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Abstract

This study proposes a method to evaluate the
capability of large language models (LLMs) in
identifying lexical semantic equivalence. The
Word-in-Context (WiC) task, a benchmark de-
signed to determine whether the meanings of
a target word remain identical across different
contexts, is employed as a probing task. Ex-
periments are conducted with several LLMs,
including proprietary GPT models and open-
source models, using zero-shot prompting with
adjectives that represent varying levels of se-
mantic equivalence (e.g., "the same") or in-
equivalence (e.g., "different"). The fundamen-
tal capability to identify lexical semantic equiv-
alence in context is measured using standard
accuracy metrics. Consistency across different
levels of semantic equivalence is assessed via
rank correlation with the expected canonical
ranking of precision and recall, reflecting an-
ticipated trends in performance across prompts.
The proposed method demonstrates its effec-
tiveness, highlighting the superior capability of
GPT-4o, as it consistently outperforms other
explored LLMs. Analysis of the WiC dataset,
the discriminative properties of adjectives (i.e.,
their ability to differentiate between levels of
semantic equivalence), and linguistic patterns
in erroneous cases offer insights into the LLM’s
capability and sensitivity. These findings could
inform improvements in WiC task performance,
although performance enhancement is not the
primary focus of this study.

1 Introduction

Polysemy, the phenomenon where a single word
has multiple meanings, has been a significant con-
cern across various academic disciplines (Ravin
and Leacock, 2000). In NLP, this issue is par-
ticularly relevant to Word Sense Disambiguation
(WSD) (Agirre and Edmonds, 2006; Navigli, 2009).
Despite advancements in the field, particularly
with the development of Transformer-based text

encoders, accurately identifying the intended mean-
ing of a word in context and mapping it to a prede-
fined sense from a fixed sense inventory remains
challenging (Bevilacqua et al., 2021). A major dif-
ficulty arises from the lack of clearly or rigorously
defined sense boundaries (Ide and Wilks, 2006;
Panchenko et al., 2017).

The Word-in-Context (WiC) task (Pilehvar and
Camacho-Collados, 2019), which involves deter-
mining whether a target word’s meanings are iden-
tical across different contexts, offers an alternative
approach that bypasses the need for strict sense
division. Despite the contextual clues provided in
the WiC dataset1, the task remains nuanced, with
human accuracy reported at only 0.80. While re-
cent large language models (LLMs) have achieved
significantly higher accuracy, reaching 0.843 with
advanced prompting techniques (Wang and Zhao,
2024), their specific semantic capabilities and char-
acteristics from a lexical semantics perspective still
remain elusive.

This study aims to develop a solid method for
evaluating an LLM’s capability to identify lexical
semantic equivalence using the WiC task, priori-
tizing methodological development overachieving
state-of-the-art task performance. Figure 1 illus-
trates the overall framework of our approach, high-
lighting the integration of zero-shot prompts and
evaluation metrics. The key idea is to guide LLM
predictions using zero-shot prompts featuring ad-
jectives that represent different levels of semantic
equivalence (e.g., "the same," "similar"). We eval-
uate the LLM’s capability from two perspectives:
fundamental capability, which focuses on baseline
performance, and consistency with the level of
equivalence, which examines the model’s sensi-
tivity to varying degrees of semantic similarity. For
the former, we use the standard accuracy metric in
the WiC dataset. For the latter, we assess precision

1https://pilehvar.github.io/wic/

https://pilehvar.github.io/wic/
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Figure 1: Overall framework of this study.

and recall figures obtained through these prompts,
as these metrics effectively capture the trade-offs
imposed by different levels of equivalence. For ex-
ample, the adjective "the same" imposes a stricter
equivalence criterion than "similar," resulting in
higher precision but lower recall.

In summary, our evaluation framework is based
on three key assumptions:

• Semantic equivalence exists on a spectrum,
and adjectives such as “identical” or “related”
represent various levels of equivalence. LLMs
are expected to differentiate between these
levels.

• The zero-shot prompts that feature these adjec-
tives provide useful data to assess the semantic
capabilities of an LLM.

• Although some individual cases in the WiC
dataset may pose challenges, it remains a
suitable and consistent tool for evaluating an
LLM’s capability to identify semantic equiva-
lence.

The rest of this paper is organized as follows:
Section 2 presents our methodology, along with
an introduction to key concepts. Sections 3 and 4
present the evaluation results and insights, demon-
strating the effectiveness of our approach. Our re-
sults suggest that GPT-4o outperforms other LLMs
tested. Section 5 discusses these findings from var-
ious perspectives, including the WiC dataset, the
discriminative properties of adjectives, and linguis-
tic patterns in erroneous cases. Finally, Section 6
explores potential improvements through ensem-
ble methods, although performance enhancement

is not the primary focus of this study. The relevant
codes and data are available at this URL2.

2 Methodology

This section introduces the WiC task, defines the
predictors used in the experiments, and outlines the
experimental settings. The evaluation method is
proposed alongside a description of the experimen-
tal results in the following sections.

2.1 WiC Task and the Dataset

In the WiC task (Pilehvar and Camacho-Collados,
2019), the system is required to determine whether
a target word (w), either a verb or noun, exhibits
semantic equivalence across two contextual sen-
tences (c1 and c2). Each instance in the WiC dataset
is annotated to indicate whether the meanings of
the target word in the two contexts are identical
(labeled "T", referred to as T-instance) or differ-
ent (labeled "F", F-instance). Since the dataset
maintains a balanced ratio of T-instances and F-
instances, task performance is basically evaluated
using the accuracy metric.

