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Abstract
Training models with differential privacy has
received a lot of attentions since differential pri-
vacy provides theoretical guarantee of privacy
preservation. For a task in a specific domain,
since a large-scale pre-trained model in the
same domain contains general knowledge of
the task, using such a model requires less effort
in designing and training the model. However,
differentially privately fine-tuning such models
having a large number of trainable parameters
results in large degradation of utility. Thus, we
propose methods that effectively fine-tune the
large-scale pre-trained models with freezing
unimportant parameters for downstream tasks
while satisfying differential privacy. To select
the parameters to be fine-tuned, we propose sev-
eral efficient methods based on the gradients
of model parameters. We show the effective-
ness of the proposed method by performing
experiments with real datasets1.

1 Introduction

Deep learning models conventionally trained on
private user data have risks of leaking sensitive in-
formation (Shokri et al., 2017; Carlini et al., 2019,
2021). To protect sensitive statistical data, the dif-
ferential privacy (Dwork and Roth, 2013) is widely
used due to theoretical guarantee of privacy preser-
vation by limiting the influence of any individual
user’s data and injecting noise into the results com-
puted from the sensitive data. The differential pri-
vacy has also attracted attentions in the machine
learning community to build a differentially private
model (Abadi et al., 2016).

To satisfy differential privacy, deep learning
models are generally trained by the DP-SGD al-
gorithm (Abadi et al., 2016). Since the amount
of inserted noise into the gradients grows with in-
creasing the number of model parameters (Luo

*Corresponding author
1Our codes will be available at https://github.com/

daeyounghong/dp-frost

et al., 2021), fine-tuning large pre-trained models
may significantly degrade their accuracies. Thus,
LoRA (Li et al., 2022) adds a small-sized low-rank
matrix to each existing pre-trained weight matrix in
a model and fine-tunes only the low-rank matrices.
Similarly, Adapter (Yu et al., 2022) adds a small-
sized intermediate layer after each existing layer of
the pre-trained model, and fine-tunes only the inter-
mediate layers. However, both methods fine-tune
only added parameters without considering the im-
pact of parameters to improve the accuracy. On the
other hand, the method in (Luo et al., 2021) freezes
the pre-trained model parameters with small abso-
lute values and fine-tune only the other parameters.
But updating such freezed parameters may signifi-
cantly improve the accuracy of the trained model.

To overcome the drawbacks of existing works,
we propose the DP-FROST (Differentially Private
Fine-tuning of pRe-trained mOdelS with freezing
model parameTers) method. The proposed method
(1) splits the model parameters into disjoint parti-
tions, (2) adds noise to the partition-wise gradient
magnitude, (3) selects partitions with their largest
noisy partition-wise gradient magnitudes and (4)
updates the parameters in the selected partitions.

Our contributions: The contributions of this paper
are summarized below.

• We prove that the model parameters with large
gradient magnitudes contribute more to its accu-
racy than those with small gradient magnitudes.

• To reduce the amount of inserted noise, instead
of selecting the parameters in the granularity
of parameters by adding noise to their gradient
magnitudes, we propose to select the parameters
in the granularity of partitions by adding noise
only to the partition-wise gradient magnitude.

• We propose to compute the noisy partition-wise
gradient magnitude (PGM) by (1) taking abso-
lute value in every dimension of per-example
gradients, (2) normalizing and clipping the re-

https://github.com/daeyounghong/dp-frost
https://github.com/daeyounghong/dp-frost
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sulting per-example gradients and (3) adding
noise to the partition-wise norm of the sum vec-
tor of the resulting per-example gradients. We
prove that normalizing before clipping reduces
the variance of inserted noise.

• To reduce the effect of added noise further, we
propose to iteratively select unfreezed partitions
and compute noisy PGMs repeatedly based on
remaining partitions only in each selection. We
formulate the problem of estimating the true
PGMs with the observed noisy PGMs computed
for each partition as a maximum likelihood esti-
mation and use the solution of the optimization
problem to select unfreezed partitions.

• Experiments with real datasets show that our
method outperforms the existing methods in
terms of the accuracy of the fine-tuned models.

