
Proceedings of the 31st International Conference on Computational Linguistics, pages 7180–7194
January 19–24, 2025. ©2025 Association for Computational Linguistics

7180

EffiQA: Efficient Question-Answering with Strategic Multi-Model
Collaboration on Knowledge Graphs

Zixuan Dong1, Baoyun Peng2,* , Yufei Wang1, Jia Fu1, Xin Zhou1,
Yongxue Shan1, Weiguo Chen1, Kangchen Zhu1, Xiaodong Wang1,*

1National University of Defense Technology, 2Academy of Military Sciences
Correspondence: pengbaoyun13@alumni.nudt.edu.cn

Abstract

While large language models (LLMs) have
shown remarkable capabilities in natural lan-
guage processing, they struggle with complex,
multi-step reasoning tasks involving knowledge
graphs (KGs). Existing approaches that inte-
grate LLMs and KGs either underutilize the
reasoning abilities of LLM or suffer from pro-
hibitive computational costs due to tight cou-
pling. To address these limitations, we propose
a novel collaborative framework named EffiQA
that can strike a balance between performance
and efficiency via an iterative paradigm. Ef-
fiQA consists of three stages: global planning,
efficient KG exploration, and self-reflection.
Specifically, EffiQA leverages the common-
sense capability of LLMs to explore potential
reasoning pathways through global planning.
Then, it offloads semantic pruning to a small
plug-in model for efficient KG exploration. Fi-
nally, the exploration results are fed to LLMs
for self-reflection to further improve global
planning and efficient KG exploration. Empir-
ical evidence on multiple KBQA benchmarks
shows EffiQA’s effectiveness, achieving an op-
timal balance between reasoning accuracy and
computational costs. We hope the proposed
new framework will serve as a step forward in
enabling efficient, knowledge-intensive query-
ing through the integration of LLMs and KGs,
fostering future research on knowledge-based
question answering.

1 Introduction

Large language models (LLMs) (Radford et al.,
2019; Ouyang et al., 2022; Touvron et al., 2023)
have shown impressive capabilities across vari-
ous natural language processing tasks, generat-
ing coherent and context-sensitive responses that
demonstrate deep linguistic insights (Wei et al.,
2022). However, they struggle with complex, multi-
step reasoning tasks, including complex arithmetic

*Corresponding Author

Loose coupling
LLM&KG

Tight coupling
LLM&KG

1-hop

n-hop

Local

×1

×n(n>>1)

...

LLM pruning

EffiQA

×1

Global

Plug-in model pruning

instruction 1 instruction 2 ... Answer

Answer

...

...

n-hop

1-hop ...Plug-in
model

Question

Question Question

COT Prompt

planning

planning

Cost

Answer Cost Cost

Figure 1: LLM-based KBQA includes three paradigms:
loose-coupling (LLM-only with prompts), tight-
coupling (LLM exploring KG iteratively), and moderate-
coupling (LLM for planning, plug-in model for KG ex-
ploration).

(Wang et al., 2022), commonsense (Zhao et al.,
2024), symbolic reasoning (Pan et al., 2023b), and
multi-hop question answering (Yasunaga et al.,
2021; Pan et al., 2024a).

To enhance the reasoning abilities of LLMs, tech-
niques like chain-of-thought (CoT) prompting (Wei
et al., 2022) have been developed, enabling step-
by-step rationale generation before arriving at the
final answer. Despite improved performance on
various reasoning tasks (Yao et al., 2024; Besta
et al., 2024; Turpin et al., 2024), CoT prompting
sometimes fails to generate sufficient sub-questions
to gather all necessary information, leading to is-
sues like hallucinations (Lyu et al., 2023; Lin et al.,
2021), opaque reasoning (Suzgun et al., 2022), and
reliance on outdated data (Borgeaud et al., 2022;

mailto:pengbaoyun13@alumni.nudt.edu.cn

7181

Izacard et al., 2023).
To address these challenges, researchers have

explored integrating external knowledge sources,
such as knowledge graphs (KGs) (Sun et al., 2021;
Yasunaga et al., 2021; Zhang et al., 2022a; Li et al.,
2023b; Pan et al., 2024a), into the reasoning pro-
cess. These methods typically involve retrieving
information from KGs, augmenting the prompt,
and feeding it into LLMs. However, these loose-
coupling paradigms often rely on simple data re-
trieval, failing to harness the full reasoning poten-
tial of LLMs. Consequently, their success hinges
on the completeness and quality of the KGs.

Recent approaches have explored tighter inte-
gration between LLMs and KGs, such as Think-
on-Graph (ToG) (Sun et al., 2023), Reasoning-on-
Graph (Luo et al., 2023), and Chain-of-Knowledge
(Li et al., 2023b). These methods use LLMs to itera-
tively explore entities and relations in KGs, achiev-
ing better performance but at the cost of excessive
computational resources and the risk of inefficiency
due to potential path explosion, which can lead to
suboptimal reasoning in dynamic queries.

Striking a balance between the coupling degree
of LLMs and KGs, such that it can fully utilize
their respective capabilities to enhance KBQA per-
formance while maintaining efficiency, remains a
challenge. To address this challenge, we propose
a novel collaborative framework EffiQA for LLM-
based KBQA, which leverages the commonsense
capability of LLMs for global planning while of-
floading semantic pruning to a small plug-in model.

Specifically, EffiQA consists of the following
stages:

Global Planning. In this stage, LLM is em-
ployed to decompose the question into several se-
mantically coherent trajectories and generate explo-
ration instructions for exploring potential reasoning
pathways and extending search space beyond the
knowledge graph’s structural limits.

Efficient KG exploration. In this stage, a plug-
in model is employed for semantic pruning based
on global planning to remove irrelevant nodes and
paths during the KG search process.

Self-reflection. In this stage, LLM will proceed
to self-reflect on the exploration results to refine
the global planning, leading to improved planning
and exploration in the subsequent iteration.

To strike a balance between performance and
efficiency, EffiQA introduces an enhanced query-

ing strategy that tightly couples the LLM’s instruc-
tions with constrained semantic pruning of the KG.
This allows EffiQA to selectively expand the most
promising graph regions based on semantics and
type of entities, substantially reducing the search
space while maintaining relevance. A fine-grained
semantic matching process further focuses the prun-
ing on conceptually relevant relationships. By hav-
ing the LLM provide high-level guidance while
offloading computationally expensive KG traversal
to a specialized model, EffiQA achieves a balanced
integration.

Different from previous methods, this collabora-
tive approach can not only enhance the reasoning
performance by combining the strengths of LLMs
and KGs but also improve operational efficiency.
Figure 1 shows the difference between the proposed
method and previous methods. By striking a bal-
anced integration between LLMs and KGs, EffiQA
redefines the standards for efficient, knowledge-
intensive querying in KBQA tasks.