Figure 2 exemplifies a T-instance and an F-
instance from the WiC dataset. In the first example,
the target noun "plane" in both c1 and c2 refers to
the process of operating machinery, leading to a
positive label (T). In contrast, the second example
features the target verb "excite," which refers to
a physiological activity in c1 and a mental reac-
tion in c2, justifying the negative label (F). These
instances demonstrate how the WiC task distin-
guishes between identical and distinct senses of
target words across different contexts.

2https://github.com/yoshihikohayashi/wic_llm_
coling2025

https://github.com/yoshihikohayashi/wic_llm_coling2025
https://github.com/yoshihikohayashi/wic_llm_coling2025
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w/POS: operation/N
c1: The plane's operation in high
winds.
c2: The power of its engine
determines its operation.
label: T

w/POS: excite/V
c1: Excite the neurons.
c2: The fireworks which opened the
festivities excited anyone present.
label: F

Figure 2: Examples of T- and F-instances from the WiC
dataset.

2.2 Predictor

The WiC task is a binary classification problem,
where the classifier (referred to as a "Predictor"
in Figure 1) is defined by a combination of the
LLM used and the adjective instantiated in the
prompt. We utilize four LLMs: GPT-3.5 (Brown
et al., 2020), GPT-4o (OpenAI, 2023), Llama3.1
8B (LlamaTeam-AI@Meta, 2024), and Mistral
7B (Jiang et al., 2023) in the experiments: The
first two models are proprietary, while the last two
are open-source.

2.3 Experimental Settings

Under the two experimental settings described be-
low, we collect standard evaluation metrics for clas-
sification, such as accuracy, precision, recall, and
F1 score. Of these, accuracy is used to assess the
fundamental capability of a predictor, while preci-
sion and recall are employed to calculate the con-
sistency level, as detailed in Section 4.

(1) Regular WiC Task Setting: In this setting,
the task adheres to the original formulation: the
system must determine whether the meanings of a
target word are identical in two given contextual
sentences. We use zero-shot prompts with adjec-
tives, referred to as positive adjectives, which de-
note different levels of semantic equivalence. This
approach allows us to assess LLM’s sensitivity to
these varying levels of equivalence. Figure 3 illus-
trates the zero-shot prompt template used for this
task setting3.

3We used the exact same template for GPT-3.5 and GPT-
4o. The template was slightly modified for Llama3.1 8B and
Mistral 7B to control the models’ output format.

Your task is to identify if the
meanings of the target word "{word}"
in the following c1 and c2 sentences
correspond to "{adj}" meanings or
not.
That is, it is the Word-in-Context
task.

Please simply answer T,
if the meanings correspond to
identical meanings.
Otherwise, simply answer F.
[Question]
Target word: {word}
c1: {c1}
c2: {c2}
Answer:

Figure 3: Template for zero-shot prompting with a posi-
tive adjective.

Positive Adjectives: In this study, we consider
four positive adjectives: identical, same, similar,
and related. These adjectives are ordered accord-
ing to the levels of semantic equivalence they rep-
resent, with "identical" indicating the highest level
and "related" indicating the lowest.

(2) Reversed WiC Task Setting: To further eval-
uate the LLM’s capability to identify lexical seman-
tic equivalence, we employ a reversed task setting.
This approach utilizes a zero-shot prompt template
parallel to the one shown in Figure 3 but incorpo-
rates a negative adjective to represent a degree of
semantic inequivalence. Consequently, the final
label is flipped to align with the regular task evalu-
ation setting. That is, if a model predicts "Yes" for
a negative prompt (e.g., "the meanings of the target
word in the contextual sentences are distinct"), the
predicted label is assigned as "F."

Negative Adjectives: We focus on four negative
adjectives that indicate semantic inequivalence: dis-
tinct, different, dissimilar, and unrelated. These
adjectives are arranged according to the levels of
semantic inequivalence they represent, with "dis-
tinct" indicating the highest level and "unrelated"
indicating the lowest.

3 Fundamental Capability for Identifying
Lexical Semantic Equivalence

We use accuracy from the WiC task as the primary
metric to evaluate an LLM’s fundamental capability
to identify lexical semantic equivalence in context.
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GPT-3.5 GPT-4o Llama3.1 8B Mistral 7B
Adjective train val test train val test train val test train val test
identical 0.61 0.605 0.616 0.75 0.749 0.755 0.633 0.616 0.633 0.644 0.632 0.648
the same 0.657 0.636 0.661 0.761 0.765 0.769 0.627 0.63 0.611 0.681 0.665 0.661
similar 0.669 0.644 0.651 0.778 0.768 0.776 0.616 0.574 0.586 0.681 0.663 0.653
related 0.62 0.594 0.592 0.786 0.762 0.759 0.538 0.519 0.527 0.566 0.553 0.559
pos. avg. 0.639 0.62 0.63 0.769 0.761 0.765 0.604 0.585 0.589 0.643 0.628 0.63
distinct 0.504 0.505 0.499 0.772 0.76 0.767 0.505 0.508 0.514 0.501 0.5 0.5
different 0.592 0.594 0.603 0.779 0.77 0.765 0.51 0.514 0.519 0.509 0.511 0.515
dissimilar 0.673 0.644 0.647 0.778 0.751 0.756 0.546 0.544 0.552 0.521 0.525 0.532
unrelated 0.658 0.603 0.619 0.774 0.738 0.731 0.505 0.506 0.507 0.624 0.6 0.611
neg. avg. 0.607 0.587 0.592 0.776 0.755 0.755 0.516 0.518 0.523 0.539 0.534 0.539
all avg. 0.623 0.603 0.611 0.772 0.758 0.76 0.56 0.551 0.556 0.591 0.581 0.585

Table 1: LLMs’ zero-shot prediction accuracies.