2 Related Works

Since ϵ-differential privacy (Dwork et al., 2006)
was introduced to protect sensitive statistical data
from queries by users, it has been extensively used
to collect or publish various statistical data such
as geospatial data (Qardaji et al., 2013) and med-
ical data (Sun et al., 2019). On the other hand,
the machine learning community utilizes (ϵ, δ)-
differential privacy (Dwork and Roth, 2013), which
is a relaxed variant of the ϵ-differential privacy. For
instance, deep learning models are trained to satisfy
(ϵ, δ)-differential privacy by utilizing the DP-SGD
algorithm (Abadi et al., 2016).

When using the DP-SGD algorithm for deep
learning, to reduce the noise error, the idea of freez-
ing a subset of model parameters in training is
investigated in (Luo et al., 2021; Li et al., 2022; Yu
et al., 2022). For example, when fine-tuning a pre-
trained deep convolutional neural model, the work
in (Luo et al., 2021) freezes the model parameters
with small absolute values and updates the unfrozen
parameters only by using the DP-SGD algorithm.
However, updating the parameters with small ab-
solute values can lead to significant improvement
of the accuracy of a trained model. On the other
hand, for large pre-trained language models, LoRA
proposed in (Li et al., 2022; Yu et al., 2022) adds
low-rank matrices to the existing weight matrices
in a model and fine-tunes the newly added low-rank
matrices. Similarly, Adapter (Yu et al., 2022) adds
intermediate layers after each attention and feed-
forward layer, and fine-tunes only the intermediate
layers. However, it can be more difficult to fine-

tune the newly added layers in LoRA or Adapter
since they are randomly initialized compared to
the pre-trained layers. Moreover, the above three
methods select the parameters to fine-tune with-
out utilize the gradients of parameters to estimate
their impact on improving accuracy. In contrast,
our DP-FROST algorithm select the unfreezed pa-
rameters based on the gradient magnitudes of the
parameters.

In the federated learning setting, the idea of up-
dating only the parameters with large gradients is
considered in (Shokri and Shmatikov, 2015). To
satisfy differential privacy while selecting the pa-
rameters, it injects noise to the gradients of indi-
vidual parameters. Since the magnitude of inserted
noise grows as the model size increases, for a large
model, we may select the parameters with large
noisy gradient magnitudes which can be quite dif-
ferent from their original gradient magnitudes.

3 Preliminaries

We introduce (ϵ, δ)-differential privacy and the DP-
SGD algorithm that trains a neural model.

3.1 Differential Privacy

We introduce (ϵ, δ)-differential privacy (Dwork and
Roth, 2013) and sensitivity of a function.

Definition 1. A randomized algorithmA : D → Y
satisfies (ϵ, δ)-differential privacy if for any pair of
neighboring datasets D,D′ ∈ D, which differ in
one individual’s data, and for any Y ⊆ Y , we have

Pr[A(D) ∈ Y ] ≤ eϵ · Pr[A(D′) ∈ Y ] + δ.

For a dataset D and a function f , adding Gaus-
sian noise to the output of the function f achieves
(ϵ, δ)-differential privacy and its noise standard de-
viation is proportional to the sensitivity of f defined
below (Mironov, 2017).

Definition 2. For any two neighboring datasets
D,D′ ∈ D, which differ in a single individual, the
sensitivity of a function f : D → Rk, denoted by
∆f , is ∆f = maxD,D′ ∥f(D)− f(D′)∥2.

3.2 The DP-SGD Algorithm

The DP-SGD algorithm (Abadi et al., 2016) inserts
Gaussian noise to the sum of per-example gradients
in each mini-batch. Since the standard deviation of
noise added to the output of a function is propor-
tional to the sensitivity of the function (Mironov,



6968

2017), instead of directly using the gradient of each
example, it uses clipped per-example gradients by
scaling the gradient so that their 2-norm do not
exceed a clipping threshold c. We provide the defi-
nition of the α-norm clipping of a vector v.

Definition 3. The α-norm clipping of a vector v
with a clipping threshold c, denoted by Cα

c (v), is
Cα
c (v) = min(1, c/∥v∥α) · v.

4 The Proposed Methods

We want to protect the presence of each example
in training data based on (ϵ, δ)-differential privacy.

The threat model: Following (Zhang et al., 2020),
we assume that the adversary can access the pub-
lished model including its structure and parameters,
but cannot access training processes and train data.

4.1 Overview

The DP-FROST method (1) splits the parameters
into disjoint partitions, (2) adds noise to the noisy
partition-wise gradient magnitudes (PGMs), (3)
selects partitions with their largest noisy PGMs and
(4) updates the parameters in the selected partitions.