2 Related Work

2.1 Integration of External Knowledge
Sources

Recent advancements in LLMs have focused on
enhancing reasoning capabilities by integrating ex-
ternal information (Guo et al., 2023; Yang et al.,
2024). Notable examples include BlenderBot3
(Shuster et al., 2022) and Atlas(Izacard et al., 2023),
which achieves marked enhancements in its perfor-
mance on the Knowledge Intensive Language Tasks
(KILT) benchmark (Petroni et al., 2020). These de-
velopments illustrate a growing trend towards the
dynamic incorporation of external data sources into
LLMs, which serves to enrich their foundational
knowledge base and diminish the frequency of in-
accuracies in generated content (Baek et al., 2023b;
Pan et al., 2024b).

2.2 Knowledge-Enhanced Reasoning in LLMs

LLMs enhanced with structured external knowl-
edge have shown immense potential for accurately
understanding user intentions (Jiang et al., 2023).
Nevertheless, these models often struggle with
complex reasoning tasks, such as multi-hop Knowl-
edge Base Question Answering (KBQA), primar-
ily due to their limited capability in decompos-
ing multi-step problems into essential intermedi-
ate steps needed to derive an answer (Guan et al.,
2024). In response to this challenge, the Chain

7182

Which companies
won the Awards?

Who is the CEO of
Southwest Airlines?

Southwest
Airlines

Bob Jordan

Forward
Search

Forward
Search Some

Adverbial
Qualifier
(oldest)

 Candidate answers:
 [Chuck Robbins](1965),
 [Kye Hyun Kyung](1963),
 [Robert A. Iger](1951), ...

LLM

Strategic replanning and iteration
Problem:

Initial
node

Stage #1:
Global Planing Stage #3:Self-reflection

Question:
Who is the oldest CEO among the companies that won the 2023 seal business sustainability awards?

may be a
Commercial Company

may be a
Business man

Stage #3:
Self-reflection

YES or
MAX_REFLECTION

Output

NO, The subgraph of I 1 is different from
what you predicted, the problem is The problem is
 too many similar neighbors, and below is the

subgraph of the problem

When was
Bob Jordan born?

Instruction Generator

SQ 2:

SA 1:

SA 2:

SA 3: 1965

Cisco Chuck RobbinsCEO is

2023 seal business
sustainability

awards

born in

Disney Robert A. Iger

May 16, 2023

Get reward 1965

...

born in

US $88.898 billion

Stage #2:
Efficient KG
Exploration

CEO is Get reward 1951

...

... I am not so smart that I may encounter many
problems during the exploration process

Invalid paths
An excess of similar entities
etc...

I need to collect questions and seek help

 Plug-in Model

I 1:
Match a entity similar to
Commercial Company
Go to the next hop

I 2:
Match a entity similar to
Business man
Go to the next hop

I 3:
Collect the date of birth
go back to the previous hop
collect the answers

Problem collection

...

eg:similar entities

Possible Path

...

Plan exploration paths
abstract simulated answers

Re-plan output
instructionsI 1:

I 2:

I 3:

SQ 1:

SQ 3:

Question Decomposer

...

Robert A. Iger--born in--1951

Chuck Robbins--born in--1965

...

...

...

Answer discriminator
Clue prompter

 check Adverbial
Qualifier

Figure 2: The EffiQA workflow consists of three stages. First, the LLM decomposes the problem and generates
instructions that include simulated answers and actions based on the problem’s logic. Next, EffiQA employs a
plug-in model to execute these instructions, perform efficient knowledge graph exploration, and identify potential
issues. Finally, the LLM reviews the identified problems, iteratively replans, and produces answers once sufficient
information is available.

of Thought (CoT) method was introduced (Wei
et al., 2022), further developed into variations such
as Auto-CoT and Zero-Shot-CoT (Zhang et al.,
2022b; Kojima et al., 2022). This method exempli-
fies a structured prompting technique that signif-
icantly enhances the efficiency of LLMs in nav-
igating complex reasoning tasks. Concurrently,
innovative frameworks like Chain-of-Knowledge
(CoK) (Li et al., 2023b) and Think-on-Graph (ToG)
(Sun et al., 2023) have been developed, integrating
knowledge retrieval directly into the reasoning pro-
cess, thereby enriching the depth and improving
the factual accuracy of the generated responses.

2.3 Advanced Frameworks for Structured
Knowledge Utilization

The evolution of knowledge integration strategies
has significantly advanced the development of
frameworks that facilitate more profound interac-
tions between LLMs and knowledge graphs. For
instance, a work (Pan et al., 2023a) has intro-
duced a method in which LLMs employ a greedy
search algorithm to navigate KGs, enabling more
nuanced interactions with data. In a related devel-
opment, the Clue-Guided Path Exploration (CGPE)
(Tao et al., 2024) framework, which effectively

combines a knowledge base with an LLM, using
clues from queries to guide systematic exploration,
which in turn helps reduce computational loads.
Concurrently, the Verification and Editing (VE)
framework has been developed by (Zhao et al.,
2023). This framework seeks to refine the reason-
ing outputs of LLMs, which consequently increases
both the fidelity and reliability of the model’s re-
sponses.

3 Method

The EffiQA framework consists of three main com-
ponents that are executed iteratively: global plan-
ning, efficient KG exploration, and self-reflection.
In the global planning stage, LLM is leveraged
to decompose the input question into semantically
coherent trajectories and generate exploration in-
structions, which helps explore potential reasoning
pathways and extend the search space beyond the
structural limits of the KG. Then, a small plug-in
model is employed for efficient KG exploration,
performing breadth-first search and semantic prun-
ing on KG with the help of exploration instructions.
In the self-reflection stage, LLM will reflect on the
exploration results to revamp global planning and
KG exploration for further improvement. Figure

7183

2 shows the overall framework of the proposed
method.

3.1 Global Planning

In the global planning phase, the LLM leverages
its powerful reasoning abilities to globally plan the
exploration pathway. At this stage, LLM will give a
set of instructions based on the given question and
initial entity to guide the plug-in model to explore
the graph.

Query Decomposition Initially, the LLM iden-
tifies the primary subject entity e0 from the query
and deconstructed into M sub-questions Q =
{q1, q2, . . . , qM} with adverbial qualifiers D =
{d1, d2, . . . , dN}, where (N ≤ M). This process
is formulated as:Q,D ← Decompose(query, e0).

Instruction Generation and Optimization Af-
ter decomposition, the LLM generates simu-
lated answers Ai ← Simulate(ei, qi, di) and con-
structs corresponding instructions instructions←
S(ei, qi, di) to guide the plug-in model in effi-
ciently navigating the knowledge graph. Specif-
ically, "forward search" instructions are created
for sub-questions, and "adverbial qualifier" instruc-
tions are designed to handle qualifiers; these are
collectively referred to as action instructions. Ad-
ditionally, we have developed other action instruc-
tions tailored for the plug-in model and generate
the appropriate matching instructions. For example,
Figure 3 illustrates the retrieval of a sports event
type.