3.1 Zero-shot Prediction Results
Table 1 presents the zero-shot prediction accuracies
of the LLMs across the training, validation, and test
data splits4. The highest accuracy achieved by an
LLM on each data split is highlighted in bold. The
table also includes averaged accuracies across the
adjective groups, highlighted in the shaded rows.

From the results in Table 1, we can observe sev-
eral notable trends:

• Stable high performance of GPT-4o: GPT-4o
consistently achieves the highest accuracies
across both positive and negative adjectives.
This suggests that GPT-4o has a more refined
capability to discern nuanced semantic equiv-
alences and differences compared to the other
models, likely due to its advanced training and
larger parameter size.

• Effectiveness of positive adjectives: The accu-
racy results for positive adjectives are gener-
ally higher than those for negative adjectives
across all models including GPT-4o. This sug-
gests that the models are better at understand-
ing and processing semantic equivalence com-
pared to semantic inequivalence. This may be
because LLMs were more frequently exposed
to positive adjectives during pre-training.

3.2 Agreement Analysis: among Adjectives
and across LLMs

Another trend we would like to investigate is the
variability among models. While GPT-4o consis-

4The actual models we employed are: GPT-3.5
(gpt-3.5-turbo-1106), GPT-4o (GPT-4o-2024-0513),
Llama3.1 8B (Meta-Llama-3.1-8B-Instruct), and Mistral
7B (Mistral-7B-Instruct-v0.3"). The GPT models
were accessed through the OpenAI API. The open mod-
els were used via Hugging Face transformers library:
https://huggingface.co/docs/transformers/index.

LLM κ1 κ2 Diff.
GPT-3.5 0.262 0.508 0.246
GPT-4o 0.774 0.835 0.061

Llama3.1 8B 0.046 0.362 0.316
Mistral 7B 0.142 0.454 0.312

Table 2: Fleiss’s κ coefficients for LLMs.

tently demonstrates high performance across all
adjectives, other models exhibit greater variability
in their results. Notably, models like GPT-3.5 and
Mistral 7B show unusually low performance with
specific adjectives, such as "distinct." These find-
ings emphasize the need for further investigation
into the consistency of predictions made by each
LLM across different adjectives.

To achieve this objective, we examine the agree-
ment among the prediction results made with the
adjectives for each LLM. Fleiss’s κ is adopted
instead of Cohen’s, as we assess the agreement
among eight adjectives across four LLMs.

More specifically, we calculated two types of
Fleiss’s κ coefficients (Fleiss et al., 1971). The
first, κ1, measures the agreement between gold la-
bels and predictions across two categories, T and
F. The second, κ2, assesses the agreement across
four categories, representing combinations of cor-
rect labels and predictions. For instance, the cate-
gory "TF" denotes cases where the gold label is T,
but the prediction is F. The κ2 coefficient is intro-
duced to measure the agreement among the com-
pared items while accounting for tendencies toward
mispredictions. Consequently, κ2 coefficients are
generally higher than κ1 coefficients, and the dif-
ference between them may be inversely correlated
with prediction accuracy.

https://huggingface.co/docs/transformers/index


6989

Adjective κ1 κ2 Diff.
identical 0.429 0.624 0.195
the same 0.464 0.636 0.172
similar 0.400 0.594 0.194
related 0.225 0.618 0.392
distinct -0.118 0.533 0.650
different 0.028 0.525 0.497

dissimilar 0.113 0.422 0.310
unrelated 0.159 0.502 0.343

Table 3: Fleiss’s kappa coefficients for adjectives.

Table 2 displays the statistical figures for the
test data split, which will be the primary focus of
discussion in the remainder of this paper. Each row
presents Fleiss’s κ1, κ2, and the difference between
them for each LLM, based on predictions made
with the used adjectives. The highest κ values and
the smallest difference are shown in bold. The
following trends are observed from the table:

• Consistent predictions made by GPT-4o: The
high κ1 values indicate substantial agree-
ment (Landis and Koch, 1977) across the ad-
jectives used in the prompts. Furthermore, the
small difference between κ1 and κ2 supports
the high accuracy levels.

• Inconsistent predictions made by other LLMs:
Notably, Llama3.1 8B and Mistral 7B exhibit
low κ1 values, which may be related to their
insufficient semantic capabilities, as also sug-
gested by their accuracy scores.

These results further endorse the superiority of
GPT-4o compared to other models.

We are also interested in investigating the dual
of this analysis. Specifically, we investigate the
agreement among prediction results made by the
LLMs for each adjective. Table 3 presents Fleiss’s
κ1 and κ2 coefficients for each adjective, illustrat-
ing the level of agreement among the LLMs. It also
shows the differences between these coefficients.
These results suggest that predictions made with
positive adjectives are generally more stable than
those made with negative adjectives. Among the
positive adjectives, "the same" appears to provide
the most stable and accurate predictions.

To conclude this section based on these empirical
results, we can affirm that GPT-4o stands out as the
best LLM, and among the adjectives, "the same"
would be the optimal choice if only one adjective
is to be used.