Parameter partitioning: Instead of inserting noise
to the gradient magnitudes of individual param-
eters, by splitting parameters into partitions and
adding noise only to the PGMs, inserted noise to
select unfreezed parameters can be reduced.

Computing noisy PGMs: We propose to compute
the noisy partition-wise gradient magnitude (PGM)
by (1) taking absolute value in every dimension of
per-example gradients, (2) normalizing and clip-
ping the resulting per-example gradients and (3)
adding noise to the partition-wise norm of the sum
vector of the resulting per-example gradients. We
prove that normalizing before clipping reduces the
variance of inserted noise.

Iterative partition selection: To reduce the effect
of added noise further, we propose to iteratively se-
lect unfreezed partitions. Since we compute noisy
PGMs repeatedly based on remaining partitions
only in each selection, we formulate the problem of
estimating the true PGMs with the observed noisy
PGMs computed for each partition as a maximum
likelihood estimation and solve the problem.

Fine-tuning with selected partitions: After se-
lecting the partitions with the largest noisy PGMs,
we fine-tune only the parameters in the selected
partitions by the DP-SGD algorithm.

4.2 Definitions

We provide the definitions to describe our methods.

Definition 4. For a parameter set Θ, let g ∈ R|Θ|

be a vector whose i-th element has the value corre-
sponding to the i-th parameter with 1 ≤ i ≤ |Θ|.
Then, [g]P is the projection of g onto P s.t. P ⊂ Θ.

Definition 5. For a parameter set P = {p1, p2,
. . . , p|P |}, the gradient of the loss L(x) of
an example x w.r.t. P , denoted by gP (x), is
⟨gp1(x), · · · , gp|P |(x)⟩ with gpi(x) = ∂L(x)/∂pi.

For an example x, the α-norms ∥gΘ(x)∥α and
∥gP (x)∥α of its gradients w.r.t. Θ and P ⊂ Θ sat-
isfy ∥gΘ(x)∥α ≥ ∥gP (x)∥α. Based on Definition
3, we obtain the following lemma.

Lemma 1. For a subset P of the parameter set Θ,
we have ∥Cα

c (gP (x))∥α ≥ ∥[Cα
c (gΘ(x))]P ∥α.

Due to lack of space, we omit the proofs of all
lemmas which appear in Appendix A.

4.3 Partition-wise Gradient Magnitude

We show the relationship of the loss reduction by
updating a parameter and its gradient magnitude.

Lemma 2. Assume that we update only a single
model parameter by using the gradient descent. If
the learning rate of the gradient descent is small
enough that the gradient does not change in every
parameter value between the current and updated
values of the parameter with a gradient descent
step, the reduction of loss is proportional to the
square of the gradient magnitude of the parameter.

By Lemma 2, the parameters with large gradients
contribute more to accuracy by reducing the loss.
To reduce the amount of inserted noise into gra-
dient magnitudes, instead of using the granularity
of individual parameters, we select the parameters
using the granularity of parameter partitions each
of which is represented by a single weight matrix
and its corresponding bias vector. Since the gra-
dient norm of a partition tends to increase as the
partition size increases, we select the partitions Pi

with the largest partition-wise normalized gradient
norms of the sum vector of per-example gradients,
denoted by µS,Pi(D), which is defined as follows.

Definition 6. For the norm order α ∈ {1, 2}, a
training data D and a parameter partition set
S = {P1, P2, . . . , P|S|} of the parameter set Θ,
the α-norm of the gradient of a partition Pi is
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∥
∑

x∈D gPi(x)∥α = (
∑|Pi|

i=1 |
∑

x∈D gpi(x)|α)1/α
and µS,Pi(D) is defined as:

µS,Pi(D) =
∥
∑

x∈D gPi(x)∥α
|Pi|1/α

=

(∑|Pi|
i=1

∣∣∑
x∈D gpi(x)

∣∣α
|Pi|

)1/α

.

4.4 Computing Differentially Private PGMs
We provide the definitions to describe PGMs.

Definition 7. Consider a training data D, a par-
tition set S = {P1, . . . , P|S|} and a gradient func-
tion g : D → R|

⋃
P∈S P |. For α = 1, 2, the α-norm

of the projected sum vector of clipped g(x) with
every x ∈ D onto the partition Pi is denoted by
f(D,κ, g, Pi) and defined by

f(D,κ, g, Pi) =

∥∥∥∥∥
[∑
x∈D

Cα
κ (g(x))

]
Pi

∥∥∥∥∥
α

.