3.2 Efficient KG exploration

The simulated answers and actions generated by
global planning can effectively guide the plug-in
model based on an intuitive prior premise: when
LLM answers a question, the content of the answer
may be inaccurate, but will generate simulated an-
swers of the same type or with similar semantics as
the answer. Using the simulated answers, we imple-
ment a constrained search with semantic pruning,
selectively expanding promising entities to opti-
mize efficiency.

Initialization and Systematic Exploration
Graph initialization define the knowledge graph
G = (E,R) and start BFS from e0 and for each
entity ecurrent in BFS, evaluate relations r, select
a representative tail entity, and perform semantic
matching with simulated answers using entity
descriptions and triples.

Algorithm 1 EffiQA Framework
1: Input: Query q, Knowledge Graph G
2: e0 ← EXTRACTENTITY(q)
3: while not converged do
4: Q,D ← DECOMPOSEQUERY(q, e0)
5: A← SIMULATEANSWERS(Q, D)
6: Instr← GENERATEINSTR(e0, Q, D)
7: for each instr in Instr do
8: Paths, Problems←KGEXPLORE(G,

e0, instr, A)
9: end for

10: Result, Clues ←AGGREGATE(Paths,
Problems)

11: if Result satisfactory then
12: Output: Final Answer
13: break
14: else
15: REVISEPLAN(Clues)
16: end if
17: end while

Semantic Matching and Graph Traversal Ef-
fiQA uses fine-grained entity typing (FGET) based
on the Ontonotes dataset (Dan et al., 2014) for se-
mantic matching, ensuring exploration focuses on
pertinent relations despite potential inaccuracies
For example, as shown in Figure 3, even if inaccu-
rate instruction content is given due to large model
time constraints, plug-in model execution instruc-
tions still allow the search for premises that are
conceptually consistent despite being inaccurate in
the simulation Continuing below, we demonstrate
the robustness of the semantic matching process in
managing time-sensitive inaccuracies by focusing
on categorical relevance rather than precise data
accuracy.

Sub Question 1:
Which Olympics will be the last held in Tokyo?

Tokyo

1964

2021

host

Instruction 1：
 Answer: 1964 Olympics
Action: forward research

Sub Graph

 Plug-in Model

Match: Event, Sports event

Global Planning part

Japan

 located in

KG Exploration

Figure 3: Despite the challenges associated with the
temporal constraints of the training corpus (up to March
2021), the plug-in model effectively executes accurate
match pruning. The detailed entity typing depicted in
the figure serves solely for illustrative purposes

7184

If a representative entity a′rep matches ai, extend
exploration to all entities linked by ri, controlling
branching via a threshold. Unmatched relations
r are pruned. Each entity is also checked against
adverbial qualifiers di. Upon reaching the reason-
ing depth, the search ends and qualifying paths are
collected. Problems encountered (e.g., unmatched
paths, excessive branching) are collected with their
subgraphs for further processing.

3.3 Self-reflection

Detailed Answer Aggregation In this phase, the
LLM synthesizes results from efficient KG explo-
ration to ensure answers are contextually relevant
and precisely address the query. Each reasoning
path is verified against its adverbial qualifiers di,
and terminal entities are checked against the final
constraints qfinal. When multiple initial entities e0
are present, validated paths are intersected to iden-
tify consistently relevant entities, enhancing answer
robustness.

Strategic Replanning and Iteration Problem-
atic paths are flagged for re-evaluation and replan-
ning. During this process, the LLM reflects on
issues identified in the efficient KG exploration’s
subgraphs and the generated clue prompts. It then
performs a global replanning that integrates the
problematic subgraphs and clue prompts, ensuring
comprehensive coverage and addressing reason-
ing gaps. This iterative approach systematically
resolves inaccuracies and inefficiencies, leading
to more robust final answers. The final selection
is based on intersected entities e′final, ensuring the
answer is derived from validated paths and fully
meets the initial query requirements.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets and Metrics
To rigorously evaluate the performance of the
EffiQA framework, we selected five benchmark
datasets: Complex Web Questions (CWQ) (Tal-
mor and Berant, 2018), WebQuestionSP (WebQSP)
(Yih et al., 2016), GrailQA (Gu et al., 2021),
QALD10-en (Perevalov et al., 2022), and Simple
Questions (Bordes et al., 2015). These datasets
were chosen for their varying complexity and the
different types of reasoning challenges they present,
ranging from simple fact retrieval to sophisticated
multi-hop questions. We assessed the framework

on two primary metrics: cost efficiency, which mea-
sures the resource consumption per query, and an-
swer accuracy (Hits@1), defined by the precision
of responses compared to the gold standards.

At the same time, since the recall rate is cru-
cial during path exploration, incorrect pruning will
cause errors and lead to wrong answers. To retain
the correct path while avoiding incorrect pruning,
we define pruning recall as the fraction of correct
paths retained during exploration. When calcu-
lating efficiency, we use the average number of
floating-point operations (FLOPs) per query as an
indicator of computational overhead. Cost effi-
ciency is defined as the ratio of pruning recall rate
to FLOPs, which quantifies the effectiveness of
pruning relative to its computational cost, as shown
Equation 1 below:

Cost Efficiency =
Pruning Recall Rate

FLOPs
(1)

4.1.2 Baselines
EffiQA is benchmarked against key established
methods, including methods of reasoning without
external knowledge, such as standard prompts (IO
prompts) (Brown et al., 2020) and CoT prompts
(Zhang et al., 2022b), as well as some state-of-the-
art methods using external knowledge reasoning.
These comparisons cover hint-based methods, fine-
tuning methods, and different KBQA architectures.
IO prompts and CoT prompts are two methods
that do not require external knowledge, whereas
the tight-coupling KBQA method is the most ad-
vanced approach for KBQA. These comparisons
help illustrate the necessity of external knowledge
in answering complex queries and demonstrate the
cost-effectiveness of EffiQA compared to existing
state-of-the-art methods. Through these compar-
isons, the flexibility and cost-effectiveness of Ef-
fiQA across various datasets can be proven.

4.1.3 Experiment Details
Comprehensive experiments on EffiQA were per-
formed using two distinct LLMs: GPT-3.5-turbo,
GPT-41 and four models with different parameter
sizes for comparison. These models were selected
to assess the framework’s scalability and perfor-
mance across varying computational capabilities.
GPT-4 was utilized to explore the limits of per-
formance in more complex scenarios. To ensure

1Both GPT-3.5-turbo and GPT-4 can be accessed at https:
//openai.com/

https://openai.com/
https://openai.com/

7185

Method CWQ WebQSP GrailQA QALD10-en Simple Questions

Without external knowledge

IO prompt w/GPT-3.5-turboα 37.6 63.3 29.4 42.0 20.0
CoT w/GPT-3.5-turboα 38.8 62.2 28.1 42.9 20.3
SC w/GPT-3.5-turboα 45.4 61.1 29.6 45.3 18.9

With external knowledge

Prior FT SOTA 70.4β 82.1γ 75.4δ 45.4ϵ 85.8ζ

Prior Prompting SOTA - 74.4η 53.2η - -
Prior tight-coupling SOTAα 72.5 82.6 81.4 54.7 66.7

EffiQA (ours) w/GPT-3.5-turbo 52.1 65.2 63.3 46.2 65.7
EffiQA (ours) w/GPT-4 69.5 82.9 78.4 51.4 76.5

Table 1: Comparison between EffiQA and related methods on KBQA tasks. Method α (Sun et al., 2023) has a
significantly higher cost compared to EffiQA. β (Das et al., 2021), γ (Yu et al., 2022), δ (Gu et al., 2022), ϵ (Borroto
et al., 2022), ζ (Baek et al., 2023a), η (Li et al., 2023a).

consistent and reproducible results, the temperature
setting for all interactions with these models was
fixed at 0, eliminating randomness in responses.