4 Consistency with Canonical Semantic
Equivalence Levels

The positive and negative adjectives used in zero-
shot prompts are carefully selected to impose vary-
ing degrees of semantic equivalence (for positive
adjectives) or inequivalence (for negative adjec-
tives). For instance, the positive adjective "identi-
cal" demands the strictest interpretation of same-
ness, whereas "related" permits a broader and more
flexible interpretation, capturing a wider range of
relatedness.

For a consistent LLM, we anticipate that prompts
employing "identical" will yield high precision but
low recall for instances with identical meanings,
reflecting their stricter criteria. In contrast, prompts
utilizing "related" are expected to exhibit the oppo-
site trend in the WiC task, with higher recall but
lower precision, aligning with their more inclusive
interpretation.

We define the term "canonical semantic equiva-
lence levels" to represent the inherent equivalence
levels imposed by these adjectives and refer to this
concept as the canonicity assumption throughout
the paper. Furthermore, the term canonical rank-
ing denotes the expected ranking of precision and
recall metrics associated with these semantic equiv-
alence levels, providing a basis for evaluating the
LLMs’ consistency across prompts.

4.1 Precision and Recall as Indicators of
Consistency

Table 4 summarizes the results for GPT-4o across
the adjectives in the test data split. In the table,
the "F/P" and "F/R" columns display the precision
(P) and recall (R) for the F-instances, respectively.
Similarly, the "T/P" and "T/R" columns show the
precision and recall for the T-instances. For conve-
nience, the table also includes the F1 scores for
both F-instances (F/F1) and T-instances (T/F1),
along with the overall accuracy. Figures 4 and
5 provide a visual representation of these results,
separated by positive and negative adjectives.

These results clearly demonstrate that GPT-4o
aligns perfectly with the canonicity assumption.
Specifically, F/R and T/P decrease with the order
of positive adjectives, while F/P and T/R increase
with the order of positive adjectives. Conversely,
F/R and T/P decrease with the order of negative
adjectives, while F/P and T/R increase with the
order of negative adjectives. However, the results
for other LLMs, as summarized in the tables in the
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Adjective F/P F/R F/F1 T/P T/R T/F1 Acc
identical 0.724 0.824 0.771 0.796 0.686 0.737 0.755
the same 0.748 0.813 0.779 0.795 0.726 0.759 0.769
similar 0.783 0.764 0.774 0.770 0.789 0.779 0.776
related 0.828 0.654 0.731 0.714 0.864 0.782 0.759
distinct 0.783 0.739 0.760 0.753 0.796 0.774 0.767
different 0.792 0.719 0.754 0.742 0.811 0.775 0.765
dissimilar 0.796 0.687 0.738 0.725 0.824 0.771 0.756
unrelated 0.843 0.567 0.678 0.674 0.894 0.769 0.731

Table 4: Performance metrics of GPT-4o on the test split.

Figure 4: Performance of GPT-4o (positive adjectives).

Figure 5: Performance of GPT-4o (negative adjectives).

Appendix B, reveal some flaws, particularly with
negative adjectives.

4.2 Rank Correlations as Measures of
Semantic Consistency

To quantify an LLM’s consistency with the canon-
ical rankings, we use Kendall’s rank correlation
coefficient (Kendall, 1938). This coefficient mea-
sures the agreement between the canonical rank
of semantic equivalence levels (derived from the
expected order) and the rank actually obtained by
the LLM. For example, the canonical rank for T/R
with negative adjectives is [4, 3, 2, 1]. GPT-4o

achieves this exact rank, resulting in a rank correla-
tion coefficient of 1.0, indicating perfect alignment.
In contrast, Llama3.1 8B produces the rank [3, 4,
2, 1] (refer to Table 11), yielding a coefficient of
0.667, reflecting partial inconsistency.

Table 5 aggregates these rank coefficients and
presents averaged figures for positive, negative, and
all adjectives in the highlighted rows. As shown,
GPT-4o aligns fully with the canonicity assump-
tion for both positive and negative adjectives. In
contrast, other LLMs exhibit consistency with the
assumption for positive adjectives but show incon-
sistencies for negative adjectives.

In summary, the proposed method for measur-
ing an LLM’s consistency with canonical semantic
equivalence levels effectively evaluates a key as-
pect of its semantic capability, with GPT-4o emerg-
ing as the most exemplary model. Additionally,
the ordering of LLMs based on their overall con-
sistency, as summarized in Table 5, well correlates
with the zero-shot accuracy results presented in
Table 1.

5 Analysis

In this section, we analyze overall trends in the WiC
dataset, the discriminative properties of adjectives,
and the linguistic patterns observed in error cases.
We particularly focus on the validation split, which
consists of 638 instances evenly divided between
T- and F-instances, as our reference.

5.1 Overall Trends in the WiC Dataset

In this analysis, we examined the relationship be-
tween overall trends in the WiC dataset, including
the part of speech of the target word (noun or verb),
the number of senses it has, the richness of the
contextual sentence, and prediction errors. The re-
sults showed no clear correlation between the part
of speech or sense ambiguity of the target word
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GPT-3.5 GPT-4o Llama3.1 8B Mistral 7B
positives F/P 1.0 1.0 0.667 1.0

F/R 1.0 1.0 0.667 1.0
T/P 1.0 1.0 0.667 1.0
T/R 1.0 1.0 0.667 1.0

pos. avg. 1.0 1.0 0.667 1.0
negatives F/P 1.0 1.0 1.0 1.0

F/R 1.0 1.0 0.667 1.0
T/P 0.0 1.0 0.667 -0.333
T/R 1.0 1.0 0.667 1.0

neg. avg. 0.75 1.0 0.75 0.667
all avg. 0.875 1.0 0.709 0.833

Table 5: Kendall’s rank correlations of model predictions with canonical rankings.

and prediction errors. However, a weak correlation
was observed with the richness of the contextual
sentence (using token count as the simplest proxy),
suggesting that richer contextual clues could be
provided by longer contextual sentences. Refer
to Appendix C for further details of the results of
these investigations.