For an example x ∈ D, ḡα
S(x) is the concatena-

tion of the normalized gradient of each partition in
S by the partition size. That is,

ḡα
S(x) = ḡα

P1
(x)⊕ · · · ⊕ ḡα

P|S|
(x)

where ḡα
Pi
(x) = gPi(x)/|Pi|1/α and ⊕ is the con-

catenation operator.
For the clipping threshold c, we define c̄ =

c/(
∑

P∈S |P |
|S| )1/α. In addtion, for a vector v =

⟨v1, . . ., vd⟩, we define abs(v) = ⟨|v1|, . . ., |vd|⟩.
By using Definition 7, we next present three

different variations of PGMs.

Definition 8. For a training data D and a partition
set S = {P1, P2, . . . , P|S|}, we define

• µc
S,Pi

(D)=f(D, c,g(
⋃

P∈S P )(x), Pi)/|Pi|1/α

= ∥[
∑

x∈D Cα
c (g(

⋃
P∈S P )(x))]Pi∥α/|Pi|1/α

• µn
S,Pi

(D) = f(D, c̄, ḡα
S(x), Pi)

=
∥∥[∑

x∈D Cα
c̄ (ḡ

α
S(x))

]
Pi

∥∥
α

• µa
S,Pi

(D) = f(D, c̄, abs(ḡα
S(x)), Pi)

= ∥
∑

x∈D[C
α
c̄ (abs(ḡ

α
S(x)))]Pi∥α

To bound the variance of inserted noise into
PGMs, µc

S,Pi
(D) clips every per-example gradient

when computing µS,Pi(D) in Definition 6. While
µc
S,Pi

(D) normalizes the partition-wise norm of the
sum vector of clipped per-example gradients with a
clipping threshold c, µn

S,Pi
(D) clips the normalized

per-example gradients with the clipping threshold

c̄ and computes the partition-wise norm of the sum
vector of clipped per-example gradients. Moreover,
µa
S,Pi

(D) simply takes absolute value in every di-
mension of per-example gradients before clipping
per-example gradients when computing µn

S,Pi
(D).

By using µc
S,Pi

(D), µn
S,Pi

(D) and µa
S,Pi

(D), we
define µc

S(D), µn
S(D) and µa

S(D), respectively.

Definition 9. For a training data D and a partition
set S = {P1, P2, . . . , P|S|}, we define µa

S(D) =
⟨µa

S,P1
(D), . . . , µa

S,P|S|
(D)⟩. Similarly, we define

µc
S(D) and µa

S(D).

We next provide the sensitivities of µc
S , µn

S and
µa
S (i.e., ∆µc

S , ∆µn
S and ∆µa

S).

Lemma 3. Given a partition set S = {P1, P2, . . .,
P|S|}, for α = 1, 2, we have

• ∆µc
S = c/(minP∈S |P |)1/α

• ∆µn
S = ∆µa

S = c̄ = c/(
∑

P∈S |P |
|S| )1/α

The standard deviation of noise is proportional to
the sensitivity (Mironov, 2017). If there is a small
partition in S, ∆µc

S is large. To reduce the sensi-
tivity of PGMs, µn

S,Pi
(D) first normalizes the gra-

dient of each example by partition sizes to obtain
ḡα
S(x). Thus, for each partition Pi, the PGM com-

puted from ḡα
S(x) (i.e., ∥[

∑
x∈D Cα

c (ḡ
α
S(x))]Pi∥α)

becomes much smaller and the noise effect can in-
crease. However, if we set the clipping threshold
for ḡα

S(x) to c̄ = c/((
∑

P∈S |P |)/|S|)1/α, since
minP∈S |P | ≤ (

∑
P∈S |P |)/|S| while the PGM

can be similar to µc
S,Pi

(D), the noise effect can be
reduced by Lemma 3.

