM (He
et al., 2024), a memory-augmented multi-modal
model that specializes in long-term video under-
standing.

5 Results and Discussion

5.1 Comparison to Baselines

We provide the overall evaluation results of our
method and baselines in Table 1.

1) MSVD-QA. Our proposed model VideoQA-
TA achieves 66.5% (Top-1 accuracy). Particularly
noteworthy is the improvement in Short VideoQA,
where VideoQA-TA outperforms Video-LLaMA?2
in Top-1 accuracy (66.5% v.s. 60.6%). Video-
LLaMA?2 focuses on processing multiple frames
simultaneously but is constrained by GPU mem-
ory limitations. In contrast, VideoQA-TA enhances
performance gain mainly from learning spatial and
temporal features, improving its ability to interpret
short video dynamics and provide more accurate,
relevant answers.

2) MSRVTT-QA. MSRVTT-QA is a large-scale
dataset from web, which high demands on un-
derstanding capabilities. Our proposed model
VideoQA-TA outperforms MA-LMM in Top-1 ac-
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MSVD-QA MSRVTT-QA ActivityNet-QA

STA TOI Top-1 acc. Acc. Top-1ace. Acc. Top-1ace. Acc.

X X 60.6 728 485 595 498 450
v X 614 749 491 596 503 458
X Vv 657 765 507 603 516 500
v 7/ 665 767 513 6l.1 522 508

Table 2: Top-1 acc. and Acc. with different components.
The best result is highlighted in bold.

curacy (51.3% v.s. 48.5%). This result indicates
that VideoQA-TA effectively enhances comprehen-
sion and answer accuracy on complex video-based
questions.

3) ActivityNet-QA. Different from MSVD-QA
and MSRVTT-QA datasets, there are much longer
videos in ActivityNet-QA with questions that re-
quire complex inference to derive the answers. No-
tably, in Long-term VideoQA, our proposed model
VideoQA-TA outperforms Chat-UniVi in Top-1 ac-
curacy (52.2% v.s. 50.3%). Chat-UniVi is a uni-
fied visual representation method that employs dy-
namic tokens to simultaneously represent images
and videos, capturing both high-level concepts and
low-level details through multi-scale representa-
tions. In contrast, VideoQA-TA fine-tunes weights
from the pre-trained QFormer and incorporates
temporal information using a long-term memory
bank. This result indicates that VideoQA-TA’s abil-
ity to analyze long-term temporal dependencies
enables it to track and relate information over ex-
tended periods, yielding more precise and coherent
answers.

5.2 Ablation Study

Prompt analysis. We provide the ablation study
on the different prompt in VideoQA-TA. For de-
tails of each prompt, please refer to Appendix C.
Our results show that different prompt will bring
different results. For comparison fairness, com-
parison with our proposed method VideoQA-TA,
we only replace different prompts and experiment
on the MSVD-QA, MSRVTT-QA and ActivityNet-
QA datasets to verify the superiority of E in TOI,
as shown in Figure 3. E achieves 66.5% (Top-
1 accuracy), the performance is higher at 4.6%,
2.8%, 1.7%, 5.9% than E1, E», Fs, E4 on MSVD-
QA dataset, respectively. Although E4 adds tem-
poral objectives and object locations, it fails to
understand the bounding box associated with the
{frame_id}, leading to worse performance. F
performances significantly exceeds that of other
prompts, as it is capable of generating temporal

77
75
73
71
69
67
65
63
61
59
57
55
53
51
49
47
45

Top-1 acc. Ace,
ActivityNet-QA

Top-1 ace. Acc.
MSRVTT-QA
E1 E2 E3 E4HE

Top-1 acc. Ace.
MSVD-QA

Figure 3: Ablation study showing Top-1 acc. and Acc.
to illustrate the impact of prompt designs.

E, is Concat[Prompty], By is Concat[Prompts, Ly,
E;5 is Concat[Prompty, Ly, B], E4 is Concat
[Prompty, Lt, B], E is Concat|Prompt, Ly, By].

information from videos.