5.2 Discriminative Property of Adjectives
The choice of adjectives in the prompt can in-
fluence prediction outcomes. Table 6 shows the
changes in prediction results for each LLM when
using positive adjectives. For example, since "iden-
tical" represents a higher level of semantic equiva-
lence than "the same," some instances predicted as
F with the former may be predicted as T with the
latter. In the table, it is shown, for example, that
for GPT-3.5, 52 T-instances and 32 F-instances ex-
hibited such changes. In other words, 52 instances
shifted from incorrect to correct predictions, while
32 instances changed from correct to incorrect pre-
dictions.

The following trends can be observed from this
table:

• GPT-4o shows relatively few changes and pro-
vides stable predictions regardless of the ad-
jective used.

• For all LLMs, the level of semantic equiva-
lence imposed by "identical" is too high, while
that imposed by "related" is too low.

• In models other than Llama3.1 8B, the shift
from "the same" to "similar" results in minor
changes, while Llama3.1 8B shows signifi-
cant fluctuations (148 and 180), the causes of
which remain unknown.

These observations suggest that "the same" or
"similar" can be appropriately used for the WiC
task, consistent with the accuracy results discussed
in Section 3.2 and shown in Table 1.

5.3 Linguistic Patterns in Error Cases

This analysis seeks to identify trends and weak-
nesses in LLM predictions, which could guide im-
provements such as prompt design. It may also
uncover issues with the WiC dataset, especially
questionable gold labels, raising concerns about
the data creation process.

We manually analyzed 150 instances from the
validation split where GPT-4o’s predictions using
the adjective "the same" disagreed with the gold
labels. These cases highlight discrepancies rather
than outright errors. Table 7 presents the distri-
bution of these instances, categorized by the gold
label (T or F) and the part of speech of the target
word. In the following, we discuss the analysis
results from a high-level perspective with broadly
categorized causes. Slightly more detailed descrip-
tions are given in Appendix D.

Analysis of 91 T-instances: The question here
is why the LLM predicted these instances as non-
synonymous (F), in contrast to the gold label (T).
Upon closer examination:

• For the 56 Noun instances, 26 had different
meanings, suggesting potential issues with the
gold labels. The remaining instances can be
attributed to factors such as idiomatic or col-
locational distinctions (10 instances; Ex.1 in
Table 8), metaphorical meanings (9 instances;
Ex.2), relative or collective nouns (3 instances;
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Predicted as GPT-3.5 GPT-4o Llama3.1 8B Mistral 7B
F T T-inst. Sign F-inst. T-inst. Sign F-inst. T-inst. Sign F-inst. T-inst. Sign F-inst.

identical the same 52 > 32 20 > 10 14 > 2 63 > 42
the same similar 39 ≈ 33 19 > 13 146 < 180 41 = 41
similar related 90 < 122 31 ≈ 35 30 < 64 51 < 121

Table 6: Comparison of prediction results across different LLMs with shifts in adjectives.

Noun Verb Total
T-instances 56 35 91
F-instances 26 33 59

Total 82 68 150

Table 7: Breakdown of the disagreement cases.

Ex.3), and other various factors detailed in Ap-
pendix D.

• For the 35 Verb instances, the LLM appears to
identify potential meaning differences based
on the syntactic-semantic structure: differ-
ences in the meaning of the head noun of a
particular case element (20 instances; Ex.4),
mainly the object case, idiomatic or colloca-
tional expressions (7 instances; Ex.5), and dis-
tinctions between transitive and intransitive
verbs (5 instances; Ex.6).

Analysis of 59 F-instances: The question here
is why the LLM predicted these instances as syn-
onymous (T) when the gold label indicated they
were non-synonymous (F). The findings can be
summarized as follows:

• Of the 26 noun instances, 12 were genuinely
different in meaning, indicating that the LLM
may have struggled with distinguishing their
often subtle senses. Of the remaining in-
stances, nine should be identified as synony-
mous, suggesting potential issues with the
gold labels, while the remaining five can be
attributed to various factors detailed in Ap-
pendix D.

• For the 33 verb instances, the distribution of
disagreement reasons is relatively similar to
that in the T-instance case described above.
Specifically, 20 instances are attributed to dif-
ferences in the meaning of the head noun of
a particular case element, three instances to
idiomatic or collocational expressions, and
six of the remaining instances to distinctions
between transitive and intransitive verbs.

In summary, the analysis indicates that a sig-
nificant number of instances may reflect issues
with the gold labels, suggesting that revising the
dataset could be beneficial. The distribution of
causes behind correct and incorrect predictions for
Verb instances was similar across both T-instances
and F-instances. This trend suggests that enhanc-
ing the prompt to better incorporate relevant lin-
guistic reasoning steps for checking the transitivity
of a verb and the semantic category of the object
case may help improve overall task performance.
Furthermore, identifying figurative meanings and
idiomatic expressions warrants consideration, al-
though these may represent areas for further re-
search.