The plug-in model used for node semantic
matching and path pruning utilizes RoBERTa (Liu
et al., 2019), fine-tuned on the modified OntoNotes
v5 dataset2, and a entity typing training set of over
10,000 entities generated using GPT-4 for fine-
tuning. The dataset is generated using the clas-
sification standards from the Context-Dependent
Fine-Grained Entity Type Tagging method (Dan
et al., 2014) as the basis for entity typing. Since
only the path pruning process involves entity typ-
ing, to ensure accurate recognition of the named
entity recognition (NER) part, we use special mark-
ers to mark the entities that need to be classified and
then fine-tune the model to ensure that the specified
entities can be correctly identified.

4.2 Main Results

4.2.1 Comparison to Other Methods
We compare EffiQA with some frameworks with-
out external knowledge. As a baseline for large
model capabilities, that is, the knowledge contained
in the large models themselves, as can be seen
from Table 1, the methods without external knowl-
edge generally perform poorly, reflecting the LLMs
dependence on knowledge graphs for answering
knowledge-based questions. EffiQA leverages both
large and smaller specialized language models inte-
grated with external knowledge graphs, surpassing

2OntoNotes v5 can be downloaded at https://
huggingface.co/datasets/conll2012_ontonotesv5

all methods that do not use external knowledge.
At the same time, EffiQA provides a distinctive
advantage over traditional fine-tuning approaches
with its plug-and-play capability that requires no
dataset-specific training.

Comparison with methods using external knowl-
edge shows that even without any fine-tuning, Ef-
fiQA still outperforms existing fine-tuning meth-
ods. Particularly noteworthy is its performance
on single-hop datasets. In comparison to ToG,
which tightly couples with LLMs and KGs, Ef-
fiQA demonstrates competitive strength. Notably,
EffiQA excels in single-hop datasets like Simple-
Questions, where it achieves 65.7% accuracy with
GPT-3.5-turbo and 76.5% with GPT-4, underscor-
ing its effective global planning for enhancing ac-
curacy without sacrificing recall—a common short-
fall in larger models that heavily prune data. The
framework’s strategy for addressing simple ques-
tions enhances accuracy without compromising the
recall rate, a common issue in large models that
employ aggressive pruning techniques, where Ef-
fiQA’s global planning proves highly effective.

EffiQA also demonstrates competitive results on
multi-hop datasets such as ComplexWebQuestions
(CWQ) and WebQuestionsSP (WebQSP), scoring
69.5% and 82.9% respectively when using GPT-4.
These results demonstrate that EffiQA’s strategy
of leveraging external knowledge significantly im-
proves LLMs’ deep reasoning capabilities, effec-
tively managing complex queries that often pose
challenges to tightly-coupled approaches that in-
tegrate LLMs and knowledge graphs, as they typ-

https://huggingface.co/datasets/conll2012_ontonotesv5
https://huggingface.co/datasets/conll2012_ontonotesv5

7186

ically consume at least twice the resources of Ef-
fiQA while achieving similar performance.

4.2.2 Performance with Different Backbone
Models

In exploring the integration of EffiQA with differ-
ent LLM backbones, we conducted ablation stud-
ies using a range of different scale models in ta-
ble 2, since EffiQA relies heavily on LLM with
powerful reasoning capabilities to give accurate
instructions, we chose Llama3.1-8B (Vavekanand
and Sam, 2024), GPT-3.5-turbo, Deepseek-V2, and
GPT-4 as our planning and aggregation iteration
modules. These studies aim to evaluate how the
underlying LLM affects the overall accuracy of
the system on multiple datasets such as CWQ and
WebQSP.

Method CWQ WebQSP

Fine-tuned Baseline
NSM α 53.9 74.3
DeCAF β 70.4 82.1

Prompting Baseline
KD-CoT γ 50.5 73.7

LLMs
COT (Llama3.1-8B) 32.8 56.6
EffiQA (Llama3.1-8B) 37.4 58.3
Gain +4.6 +1.7

COT (DeepSeek-V2) 41.2 57.8
EffiQA (DeepSeek-V2) 61.7 67.4
Gain +20.5 +9.6

COT (GPT-3.5-turbo)δ 38.8 62.2
EffiQA (GPT-3.5-turbo) 52.1 65.2
Gain +13.3 +3.0

COT (GPT-4)δ 46.0 67.3
EffiQA (GPT-4) 69.5 82.9
Gain +23.5 +15.6

Table 2: Performance comparison of methods on CWQ
and WebQSP datasets. EffiQA consistently improves
performance. α (He et al., 2021), β (Yu et al., 2022),
γ (Wang et al., 2023), δ (Sun et al., 2023).

The results show EffiQA’s performance im-
proves with model capacity and complexity. No-
tably, Deepseek-V2 activates fewer parameters
than GPT-3.5-turbo yet outperforms it, demonstrat-
ing the MOE architecture’s effectiveness. GPT-4
excels in complex multi-hop queries due to strong
inference capabilities. EffiQA is highly sensitive

1 2 3 4 5
Reflection Iterations

0

20

40

60

80

A
cc

ur
ac

y
(%

)

Trend Line (r=0.83)
Accuracy

Figure 4: Accuracy by Reflection Iterations on WebQSP
Dataset (MAX_REFLECTION=5)

to the LLM’s reasoning abilities, such as global
planning and self-reflection, which enhance accu-
racy by improving instructions and PLM pruning,
reducing repeated reasoning. When integrated with
Llama3.1-8B, EffiQA gains performance, but im-
provements are limited by the smaller scale, high-
lighting its reliance on robust planning typically
found in larger models.

4.3 Ablation study

4.3.1 Effect of Reflection Iterations on
Accuracy

To investigate the impact of reflection iterations on
model accuracy, we conducted experiments on the
WebQSP dataset with a maximum of 5 reflection
iterations. As shown in Figure 4, the accuracy of
the model improves consistently with an increas-
ing number of reflection iterations. The trend line
in the graph indicates a strong positive correlation
(r=0.84) between the number of reflections and
the accuracy rate, demonstrating that iterative re-
flections contribute to better performance in entity
classification tasks.