Contribution of each component. To verify the
effectiveness of each component, we use MA-
LMM as the baseline network in this paper and
experiment with combinations of components on
MSVD-QA, MSRVTT-QA and ActivityNet-QA
datasets, as is shown in Table 2. Our proposed
model VideoQA-TA achieves an improvement of
approximately 5.9% in Acc.. Incorporating STA
and TOI into the baseline results in improve-
ments of about 5.1% and 0.8%, respectively. On
MSRVTT-QA, it improves the baseline Acc. by
2.8%, with STA and TOI contributing individual
improvements of 2.2% and 0.6%, respectively. For
ActivityNet-QA, the improvement is 2.4%, with
STA and TOI enhancing the baseline Acc. by
1.9% and 0.6%, respectively. We demonstrate our
VideoQA-TA method not only affords the signifi-
cantly of learning spatial and temporal information
but also can achieve excellent scores in terms of
standard metrics.

Large language model. We analyze the perfor-
mance of our framework using different LLMs
while predicting answer, as is shown in Table 3.
The results indicate that Vicuna-13B achieves the
best performance (66.7% in Top-1 accuracy), fol-
lowed by Vicuna-7B (66.5% in Top-1 accuracy).
Furthermore, Vicuna-13b also outperforms in Acc.
(77.8%), surpassing Vicuna-7b (76.7%). Llama
2-7B and Mistral-7B perform slightly lower perfor-
mance, with Llama 2-7B reaching 65.9% in Top-1
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and Acc. (%)

67.5

Top-1 Acc

Figure 4: Top-1 acc. and Acc. with object numbers and
video lengths.

acc. and 74.9% in Acc., while Mistral-7B records
65.1% and 73.0%, respectively. Considering the
trade-off between accuracy and computational cost,
we primarily use Vicuna-7B for our experiments
unless otherwise specified.

Object numbers and video lengths. We com-
pare the results of object numbers and lengths of
video on MSVD-QA dataset. From calculating the
Top-1 acc. and Acc. shown in Figure 4, we notice
that all methods, as well as the MA-LMM base-
line, experience performance drops when video
exceeds 20 frames (drop: 1.3%—6%) or contains
more than 5 objects (drop: 0.7%—4.9%). Such issue
persists even with the proposed method. However,
VideoQA-TA mitigates it by filtering out redun-
dant/irrelevant frames, improving performance on
long VideoQA tasks.

5.3 Visualized Examples of Output

We evaluate our proposed model on MSVD-QA
and ActivityNet-QA datasets against MA-LMM
and Chat-Univi. Figure 5 shows VideoQA-TA
higher accuracy in question answering. VideoQA-
TA correctly answers ‘Leave the room’ for what
happened to the first person who showed up after he
finished talking. In contrast, Chat-UniVi says ‘The
first person who showed up after he finished talk-
ing was a woman who was wearing a black shirt.
She sat down on the couch and talked to the man
while he was playing the drums.”, MA-LMM says
‘Walk’. Chat-UniVi’s response includes multiple
actions that misalign with the temporal focus of the
question, missing the key detail of ‘the first person
leaving the room.” MA-LMM’s response of ‘Walk’
indicates an action but lacks clarity to confirm it
as ‘leaving the room’. Overall, our method out-
performs in detail accuracy, effectively integrating
temporal information, and provids more compre-
hensive understanding. More visualized examples

L) Score

™ \i_.gﬁ

1Y

-
NS S S NS SN NSNS NSNS

Question:  what happened to the first person who showed up after he finished talking?
GT Answer: go out of room.

Chat-Univi  Answers T fistperson who showed up aftr h finished talking was a woman who was wearing 7 /-
ablack shirt. She sat down on the couch and talked to the man while he was playing the drums. >é-
MA-LMM Answer: Walk >§/5

VideoQA-TA  Answer: Leave the room. «/ 45

- This video Showcases various objects appearin B

P! es.

frame along with the coordinates of the objects (formatted as [xL, y1, x2, 2], where (xL, y1) are the top
i comer and (x2, y2) are the bottom-right coner):n the 6 frame, it includes: woman with [105.30, 46.56, 21
| 208.59], doorway with [159.05, 0.05, 320.02, 240.05]In the 15 frame, it includes: woman with [98.88, 4
217,01, 206.90], window sill with [25.02, 28,33, 148.90, 49.15).

Figure 5: Visualization results on ActivityNet-QA
dataset against MA-LMM and Chat-Univi.