6 Discussion: Ensembling of Predictors

Each predictor, defined by its LLM and prompt
adjective, exhibits unique traits, suggesting that
combining complementary predictors could im-
prove classification accuracy. In this study, we
have 32 unique predictors (4 LLMs paired with
8 adjectives), requiring us to identify the optimal
combination from a vast number of possibilities5.
To address this computational issue, we apply the
greedy algorithm outlined in Algorithm 1, using
each of the 32 predictors as a seed and selecting the
best combination from the resulting combinations.
In each iterative step, a meta-classifier is trained
on the training split of the WiC dataset using the
predictions made by the individual predictors from
the current combination.

The results of the ensembling experiment, de-
tailed in Appendix E, revealed that a combination
of three GPT-4o-based predictors, using the ad-
jectives "identical" (as the seed), "the same," and
"similar" in the prompts, achieved the best perfor-
mance. This combination yielded a testset accuracy
of 0.781, slightly surpassing the 0.776 testset ac-
curacy of the best single predictor driven by "sim-
ilar" (see Table 4). The resulting meta-classifier
demonstrated a modest increase in precision for F-

5∑24
k=1 24Ck=16,777,215
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c1 c2

Ex.1 Always a step behind. [unidiomatic] Keep in step with the fashions. [idiomatic]
Ex.2 He alone gives me such heartbeats. [literal] The policeman waited for a heartbeat in vain. [metaphorical]
Ex.3 He is about average in height. [relative] The snowfall this month is below average. [non-relative]
Ex.4 To liberate the mind from prejudice. [obj:abstract] To liberate gases. [obj:physical]
Ex.5 Brush aside the objections. [metaphoric] Brush the dust from the jacket. [literal]
Ex.6 We must not proliferate nuclear arms. [transitive] The flowers proliferated rapidly all spring. [intransitive]

Table 8: Examples of contextual sentences. In Examples 1 through 3, the target words (underlined) are nouns, while
in Examples 4 through 6, they are verbs.

instances (from 0.783 to 0.792), although there was
a slight decrease in recall (from 0.764 to 0.763).
For T-instances, both precision (from 0.77 to 0.771)
and recall (from 0.789 to 0.8) showed slight im-
provements. Given that the adjective "similar" indi-
cates a lower level of semantic equivalence, while
"identical" and "the same" suggest a higher level,
these changes in performance are consistent with
expectations.

While the overall improvement in these experi-
ments is marginal, the results support the potential
effectiveness of ensembling predictors, albeit at the
cost of increased computational resources.

7 Related Work

The WiC task is a component of the SuperGLUE
benchmark (Wang et al., 2019), which serves as a
comprehensive evaluation suite for a range of natu-
ral language understanding tasks. Current leader-
board6 results for the task report top scores of ap-
proximately 0.78. While high-performing systems,
such as those discussed in (Zhong et al., 2022),
leverage advanced machine learning techniques,
these studies provide limited linguistic insights and
lack detailed analyses specific to the WiC task.
Note also that GPT-4o has nearly matched this
level of accuracy with the use of baseline zero-shot
prompts, as shown in Table 1.

Relatively few studies have systematically eval-
uated LLMs on the WiC task. Brown et al. (2020)
reported an accuracy of 0.494 using an early ver-
sion of GPT-3 in a few-shot setting, highlighting
challenges in comparing two items. Subsequently,
Laskar et al. (2023) achieved an accuracy of 0.621
with GPT-3.5-turbo in a zero-shot setting. How-
ever, these results may now be outdated. Moreover,
neither study provides an in-depth analysis of the
WiC task or explores broader semantic issues.

More recently, Wang and Zhao (2024) achieved
a significantly higher accuracy of 0.843 on the

6https://super.gluebenchmark.com/leaderboard

validation split with GPT-4, surpassing human
performance. Their work introduced a metacog-
nitive prompting method, incorporating sophisti-
cated prompts with detailed steps and explanations
through few-shot demonstrations. Despite its re-
markable performance, this study seems uncon-
cerned with examining the semantic capabilities of
LLMs in the context of the WiC task.

Similar to the present work, Hayashi (2024) eval-
uated LLMs’ ability to identify semantic equiva-
lence in context using the WiC task. They em-
ployed GPT models to generate textual descrip-
tions explaining the semantic usage of target words,
which were then used to train a binary classifier.
The results demonstrated GPT-4’s strong perfor-
mance, with its descriptions being both compact
and precise. However, their approach relied solely
on the adjective "identical," overlooking the poten-
tial impact of other adjectives on LLM behavior.

8 Conclusion

This study introduced a method for evaluating
LLMs’ capability to identify lexical semantic equiv-
alence using the WiC task, with a focus on both
overall capability and consistency across levels of
semantic equivalence. The method leverages zero-
shot prompts incorporating adjectives that express
varying degrees of semantic equivalence.

We evaluated several LLMs, including large
proprietary models and smaller open-source ones,
highlighting the superior semantic capabilities of
GPT-4o. Manual analysis revealed potential issues
in both the LLMs driven by zero-shot prompts and
the WiC dataset, pointing to opportunities for refin-
ing prompt design and enhancing dataset quality.

Our future research will build on the proposed
framework to investigate graded semantic simi-
larity (Erk et al., 2013; Armendariz et al., 2020;
Schlechtweg et al., 2021), potentially offering
deeper insights into the sensitivity and semantic
capabilities of LLMs.

https://super.gluebenchmark.com/leaderboard
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Limitations

We are aware of the following limitations in this
study:

• We evaluated only four LLMs: two propri-
etary models and two open-source models
with relatively smaller parameter sizes. In-
cluding open-source models with larger pa-
rameter sizes could potentially result in sig-
nificantly improved performance, potentially
making them competitive with the proprietary
models.