The progressive improvement suggests that in-
corporating multiple reflection iterations enables
the model to refine its understanding and make
more accurate predictions, possibly by reinforc-
ing correct classifications and learning from mis-
takes. This reinforces the utility of our approach,
especially in scenarios where high accuracy is
paramount. By employing up to 5 reflection itera-
tions, the model achieves significant performance
gains, providing a balance between computational
cost and accuracy enhancement.

4.3.2 Model scale, Efficiency and Performance
In order to prove that when PLM obtains LLM
instructions, the recall rate of semantic matching

7187

Model
0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l R

at
e

CWQ 1-Hop

Path Recall
Cost Efficiency

Model
0.0

0.2

0.4

0.6

0.8

1.0

CWQ 2-Hop

Path Recall
Cost Efficiency

Model
0.0

0.2

0.4

0.6

0.8

1.0

WEBQSP 1-Hop

Path Recall
Cost Efficiency

Model
0.0

0.2

0.4

0.6

0.8

1.0

WEBQSP 2-Hop

Path Recall
Cost Efficiency

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5×10
4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5×10
4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5×10
4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
os

t E
ffi

ci
en

cy

×10
4

0.1B Roberta-base-FT 0.3B Roberta-large-FT 0.5B Entity typing model-FT 1B TinyLlama-CoT 7B LLAMA2-chat-CoT 21B Deepseek-V2-CoT 175B GPT-3.5-turbo-CoT GPT-4-CoT

Figure 5: Path Recall Rate and Cost Efficiency of various model sizes on CWQ and WebQSP datasets. The medium-
sized entity typing model achieves an optimal balance between recall and cost. α: RoBERTa models fine-tuned with
increased parameters. β: Activation parameters calculated using the MoE model. γ: GPT-4 parameter estimates
based on scale, as exact numbers are undisclosed.

and path pruning can achieve equivalent effects to
LLM direct pruning, but its cost-effectiveness has
obvious advantages compared with large models,
we compare Models of different sizes perform in
path pruning and semantic matching tasks through
entity typing. The following figure 5 shows the
change curve of recall rate and cost-effectiveness
of path pruning by models of different sizes under
different hop numbers in the CWQ and WebQSP
data sets.

Among which models above 1B are the current
mainstream decoder-only architecture, using the
generative classification method. For these mod-
els, the CoT method is used and 2-shot is used
for inference, while the models below 1B are dedi-
cated entity typing models. Inference is performed
after fine-tuning. The fine-tuning process uses
2*NVIDIA 4090 24G, the learning rate is set to
5e-6, and the original data set is used plus the gen-
erated training set for fine-tuning for 20 epochs.

It is worth noting that the recall rate of path
pruning is not equal to the accuracy of the model’s
direct classification of entities, because the plug-in
model always tends to classify semantically similar
entities into one category. If the plug-in model is
execute fine-grained entities typing and gives an in-
correct result, the correct path may still be recalled
successfully due to exploring the semantic similar-
ity of entities, so the recall rate of path pruning is
usually higher than the recall rate of entity typing.

It can be seen from the results that some dedi-
cated fine-tuning plug-in models have achieved per-
formance comparable to existing large models in
path matching tasks based on entity classification,
even better than LLM with a small number of pa-
rameters. At the same time, their cost-effectiveness
is significantly higher than that of LLMs.

4.3.3 Computational Cost
Cost analysis highlights EffiQA’s ability to sig-
nificantly reduce the number of queries per in-
put question for large models, thereby reducing
computational expense. This efficiency not only
enhances the applicability of the framework in
resource-limited environments but also emphasizes
its commercial potential for scalable real-world ap-
plications. In the cost consumption experiment on
the KBQA data set, we set the exploration depth
and width of TOG to 3 and stopped it when the
LLM requests for a problem exceeded 30 times.

At the same time, we set the number of Self-
reflections of EffiQA on single-hop problems. The
threshold is set to 5, and the multi-hop value is
set to 10. Tests are conducted on the CWQ and
WebQSP data sets. We divide the cost consumption
results of the above data sets into single and multi-
hop calculations respectively. From Table 3, we can
see that whether it is 1-hop or multi-hop inference
on KG, the number of inferences and request cost
of this solution are at least halved compared to the
existing SOTA model TOG.

Method 1-Hop Multi-Hop

TOG w/GPT-3.5-turbo 16.7 25.6
TOG w/GPT-4 14.8 21.4
EffiQA w/GPT-3.5-turbo 4.7 7.3
EffiQA w/GPT-4 3.2 6.5

Table 3: Average number of calls to LLM per question

5 Conclusion

In this work, we proposed EffiQA, a new integra-
tion paradigm of LLMs and KGs for multi-step
reasoning. Through an iterative paradigm of global

7188

LLM planning, efficient KG exploration, and self-
reflection, EffiQA balances leveraging LLM capa-
bilities with maintaining computational efficiency.
The global planning outlines promising trajectories
and generates instructions to guide semantic prun-
ing during efficient KG traversal, reducing search
spaces. Exploration results then refine the global
plan iteratively. Extensive experiments demon-
strate EffiQA’s ability to optimally balance accu-
racy and costs.

Limitations

EffiQA exhibits sensitivity to the capabilities of
large models, relying on their reasoning abilities for
optimal performance. This dependence means that
any limitations in the large model’s ability can di-
rectly affect EffiQA’s outcomes. Furthermore, the
plug-in model encounters performance bottlenecks
when scaling to larger or more complex knowl-
edge graphs. As the knowledge graph grows, the
computational effort required for effective explo-
ration and semantic pruning increases, potentially
slowing down processing and limiting the system’s
efficiency in extensive datasets. These factors con-
strain EffiQA’s scalability and adaptability in more
demanding scenarios.

References
Jinheon Baek, Alham Fikri Aji, Jens Lehmann, and

Sung Ju Hwang. 2023a. Direct fact retrieval from
knowledge graphs without entity linking. arXiv
preprint arXiv:2305.12416.

Jinheon Baek, Alham Fikri Aji, and Amir Saffari. 2023b.
Knowledge-augmented language model prompting
for zero-shot knowledge graph question answering.
arXiv preprint arXiv:2306.04136.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, et al. 2024. Graph of thoughts: Solving
elaborate problems with large language models. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 17682–17690.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple question
answering with memory networks. arXiv preprint
arXiv:1506.02075.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.

Improving language models by retrieving from tril-
lions of tokens. In International conference on ma-
chine learning, pages 2206–2240. PMLR.

Manuel Borroto, Francesco Ricca, Bernardo Cuteri, and
Vito Barbara. 2022. Sparql-qa enters the qald chal-
lenge. In Proceedings of the 7th Natural Language
Interfaces for the Web of Data (NLIWoD) co-located
with the 19th European Semantic Web Conference,
Hersonissos, Greece, volume 3196, pages 25–31.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Gillick Dan, Lazic Nevena, Ganchev Kuzman, Kirchner
Jesse, and Huynh David. 2014. Context-dependent
fine-grained entity type tagging. arXiv preprint
arXiv:1412.1820.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya
Godbole, Ethan Perez, Jay-Yoon Lee, Lizhen Tan,
Lazaros Polymenakos, and Andrew McCallum.
2021. Case-based reasoning for natural language
queries over knowledge bases. arXiv preprint
arXiv:2104.08762.