LLM Model size Top-1 acc. Acc.
Vicuna - 7B 7B 66.5 76.7
Vicuna-13B 13B 66.7 77.8
Llama 2-7B 7B 65.9 74.9
Mistral - 7B 7B 65.1 73.0

Table 3: Top-1 acc. and Acc. with different large lan-
guage model.

of output, please refer to Appendix D.

6 Conclusion

This paper investigates the challenging problem of
model temporal relations existed in the video, and
introduces VideoQA-TA, a novel temporal-aware
structure for multi-modal VideoQA. Specifically,
spatial-temporal attention module is proposed to
effectively aggregate the spatial and temporal fea-
tures of videos by removing irrelevant information.
Moreover, fine-grained levels alignments is con-
structed to align spatial, temporal, object and ques-
tion features presented by the video with a novel
temporal object injection strategy, further improv-
ing the accuracy of VideoQA. Experimental results
on MSVD-QA, MSRVTT-QA and ActivityNet-QA
datasets demonstrate that our method surpasses
existing state-of-the-art methods, achieving impres-
sive performance in VideoQA tasks.

Limitations

We argue that the main limitation of our work lies
in the generative answers, where the quality of the
detected object on the performance of the model,
even though our method is more efficient than other
VideoQA models (section 5.1) for a detailed discus-
sion. Despite the remarkable abilities of detection
modules and multi-modal large language modal, it
may still struggle to the limited types and diversity
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of objects detected, which may cause the question
answering system to fail in addressing certain ques-
tions or video content. LLMs still struggle to better
understand the semantics of the ‘bonding box’ al-
though we have made some improvements to the
input to a certain extent (section 5.2). For example,
the question ‘What did a man keep on the tray?’
is answered with ‘shrimp in [26.92, 5.32, 254.74,
239.23]".
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Appendix

Our appendix consists of Algorithm of TOI (Sec-
tion A), Datasets (Section B), Prompt templates
details (Section C) and Visual analysis of experi-
mental results (Section D).

A Algorithm of TOI

Algorithm 1 details how TOI to align object-level
and frame-level features. We first transform the in-
put query ¢; into query, key, and value vectors using
the weight matrices Wq, Wi, and Wy,. Then, the
query vector (), is updated through a self-attention
mechanism to obtain ()'. After that, spatial fea-
tures Fp, and temporal features Fj.,, are com-
bined with E and processed through cross-attention
to align the object-level features with the appear-
ance features. Third, the query vector is aligned
with the feature vector through the cross-attention
to achieve the final feature representation Fj;.

Algorithm 1 TOI algorithm

Input: Weight matrix Wq, Wi, Wy, respectively.
Spatial features F,,, temporal features Fic,,, ques-
tion ). Object label L; and Bounding box B;.
[- || -] denotes the concatenation operator.
Output: Aligned features F;

1: // Initialization

2: // Construct a temporally sequenced

3: E = Concat[Prompt, Ly, By]
4:fori=1...1do

5: fort=1...Tdo

6: // Convert input queries into query, key, and
value vectors

7 Qq — q Wo
8: Ky« |qil]-- - llg)Wk
9: Vo < laill- - llae]Wy
10: // Obtain the updated Q’
Qe o(%hiy

) N
12:  end for

13: // Alignment
14: Fli%MLP([FspaHFtemHE])
14: Fy; < MLP([Q'||E])

Pg(F2;)Pr (F1;)T
16:  F oD b ()
17: end for

18: return F;
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Let’s think step by step. Therefore, the answer
(one sentence) is:

This video features various objects appearing
in different frames. Here are the details:
The {object_name} appears in the following
frames: { frame_id}, { frame_id} ...

Table 4: Prompt for Zero-shot Chain-of-Thought

Table 5: Prompt for (L, t)

This video features different frames appearing
in various objects. Here are the details:

In the {frame_id}, it includes
{object_name}, {object_name}...

This video showcases different frames ap-
pearing in various objects. Below are
the details of each frame along with the
coordinates of the objects (formatted as
[€1,y1, T2, y2], where (z1,y1) are the top-
left corner and (x2,y2) are the bottom-right
corner): The {object_name} appears in
the following frames: {frame_id} with
{object_bonding_box}, {frame_id} with
{object_bonding_box}...