• We did not perform an exhaustive search for
classifiers or extensive hyperparameter tuning
during the training of the meta-classifier. Dif-
ferent settings and tuning strategies could lead
to substantially better ensemble results.

• Since the primary focus of this study was not
on achieving state-of-the-art performance, we
did not optimize the prompts used in our ex-
periments. Our error analysis, as discussed
in the paper, may help in developing better
prompts.

• Our manual inspection for the error analysis
was based on a small sample size. A more
extensive examination with a larger dataset
would provide deeper insights.

• We did not conduct a cost analysis of using
OpenAI’s API.
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adjective F/P F/R F/F1 T/P T/R T/F1 Acc
identical 0.574 0.893 0.699 0.760 0.339 0.468 0.616
the same 0.626 0.800 0.702 0.723 0.521 0.606 0.661
similar 0.644 0.676 0.660 0.659 0.627 0.643 0.651
related 0.717 0.304 0.427 0.558 0.880 0.683 0.592
distinct 0.499 0.991 0.664 0.400 0.006 0.011 0.499
different 0.563 0.917 0.698 0.777 0.289 0.421 0.603
dissimilar 0.661 0.603 0.631 0.635 0.691 0.662 0.647
unrelated 0.765 0.344 0.475 0.577 0.894 0.701 0.619

Table 10: Performance metrics of GPT-3.5.

adjective F/P F/R F/F1 T/P T/R T/F1 Acc
identical 0.626 0.661 0.643 0.641 0.604 0.622 0.633
the same 0.580 0.801 0.673 0.679 0.420 0.519 0.611
similar 0.687 0.317 0.434 0.556 0.856 0.674 0.586
related 0.702 0.094 0.166 0.515 0.960 0.670 0.527
distinct 0.507 0.930 0.657 0.581 0.097 0.166 0.514
different 0.510 0.983 0.671 0.760 0.054 0.101 0.519
dissimilar 0.540 0.710 0.613 0.576 0.394 0.468 0.552
unrelated 0.557 0.070 0.124 0.504 0.944 0.657 0.507

Table 11: Performance metrics of Llama3.1 8B.

adjective F/P F/R F/F1 T/P T/R T/F1 Acc
identical 0.612 0.807 0.696 0.717 0.489 0.581 0.648
the same 0.660 0.663 0.661 0.661 0.659 0.660 0.661
similar 0.700 0.536 0.607 0.624 0.770 0.689 0.653
related 0.733 0.184 0.295 0.533 0.933 0.679 0.559
distinct 0.500 1.000 0.667 0.000 0.000 0.000 0.500
different 0.508 0.994 0.672 0.862 0.036 0.069 0.515
dissimilar 0.517 0.991 0.679 0.895 0.073 0.135 0.532
unrelated 0.605 0.636 0.620 0.617 0.586 0.601 0.611

Table 12: Performance metrics of Mistral 7B.

significant, as indicated by the chi-square test p-
value of 0.069.

Part-of-speech: Table 13 presents the accuracy
scores for nouns and verbs across T-instances, F-
instances, and all instances, along with the p-values
from the chi-square tests. The table suggests that
while there is a statistically significant difference in
accuracy between nouns and verbs in F-instances,
with nouns being more accurate, there is no signifi-
cant difference in T-instances or when considering
all instances together. Therefore, it can be said that
there is no clear trend indicating whether this LLM
achieves better accuracy for target words that are
verbs or nouns.

Number of senses: The polysemous aspect of
a target word may affect the accuracy of the WiC
task. As an initial step, we examine the relation-
ship between the number of senses a target word

Noun Sign Verb p-value
T-instances 0.72 < 0.748 0.10
F-instances 0.859 > 0.725 *0.03

All 0.795 > 0.737 0.07

Table 13: Break down of the accuracy scores by part-of-
speech.

has and the accuracy of the WiC task. Table 14
compares the average number of senses in Word-
Net (Miller et al., 1990) for correctly predicted OK
instances and incorrectly predicted NG instances
across T-instances, F-instances, and all instances,
along with the p-values from one-sided t-tests. Ac-
cording to the table, there is no substantial differ-
ence in the average number of WordNet senses be-
tween correctly and incorrectly predicted instances
for both T-instances and all instances. However,
for F-instances, the average number of senses for
correctly predicted instances is substantially higher
than for incorrectly predicted ones. In other words,
in F-instances, where the contextual meanings of
the target word differ, having a target word with a
broader range of meanings is associated with higher
accuracy. This implies that, from a WSD perspec-
tive, the greater the number of sense candidates,
the higher the tendency for predictions of differing
meanings, which could be a plausible result.

Correct Sign Incorrect p-value
T-instances 4.62 < 5.01 0.77
F-instances 6.78 > 5.46 *0.02

All 5.75 > 5.2 0.09

Table 14: Average number of WordNet senses.

Correct Sign Incorrect p-value
T-instances 8.417 > 7.845 0.1
F-instances 8.473 > 8.033 0.19

All 8.466 > 7.924 0.06

Table 15: Average length of contextual sentences.