Yu Gu, Xiang Deng, and Yu Su. 2022. Don’t generate,
discriminate: A proposal for grounding language
models to real-world environments. arXiv preprint
arXiv:2212.09736.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2021. Beyond iid:
three levels of generalization for question answering
on knowledge bases. In Proceedings of the Web
Conference 2021, pages 3477–3488.

Xinyan Guan, Yanjiang Liu, Hongyu Lin, Yaojie Lu,
Ben He, Xianpei Han, and Le Sun. 2024. Mitigating
large language model hallucinations via autonomous
knowledge graph-based retrofitting. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 18126–18134.

Tiezheng Guo, Qingwen Yang, Chen Wang, Yanyi Liu,
Pan Li, Jiawei Tang, Dapeng Li, and Yingyou Wen.
2023. Knowledgenavigator: Leveraging large lan-
guage models for enhanced reasoning over knowl-
edge graph. arXiv preprint arXiv:2312.15880.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji-Rong Wen. 2021. Improving multi-hop knowledge
base question answering by learning intermediate
supervision signals. In Proceedings of the 14th ACM
international conference on web search and data
mining, pages 553–561.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-
Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2023. Atlas: Few-shot learning with retrieval
augmented language models. Journal of Machine
Learning Research, 24(251):1–43.

7189

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Structgpt:
A general framework for large language model to
reason over structured data. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 9237–9251.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023a. Few-shot in-context learn-
ing for knowledge base question answering. arXiv
preprint arXiv:2305.01750.

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng
Ding, Lidong Bing, Shafiq Joty, and Soujanya Po-
ria. 2023b. Chain of knowledge: A framework for
grounding large language models with structured
knowledge bases. arXiv preprint arXiv:2305.13269.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.
Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and
Shirui Pan. 2023. Reasoning on graphs: Faithful and
interpretable large language model reasoning. arXiv
preprint arXiv:2310.01061.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. arXiv preprint arXiv:2301.13379.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Jeff Z Pan, Simon Razniewski, Jan-Christoph Kalo,
Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira
Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo
Lissandrini, et al. 2023a. Large language models
and knowledge graphs: Opportunities and challenges.
arXiv preprint arXiv:2308.06374.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Yang Wang. 2023b. Logic-lm: Empow-
ering large language models with symbolic solvers
for faithful logical reasoning. arXiv preprint
arXiv:2305.12295.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-
apu Wang, and Xindong Wu. 2024a. Unifying large
language models and knowledge graphs: A roadmap.
IEEE Transactions on Knowledge and Data Engi-
neering.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-
apu Wang, and Xindong Wu. 2024b. Unifying large
language models and knowledge graphs: A roadmap.
IEEE Transactions on Knowledge and Data Engi-
neering, pages 1–20.

Aleksandr Perevalov, Dennis Diefenbach, Ricardo Us-
beck, and Andreas Both. 2022. Qald-9-plus: A mul-
tilingual dataset for question answering over dbpe-
dia and wikidata translated by native speakers. In
2022 IEEE 16th International Conference on Seman-
tic Computing (ICSC), pages 229–234. IEEE.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
Lewis, Majid Yazdani, Nicola De Cao, James Thorne,
Yacine Jernite, Vladimir Karpukhin, Jean Mail-
lard, et al. 2020. Kilt: a benchmark for knowl-
edge intensive language tasks. arXiv preprint
arXiv:2009.02252.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju,
Eric Michael Smith, Stephen Roller, Megan Ung,
Moya Chen, Kushal Arora, Joshua Lane, et al. 2022.
Blenderbot 3: a deployed conversational agent that
continually learns to responsibly engage. arXiv
preprint arXiv:2208.03188.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Heung-Yeung Shum,
and Jian Guo. 2023. Think-on-graph: Deep and
responsible reasoning of large language model with
knowledge graph. arXiv preprint arXiv:2307.07697.

Yueqing Sun, Qi Shi, Le Qi, and Yu Zhang. 2021.
Jointlk: Joint reasoning with language models and
knowledge graphs for commonsense question answer-
ing. arXiv preprint arXiv:2112.02732.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
arXiv preprint arXiv:1803.06643.

Dehao Tao, Feng Huang, Yongfeng Huang, and Minghu
Jiang. 2024. Clue-guided path exploration: An effi-
cient knowledge base question-answering framework
with low computational resource consumption. arXiv
preprint arXiv:2401.13444.

https://doi.org/10.1109/TKDE.2024.3352100
https://doi.org/10.1109/TKDE.2024.3352100

7190

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel
Bowman. 2024. Language models don’t always say
what they think: unfaithful explanations in chain-of-
thought prompting. Advances in Neural Information
Processing Systems, 36.

Raja Vavekanand and Kira Sam. 2024. Llama 3.1: An
in-depth analysis of the next-generation large lan-
guage model.

Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li,
Yunsen Xian, Chuantao Yin, Wenge Rong, and Zhang
Xiong. 2023. Knowledge-driven cot: Exploring faith-
ful reasoning in llms for knowledge-intensive ques-
tion answering. arXiv preprint arXiv:2308.13259.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Linyao Yang, Hongyang Chen, Zhao Li, Xiao Ding, and
Xindong Wu. 2024. Give us the facts: Enhancing
large language models with knowledge graphs for
fact-aware language modeling. IEEE Transactions
on Knowledge and Data Engineering, pages 1–20.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosse-
lut, Percy Liang, and Jure Leskovec. 2021. Qa-
gnn: Reasoning with language models and knowl-
edge graphs for question answering. arXiv preprint
arXiv:2104.06378.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu,
Alexander Hanbo Li, Jun Wang, Yiqun Hu, William
Wang, Zhiguo Wang, and Bing Xiang. 2022. Decaf:
Joint decoding of answers and logical forms for ques-
tion answering over knowledge bases. arXiv preprint
arXiv:2210.00063.

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,
Hongyu Ren, Percy Liang, Christopher D Manning,
and Jure Leskovec. 2022a. Greaselm: Graph reason-
ing enhanced language models for question answer-
ing. arXiv preprint arXiv:2201.08860.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022b. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei
Qin, and Lidong Bing. 2023. Verify-and-edit: A
knowledge-enhanced chain-of-thought framework.
arXiv preprint arXiv:2305.03268.