Table 6: Prompt for (¢, L;)

B Datasets

MSVD-QA>(Xu et al., 2017) is a specialized VQA
corpus derived from the Microsoft Research Video
Description (MSVD) dataset, which consists of
over 120,000 descriptive sentences for more than
2,000 video clips. MSVD-QA extends this by
generating approximately 50,500 Question-Answer
(QA) pairs from these descriptions, covering 1,970
video clips, with the associated videos available in
the foundational MSVD dataset.
MSRVTT-QA®(Xu et al., 2017) serves as a promi-
nent benchmark for VQA, which is built upon the
foundation of the MSRVTT, a collection encom-
passing 10,000 videos. This extensive dataset con-
tains 243,000 questions and offers 1.5 million po-
tential answers.

ActivityNet-QA7(Yu et al., 2019) comprises
58,000 QA pairs, each annotated by humans, across
5,800 videos sourced from the well-known Activ-
ityNet dataset. It serves as a standard for evaluat-
ing the capabilities of VQA models in long-term
spatial-temporal reasoning.

C Prompt Templates Details

In this section, we use several input combinations
to obtain detected objects information and present
a detailed analysis of these results. Given object
label L;, bounding box B, and frame ¢:

>https://github.com/xudejing/video-question-answering
®https://github.com/xudejing/video-question-answering
"https://github.com/MILVLG/activitynet-qa
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Table 7: Prompt for (L, By, t)

* Zero-shot Chain-of-Thought (Kojima et al.,
2022) — E; = Concat[Prompt;]: Think
step by step, LLM can focus on each frame
information.

* (L4, t)—Ey=Concat[Prompts, L;]: Frame-
work uses object labels as input for obtaining
detected objects information. Providing the
presence of each object within frames is ad-
vantageous, as it allows the LLM to gather
additional context information for answering.

* (t,L;) — E5 = Concat[Prompts, L;]: Pro-
viding the presence of each frame within ob-
jects is advantageous, as it allows the LLM to
gather extra context and time-series informa-
tion for answering.

* (Ly,Byt) —E4= Concat[Prompty, Ly, By):
Framework uses object labels and bounding
boxes as input to obtain detected objects in-
formation. Providing the presence of each
object within frames along with correspond-
ing bounding box is advantageous, as it allows
the LLM to gather extra context and location
information for answering.

* (t,L+,B;) —E = Concat|[Prompt, Ly, By]:
Providing the presence of each frame within
objects and corresponding bounding box is
advantageous, as it allows the LLM to gather
extra context, time-series and location infor-
mation for answering.



Question: what happened after the person in the video rubbed his eyes with
his hands?
GT Answer: go on running.

Chat-UniVi Answer: .Aﬁer the person in the video rubbed his eyes with his hands, he
lowered his head.

MA-LMM Answer: Walking.

VideoQA-TA

Answer: Running.

Prompt: This video showcases various objects appeanng in different trames Below are the |
details of each frame along with the coordinates of the objects (formatted as [x1, yl1, x2, y2], ‘
where (x1, y1) are the top-left corner and (x2, y2) are the bottom-right corner): ‘
In the 8 frame, it includes: boy with [90.22, 48.29, 191.19, 477.59], machine with [229.0, |
297.94, 528.72,479.53]

In the 11 frame, it includes: boy with [149.64, 152.27, 280.95, 478.11], machine with [419‘15, J
44.43,541.46, 476.66]... )

Question: who is a man is getting married?
GT Answer: woman.

/
Answer: The video does not provide any information about the identity of the
Chat-Univi man getting married. However, it is clear that he is the center of attention as he ~ 2/5
is being adorned with a traditional Indian headdress by a group of people. x
MA-LMM Answer: Someone. 3/5
VideoQA-TA Answer: Woman.

details of each frame along with the coordinates of the objects (formatted as [x1, y1, x2, y2],
where (x1, y1) are the top-left corner and (x2, y2) are the bottom-right corner):
In the 10 frame, it includes: woman with [90.22, 48.29, 191.19, 477.59], man with [1.32, 2.33,

120.34, 477.71]
In the 11 frame, it includes: woman with [149.64, 152.27, 280.95, 478.11], man with [419.15,
44.43, 541.46, 476.66]... ’

1
|

1

1

|

|

/ 1

Prnmpl This video showcases various ObJCLlS appearing in dlfh.rcnl frames. Below are the |
1

|

|

1

1

|

|

(a) Visualization results on MSVD-QA dataset against MA- (b) Visualization results on Activity-QA dataset against MA-
LMM and Chat-Univi.