We found by experiments that the selected par-
titions based on the PGM using Definition 6 are
similar whether we take an absolute value or not for
each element in a per-example gradient. If we use
µa
S,Pi

(D) instead of µn
S,Pi

(D), the PGMs become
larger while the variance of inserted noise is still
the same by Lemma 3. Thus, the noise effect using
µa
S,Pi

(D) can be reduced than using µn
S,Pi

(D).
To compute noisy PGMs, we propose the DP-

MG, DP-MGN and DP-MGNA methods that uti-
lize µc

S,Pi
(D), µn

S,Pi
(D) and µa

S,Pi
(D), respec-

tively. To get the noisy µa
S,Pi

(D), we compute
µa
S,Pi

(D) + z where z is noise sampled from
N (0, σ2

ps(∆µa
S)

2) where the noise multiplier σps is
computed by the method in (Mironov et al., 2019;
Balle et al., 2020) such that the total privacy budget
consumption does not exceed ϵ. For µc

S,Pi
(D) and

µn
S,Pi

(D), noise z can be similarly sampled.
Discussion: As α increases, the α-norm of a vector
is largely affected by a few large values in the vec-
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tor. Thus, we expect that 1-norm is more desirable
than 2-norm to select parameter partitions by using
µc
S,Pi

(D), µn
S,Pi

(D) and µa
S,Pi

(D).

4.5 Selecting Parameter Partitions

For ease of presentation, we present only the parti-
tion selection using the DP-MGNA method.

Given a partition set S = {P1, P2, . . . , P|S|}
and a maximum ratio γ of parameters to be un-
freezed, we want to select a maximum-sized parti-
tion set S∗ = {Pi1 , Pi2 , ..., Pi|S∗|}, which consists
the partitions with the largest µa

S,Pi
(D)s, such that∑|S∗|

j=1 |Pij | ≤ γ|Θ|.
When computing µa

S,Pi
(D), if we exclude the

partitions with large noisy µa
S,Pi

(D)s, by Lemma 1,
for each remaining partition Pi, we can reduce the
effect of added noise to µa

S,Pi
(D) since µa

S,Pi
(D) is

at least that before excluding the partitions. More-
over, we utilize a sample X of D to compute the
noisy µa

S,Pi
(X) quickly.

To select the parameter partitions, we repeatedly
perform the following steps. At the t-th iteration,
we (1) obtain a set of examples Xt by sampling
each example in D with probability qps, (2) com-
pute the noisy µa

S,Pi
(Xt)s of unselected partitions

Pi yet by the DP-MGNA method in Section 4.4, (3)
estimate the true µa

S,Pi
(D)s of partitions Pi from

the computed noisy µa
S,Pi

(Xt)s so far by a max-
imum likelihood estimation (MLE) method, and
(4) select the partitions with the largest estimated
µa
S,Pi

(D)s among remaining partitions Pi.
Estimating the true µa

S,Pi
(D)s: For a disjoint par-

tition set S = {P1, P2, . . . , PM} of Θ, let St be
the set of selected partitions until the t-th iteration
and Rt be the set of unselected remaining partitions
immediately after the t-th iteration (i.e., S−St). At
the beginning of the t-th iteration, St−1 and Rt−1

are the sets of previously selected partitions and
unselected remaining partitions, respectively.

Let vi be the unknown true µa
S,Pi

(D) of a parti-
tion Pi and Xt be the sampled example set at the
t-th iteration. We assume µa

Rt−1,Pi
(Xt)/vi = λt

regardless of the partition Pi. Then, the unknown
true µa

Rt−1,Pi
(Xt) is λtvi. Note that when t = 1,

since R0 = S, we assume λ1 = qps where qps
is the sampling rate. Moreover, let ṽt,i be the ob-
served noisy µa

Rt−1,Pi
(Xt) for a partition Pi, and

ṽt be {ṽt,i | Pi ∈ Rt−1}.
We propose a maximum likelihood estima-

tion (MLE) method to estimate v1, . . . , vM and
λ1, λ2, . . . , λt by maximizing the likelihood of

noisy PGMs ṽ1, ṽ2, . . . , ṽt until the t-th iteration.
Since the DP-MGNA method computes ṽt,i by

ṽt,i = µa
Rt−1,Pi

(Xt) + z = λtvi + z (1)

where z is Guassian noise sampled from N (0,
σ2
ps(∆µa

S)
2), ṽt,i has the following probability den-

sity function:

f(ṽt,i) =
1

σps∆t

√
2π

exp
(
−1

2

( ṽt,i − λtvi
σps∆t

)2)
where ∆t = ∆µa

Rt−1
.