Length of contextual sentence: This aspect is
primarily related to the WiC dataset rather than the
LLM’s capabilities or characteristics. As the rich-
ness of a contextual sentence in each data instance
is difficult to quantify directly, we use the length
of a contextual sentence, measured by the number
of tokens, as a practical proxy. Table 15 compares
the average length of contextual sentences for cor-
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rectly predicted instances and incorrectly predicted
instances across T-instances, F-instances, and all
instances, along with the p-values from one-sided
t-tests. The results indicate that, on average, con-
textual sentences for correctly predicted instances
are slightly longer than those for incorrectly pre-
dicted instances. Although these differences are
not statistically significant at the 0.05 level, longer
contextual sentences may be more effective in pro-
viding clues for semantic distinction.

D More Details on the Error Analysis

Table 16 classifies the Noun instances by the po-
tential causes of disagreement. As observed from
the T-instances column, the LLM appears highly
sensitive to syntactic and expressive features. For
nearly half of the T-instances, the gold annotations
are questionable, as indicated by the 26 disputably
polysemous instances. On the other hand, the LLM
predicted one-third (nine) of the potentially polyse-
mous instances as synonymous. While this obser-
vation alone does not allow for a strong conclusion,
it suggests that the LLM might be making more ap-
propriate decisions regarding the range of semantic
denotations.

Type T-instances F-instances
Polysemous 26 12

Idiom/Collocation 10 2
Synonymous 1 9
Metaphoric 9 1

Relative/Group Noun 3 1
Subtle nuance 5 1
Technical term 2 0

Total 56 26

Table 16: Breakdown of causes of disagreement for
Noun instances.

Table 17 classifies the Verb instances by the po-
tential causes of disagreement. From this table,
we can observe that both the gold annotations and
the LLM primarily base their decisions on verb
frame syntax and semantics, as evidenced by the
significant number of instances classified by case
element meaning (labeled as "Case") and transi-
tive/intransitive distinctions (labeled as "VI-VT").
This suggests that a prompting strategy directing
the LLM to consider these features before making
final predictions may be beneficial.

Type T-instances F-instances
Case 20 20

VI-VT 5 6
Idiom/Collocation 7 3

Syntax 0 3
Synonymous 3 1

Total 35 33

Table 17: Breakdown of causes of disagreement for
Verb instances.

E Details of the Ensembling Experiment

The preliminary experiment on ensembling predic-
tors was conducted using the following settings.

E.1 Ensembling Algorithm

A simple stacking algorithm (Džeroski and Ženko,
2004) was employed, which uses the predictions
from the selected predictors as features. In the
experiment, we also incorporated the agreements
between each pair of predictors, enhancing the in-
put to the meta-classifier and resulting in slightly
better accuracies in most cases.

E.2 Meta-classifier

Among various popular classification algorithms,
we reported results using a meta-classifier with a
multi-layer perceptron provided by scikit-learn 7.
The network was configured with three hidden lay-
ers, with dimensions of 32, 128, and 32.

E.3 Search Algorithm

To identify an optimal combination of predictors,
we employed a greedy search algorithm, as out-
lined in Algorithm 1. The algorithm operates in the
following manner:

• Initialization: It begins with a single predictor
as a seed.

• Iterative Process: Predictors are iteratively
added based on their potential to improve
the accuracy score on the test set. A meta-
classifier is trained on the training split of the
WiC dataset, utilizing the predictions made by
the individual predictors in the current combi-
nation.

• Termination: This process continues until no
further improvements can be made.

7https://scikit-learn.org/stable/modules/
neural_networks_supervised.html

https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
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Algorithm 1 Greedy Selection of Predictors

1: Input: Seed predictor, seed_pred, and List of candidate predictors, cand_preds
2: Output: Selected predictors, sel_preds
3: sel_preds← [seed_pred]
4: max_accuracy_so_far← seed_pred.accuracy_on_val_set
5: cand_preds← remove(cand_preds, best_pred)
6: while cand_preds is not empty do
7: cand_pred← greedily_select_a_cand_pred(cand_preds)
8: new_model← train_meta_classifier_on_train_split(sel_preds + [cand_pred])
9: new_accuracy← evaluate_meta_classifier_on_val_set(new_model)

10: if new_accuracy > max_accuracy_so_far then
11: sel_preds← sel_preds + [cand_pred]
12: cand_preds← remove(cand_preds, cand_pred)
13: max_accuracy_so_far← new_accuracy
14: else
15: break
16: end if
17: end while
18: Return sel_preds

• Final Selection: The algorithm returns a set
of predictors that is presumed to be optimal
for the given seed.

After running the algorithm, we evaluate the meta-
classifier, which uses the selected predictors, on the
test split.

We run this algorithm 32 times, each time using
one of the 32 current predictors (combinations of 4
LLMs and 8 adjectives) as a seed. The best combi-
nation of predictors is selected from these 32 runs.
The final metric values for this best combination
are detailed in Section 6.

In the algorithm, the most crucial external func-
tion is greedily_select_a_cand_pred in line 7. In
this greedy search function, the score S for each of
the candidate predictors is calculated as follows and
the one yielding the maximum value is selected.

S = (|A|+ |B|)× |C|

where:

• |A| is the number of instances correctly clas-
sified by the current predictors.

• |B| is the number of instances correctly clas-
sified by the additional predictor.

• |C| is the number of instances correctly clas-
sified by both.

In other words, this score function aims to maxi-
mize the number of instances correctly classified

by both the existing predictors and the new pre-
dictor, while maintaining the number of instances
already correctly classified. The validity of this
score function is supported by its alignment with
results from an exhaustive search of a few candi-
date predictors, suggesting that it can effectively
select near-optimal combination of predictors.
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