LMM and Chat-Univi.

Figure 6: Visualization results comparison on MSVD-QA and ActivityNet-QA datasets.

We provide detailed prompts for Zero-shot
Chain-of-Thought prompt in Table 4, (L¢, t)
prompt in Table 5, (¢, L;) in Table 6, and (L, By, t)
prompt in Table 7. To implement Self-Consistency,
we run model with different prompts for 3 times,
and calculate the average accuracy.

D Visual Analysis of Experimental
Results

In this section, we visualize our proposed model
VideoQA-TA against MA-LMM and Chat-UniVi
on MSVD-QA and ActivityNet-QA datasets. As is
shown in Figure 6(a), when asked who the man is
getting married to, VideoQA-TA correctly identi-
fies “Woman’, while Chat-UniVi says ‘The video
does not provide any information about the iden-
tity of the man getting married. However, it is
clear that he is the center of attention as he is being
adorned with a traditional Indian headdress by a
group of people’, MA-LMM says ‘someone’. Fig-
ure 6(b) shows VideoQA-TA answers ‘Running’
when asked what happened after the person in the
video rubbed his eyes with his hands, while Chat-
UniVi says ‘After the person in the video rubbed
his eyes with his hands, he lowered his head.”, MA-
LMM says ‘Walking’. Chat-Uni Vi struggles with
understanding complex temporal information, of-
ten overlooking significant dynamic changes in the

video. Although MA-LMM can capture actions
and events to some extent, it frequently fails to
provide accurate answers when detailed temporal
reasoning is required.

Additionally, we visualize the impact of each
component on VideoQA-TA performance. As men-
tioned in Section 5.2, using both TOI and STA, im-
proving scores in some extent. For example, Figure
7 shows that VideoQA-TA correctly answers ‘Say-
ing to someone’ when asked what an old woman is
doing. In contrast, while without TOI says ‘Walk-
ing and saying’, without STA says ‘Saying’. The
former appears to diminish the model’s ability to
focus on the most relevant actions, likely due to
reduced video information acquisition capabilities.
TOI enhances the contextual understanding neces-
sary for a more precise and contextually appropri-
ate response.
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Score

Question: what is an old woman doing?
GT Answer: talk.

VideoQA-TA w/o TOI Answer: Walking and saying.

)(\—j

1
1

1

:
SESSEEEEEEEEEEEEEEEES :

Prompt: This video showcases various objects appearing in different frames. Below are the
details of each frame along with the coordinates of the objects (formatted as [x1, y1, x2, y2], !
1

1

1

|

|

|

!

where (x1, y1) are the top-left corner and (x2, y2) are the bottom-right corner):

i In the 1 frame, it includes: girl with [110.06, 48.63, 199.17, 357.79], stage with [-0.03, 65.22,
1 111.39, 123.74], girl with [367.61, 69.65, 471.80, 357.11]

! In the 2 frame, it includes: girl with [111.13, 50.46, 198.72, 357.47], stage with [0.0, 65.78,
L 111.4, 123.8], girl with [367.57, 70.03, 471.47, 357.66]

\ In the 3 frame, it includes: girl with [40.20, 95.85, 125.48, 357.59]... y
VideoQA-TA Answer: Say to someone. J 4/5
//______________________________________’I‘\\

-

Prompt: This video showcases various objects appearing in different frames. Below are the
details of each frame along with the coordinates of the objects (formatted as [x1, y1, x2, y2],
where (x1, y1) are the top-left corner and (x2, y2) are the bottom-right corner):

In the 62 frame, it includes: girl with [126.65, 0.24, 251.61, 231.77]

In the 63 frame, it includes: girl with [120.59, 0.43, 254.03, 231.63]...

Figure 7: Visualization results on MSRVTT-QA dataset against without TOI and STA. “w/0” means without
corresponding module from the VideoQA-TA.
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