Zirui Zhao, Wee Sun Lee, and David Hsu. 2024. Large
language models as commonsense knowledge for
large-scale task planning. Advances in Neural Infor-
mation Processing Systems, 36.

https://doi.org/10.1109/TKDE.2024.3360454
https://doi.org/10.1109/TKDE.2024.3360454
https://doi.org/10.1109/TKDE.2024.3360454

7191

A Alternative Pruning Strategy:
Clustering-Based Approach

In addition to the classification-based semantic
pruning employed in EffiQA, we investigated an
alternative pruning strategy utilizing clustering as a
tool model. This approach aimed to group semanti-
cally similar entities within the knowledge graph
to streamline the exploration process. Specifically,
we leveraged a BERT-based model to generate em-
beddings for each entity and applied K-Means clus-
tering to partition these embeddings into distinct
clusters. The hypothesis was that clustering could
effectively reduce the search space by allowing the
system to focus on the most relevant clusters based
on the query context.

However, empirical evaluations on the We-
bQSP dataset revealed significant limitations of the
clustering-based approach. The clustering model
achieved an accuracy of approximately 20%, which
is substantially lower than the classification-based
method integrated into EffiQA. This low accuracy
can be attributed to several factors:

• Model Precision: The BERT-based clustering
model struggled to accurately group entities
with nuanced semantic relationships, leading
to high levels of intra-cluster heterogeneity.

• Noise Sensitivity: Clustering algorithms are
inherently sensitive to noise and outliers,
which are prevalent in large-scale knowledge
graphs. This sensitivity resulted in the for-
mation of clusters that contained a significant
number of irrelevant entities.

• Recall Rate: The recall rate for the clustering-
based approach was notably low, meaning
that many relevant entities were inadvertently
pruned during the clustering process. This
shortfall undermined the effectiveness of the
pruning strategy, as essential information re-
quired to answer complex queries was often
excluded.

Furthermore, the presence of substantial noise
and the inability to reliably distinguish between
closely related entities significantly hindered the
clustering model’s performance. As a result, the
clustering-based pruning strategy did not achieve
the desired balance between efficiency and accu-
racy, making it an unsuitable alternative to the
classification-based approach within the EffiQA
framework.

B Case Study: Query Processing Analysis

B.1 Successful Query Processing

Query Example: "Where did the ’Country Nation
World Tour’ concert artist go to college?"

In this case, LLM processes the query success-
fully by following a structured reasoning flow. The
system first identifies the primary entity, the artist
associated with the ’Country Nation World Tour,’
and classifies it as the center entity for exploration.
Based on the instruction, the LLM plans a search
focusing on educational attributes linked to this
artist within the knowledge graph. By traversing
relevant relations and sampling tail entities, the
model efficiently retrieves the correct college infor-
mation. Finally, the system validates the retrieved
results through cross-checking to ensure accuracy
and consistency. This structured reasoning and val-
idation pipeline demonstrates the system’s ability
to handle complex queries effectively.

B.2 Failure in Query Processing

Query Example: "Where is Whistler Mountain
located in the Eastern Time Zone?"

In this case, LLM generates an incorrect hypo-
thetical answer, incorrectly interpreting “where”
to refer to a geopolitical entity (GPE) rather than
a location (LOC). This erroneous hypothesis mis-
guides the plug-in model during the classification
phase, causing it to assign an incorrect category
to the instruction entity. Consequently, the search
process focuses on irrelevant GPE-related relations
and tail entities within the knowledge graph, pro-
ducing invalid candidate paths and failing to re-
trieve meaningful results.

This failure highlights a critical limitation of the
system: its reliance on the LLM’s ability to gener-
ate semantically accurate initial hypotheses. Errors
at this stage propagate through the classification, re-
lation exploration, and candidate generation phases,
ultimately leading to an incorrect final answer.

B.3 Discussion

These cases demonstrate the dual challenges of
semantic understanding and instruction-driven rea-
soning in structured query processing. In the first
example, the system effectively aligns hypothesis
generation, entity classification, and relation ex-
ploration with the instruction, enabling accurate
information retrieval. However, the second exam-
ple reveals a significant vulnerability: the system’s

7192

reliance on the LLM’s initial hypothesis. An incor-
rect assumption, such as misclassifying ’Whistler
Mountain,’ propagates errors throughout the rea-
soning pipeline, leading to invalid candidate paths
and incorrect answers.

To address this issue, future research should fo-
cus on developing mechanisms to validate LLM-
generated hypotheses before classification and
search. Integrating consistency checks between
the LLM and plug-in models during early reason-
ing stages could reduce the propagation of errors.
Furthermore, incorporating a feedback loop to it-
eratively refine hypotheses and classifications may
improve robustness, ensuring that errors in the ini-
tial stage do not compromise the entire reasoning
process.

C KG Exploration Algorithm

In this section, we present the detailed procedure
of the Knowledge Graph (KG) exploration mech-
anism employed in our model, which involves it-
eratively sampling and classifying entities, while
utilizing a self-reflection module for error correc-
tion. The key steps of the KG exploration process
are outlined below in an algorithmic format.

The knowledge graph exploration process is de-
tailed in Algorithm 2. To ensure clarity, we encap-
sulate complex operations into modular functions
with descriptive names and clear input-output spec-
ifications.

The Algorithm 2 takes a knowledge graph KG,
an initial instruction I , and a center entity ec as in-
put, and outputs a set of candidate paths P . The al-
gorithm initializes a queue Q with the center entity
and the initial instruction. Exploration proceeds it-
eratively, dequeuing the next entity-instruction pair
for processing until the queue is empty.

At each step, the current entity ec is classified
based on the instruction I . For each relation r
connected to ec, the algorithm samples tail entities
Tr, classifies them against the instruction I , and
checks if the classifications match. If they match,
the relation and its tail entities are added to the
candidate paths P .

Feedback mechanisms handle cases where the
number of candidate paths exceeds a predefined
threshold or when no candidates match the instruc-
tion’s classification. In the former case, the algo-
rithm triggers a self-reflection process to analyze
the current subgraph and prune unnecessary paths.
In the latter case, the algorithm reflects on the cur-

Algorithm 2 Instruction-Driven KG Exploration

1: Input: Knowledge Graph KG = {E,R, T},
Initial instruction I , Center entity ec

2: Output: Candidate paths P
3: P ← ∅
4: Q ← {(ec, I)}
5: while Q is not empty do
6: (ec, I)← DEQUEUE(Q)
7: CI ← CLASSIFY(ec, I,KG)
8: for each relation r ∈ R(ec) do
9: Tr ← SAMPLE(KG, ec, r)

10: Cr ← CLASSIFY(Tr, I,KG)
11: if MATCH(Cr, CI) then
12: P ← P ∪ ADDPATH(ec, r, Tr)
13: end if
14: end for
15: if TOOMANY(P) then
16: REFLECT(KG, ec,P)
17: else if NOMATCH(Cr, CI) then
18: REFLECT(KG, ec)
19: else
20: Inext ← NEXTINSTRUCTION(I)
21: if Inext exists then
22: ENQUEUE(Q, (ec, Inext))
23: end if
24: end if
25: end while
26: Return: Candidate paths P

rent subgraph to refine the exploration process.
If no issues arise, the algorithm retrieves the next

instruction and enqueues the corresponding entity-
instruction pair for further exploration. The process
terminates when the queue is empty, returning the
final set of candidate paths P .

D Training Details

In order to enhance the accuracy and robustness of
the classification process, we adopt a comprehen-
sive strategy for representing entities in the knowl-
edge graph. Each entity e ∈ E is represented as a
concatenated textual description derived from the
neighboring triples in the graph. Specifically, we
construct the representation by combining the sub-
ject, relation, and object from all associated triples,
ensuring that the contextual information of the en-
tity is fully captured. This representation serves
as the input to the classification model. For the
instruction entity, a textual representation is first
generated by LLM based on the instruction context.

7193

The resulting instruction-specific sentence is then
concatenated with the corresponding triples to form
the full context for entity classification.

The classification model is trained using a combi-
nation of original training data and additional sam-
ples generated through augmentation. To expand
the training dataset, we utilize Freebase to sample
new examples for entity classification tasks. The
additional samples are designed to cover a broader
range of entity types and scenarios, particularly
those underrepresented in the original data. This
augmented dataset ensures that the model learns
from a more diverse and comprehensive set of ex-
amples, improving its generalization capabilities.
Importantly, these newly sampled examples do not
replace the original training data but complement it,
thereby retaining the strengths of the initial dataset
while addressing its limitations.

To address the challenge of distinguishing be-
tween closely related entity categories, we intro-
duce subcategories for classes that are prone to
confusion. These subcategories are designed based
on the guidelines proposed in previous work (Dan
et al., 2014), providing finer-grained distinctions
that guide the model during training. For instance,
if certain event entities (EVENT) exhibit overlap-
ping characteristics, such as those involving sports
and accidents, subcategories like "sports event" and
"accident" are manually defined based on their con-
textual features derived from surrounding triples.
This manual refinement addresses ambiguity and
enhances the model’s ability to differentiate be-
tween these subcategories. Relevant data is then
incorporated into the training process to further im-
prove the model’s classification performance for
these newly introduced subcategories.

The training process is structured to focus solely
on minimizing the classification error between an-
notated entities and their corresponding ground-
truth labels, ensuring that the model does not rely
on predictions made during inference. This sep-
aration ensures a robust training process that is
independent of potential biases introduced in the
inference phase. Regularization techniques and
learning rate schedules are employed to prevent
overfitting, while the diversity of the training data
helps improve the model’s ability to generalize
across various entity categories.

E Prompts

E.1 Decomposed Sub-questions
As shown in figure 6, this functionality involves
decomposing a complex question into a series of
logically connected sub-questions, following the
reasoning path in the knowledge graph. The an-
swers to these sub-questions collectively form the
final answer to the original question. And

================ Prompt Input ================
Given a complex question, decompose it into a series of sub-
questions that follow the logical structure of the knowledge
graph and the question, corresponding to the reasoning path in
the knowledge graph.

The final answer of the decomposed sub-questions should be
the answer to the original question.

For each step:
Write the sub-question corresponding to this step.
Use logical sequencing where the answer to one step becomes
the subject for the next.

Example 1~n
<Example>

Question:
<Question>

================ LLM Output ================
Initial Entity: <Initial Entity>

Step 1: Sub-question: <Sub-question>

Step 2: Sub-question: <Sub-question>

Decomposed Sub-questions

Figure 6: The prompt template for Decomposed Sub-
questions

E.2 Instruction Generation
In figure 7, this functionality answers the decom-
posed sub-questions and provides specific instruc-
tions based on semantic information and the struc-
ture of the knowledge graph. This guides the rea-
soning process at each step.

E.3 Re-planning
As shown in figure 8, this functionality involves
re-planning reasoning steps when a [problem] inter-
rupts the current reasoning path in the knowledge
graph. The subgraph representing the problem is
given by [triple 1, triple 2, ..., triple n], and the goal
is to restructure the reasoning steps to resolve the
issue.

7194

================ Prompt Input ================
Using the decomposed sub-questions, answer each sub-question and provide specific instructions based on semantic information and the knowledge
graph structure. Output the complete hypothetical answers and instruction actions.

In this process, instruction each step as either:
[Adverbial Qualifier]: Applies a specific condition or context to narrow the scope of an answer.
[Forward Search]: Identifies information by querying the knowledge graph directly.

For each step:
Instruction its type: [Adverbial Qualifier] or [Forward Search].
Write the sub-question.
Provide a hypothetical answer (based on typical responses).
Write the knowledge graph instruction or reasoning action to resolve the step.

#Example 1~n
<Example>

Sub-questions:
<Decomposed Sub-questions from Prompt 1>

================ LLM Output ================
Step 1:
Sub-question: <Sub-question>
Hypothetical Answer: <Hypothetical Answer>
Knowledge Graph Instruction: <Instruction>

Step 2:
Sub-question: <Sub-question>
Hypothetical Answer: <Hypothetical Answer>
Knowledge Graph Instruction: <Instruction>

Figure 7: The prompt template for Instruction Generation

================ Prompt Input ================
<Part of Decomposed Sub-questions prompts>
In the process of exploring a Knowledge Graph, you encounter a <problem> that hinders the current reasoning path. This problem is represented in the
subgraph, which consists of the following triples:
<triple 1, triple 2 ... triple n>
Given this issue, you need to re-plan the reasoning steps and provide a new path to effectively address the problem.

Your original plan was:
<Original reasoning steps>

The problematic step is:
<Problematic step in the reasoning process>

For each step in the re-planning process, you need to:
- Identify the source of the issue and how it affects the reasoning flow.
- Reconstruct the sub-questions logically based on the problem and the subgraph information.
- Adjust the reasoning path to ensure that the answer to each sub-question logically leads to the next, ultimately resolving the original problem.

Ensure that the final answer to the re-planned sub-questions provides a solution to the <problem>.

#Example 1~n
<Example>

================ LLM Output ================
Initial Entity: <Initial Entity>

Step 1: Sub-question: <Re-planned Sub-question>

Step 2: Sub-question: <Re-planned Sub-question>

Figure 8: The prompt template for Instruction Generation

	Introduction
	Related Work
	Integration of External Knowledge Sources
	Knowledge-Enhanced Reasoning in LLMs
	Advanced Frameworks for Structured Knowledge Utilization

	Method
	Global Planning
	Efficient KG exploration
	Self-reflection

	Experiments
	Experimental Setup
	Datasets and Metrics
	Baselines
	Experiment Details

	Main Results
	Comparison to Other Methods
	Performance with Different Backbone Models

	Ablation study
	Effect of Reflection Iterations on Accuracy
	Model scale, Efficiency and Performance
	Computational Cost

	Conclusion
	Alternative Pruning Strategy: Clustering-Based Approach
	Case Study: Query Processing Analysis
	Successful Query Processing
	Failure in Query Processing
	Discussion

	KG Exploration Algorithm
	Training Details
	Prompts
	Decomposed Sub-questions
	Instruction Generation
	Re-planning