Let ℓ(ṽ1, . . . , ṽt) be the log-likelihood of noisy
PGMs ṽ1, . . . , ṽt. Then, we have

ℓ(ṽ1, . . . , ṽt) =
t∑

j=1

∑
Pi∈Rj−1

log f(ṽj,i)

= −
t∑

j=1

∑
Pi∈Rj−1

log(σps∆j

√
2π)

−
t∑

j=1

1

2(σps∆j)2

∑
Pi∈Rj−1

(ṽj,i − λjvi)
2.

We next show λjs to maximize ℓ(ṽ1, . . . , ṽt) of
noisy PGMs when vis are fixed.

Lemma 4. Given v1, . . . , vM , the log-likelihood
ℓ(ṽ1, . . . , ṽt) of noisy PGMs is maximized by λj =

(
∑

Pi∈Rj−1

ṽj,ivi
∆2

j
)/(
∑

Pi∈Rj−1

v2i
∆2

j
) with 1≤j≤ t.

We next present vis to maximize ℓ(ṽ1, . . . , ṽt)
when λts are fixed.

Lemma 5. Given λ1 = qps, λ2, . . . , λt, the log-
likelihood ℓ(ṽ1, . . . , ṽt) of noisy PGMs is maxi-

mized by vi=(
∑

j∈Tt,i
ṽj,iλj

∆2
j
)/(
∑

j∈Tt,i
λ2
j

∆2
j
) where

Tt,i={j |Pi∈Rj−1 ∧ 1≤j≤ t} with 1≤ i≤M .

We next derive vi’s variance of a partition Pi ∈ Rt.

Lemma 6. Given λ1, . . . , λt, the variance of vi,

denoted by Var(vi), is σ2
ps/(

∑t
j=1

λ2
j

∆2
j
) for every

partition Pi ∈ Rt at the t-th iteration.

By using Lemmas 4 and 5, we propose the PGM-
EST (PGM ESTimation) algorithm which estimates
the true µa

S,Pi
(D) (i.e., vi) of every partition Pi in

the partition set S = {P1, P2, . . . , PM} of Θ.
The PGM-EST algorithm: It takes ṽ1, . . . , ṽt,

∆1, . . . ,∆t as inputs and finds v1, . . . , vM by max-
imizing ℓ(ṽ1, . . . , ṽt). If t = 1 (i.e., the first itera-
tion), we immediately return ṽ1,i/λ1 (= ṽ1,i/qps)
of all partitions. If t ≥ 2, we first initialize
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λ1, . . . , λt to 1. Then, for a given number of it-
erations J , we repeatedly perform the following
steps J times: (1) calculate v1, . . . , vM by max-
imizing ℓ(ṽ1, . . . , ṽt) with the current values of
λ1, . . . , λt by Lemma 5, and (2) update λ1, . . . , λt

by maximizing ℓ(ṽ1, . . . , ṽt) with the current val-
ues of v1, . . . , vM by Lemma 4. After finishing J
iterations, we return v1, . . . , vM . The details of the
PGM-EST algorithm are in Appendix C.
Selecting partitions with estimated µa

S,Pi
(D)s:

We present the PSEL (Partition SELection) algo-
rithm that iteratively selects the partitions based on
the estimated vis by the PGM-EST algorithm.

We want to choose only the partitions Pis whose
estimated vis are significantly larger than the maxi-
mum of vjs of the partitions Pjs that are expected
to be freezed based on their vjs. We first compute
the partition set Sfreeze whose partitions Pjs are
expected to be freezed based on their vjs. The
partition set Sfreeze is obtained by selecting the par-
titions Pjs with the smallest vjs in S until selecting
at least (1− γ)|Θ| parameters. Then, we compute
the maximum value, denoted by µthres, of vjs of
the partitions Pjs in Sfreeze. We next choose the
partitions Pis such that vi > µthres + ν

√
Var(vi),

where the gap coefficient ν is a user-defined value,
and the total number of parameters in the selected
partitions does not exceed t · γ · |Θ|/T .

The PSEL algorithm: Let S be the disjoint
partition set {P1, P2, . . . , PM} of Θ. We first set
the remaining partition set R0 to S and set the
selected partition set S1 to {}. Then, for each t-th
iteration with t = 1, . . . , T , we repeatedly perform
the following steps.
1. Obtain a set of examples Xt by sampling each

example in D with probability qps.
2. For each Pi∈Rt−1, get ṽt,i by Equation (1).
3. For i = 1, . . . ,M , set vi to the estimated true

µa
Rt−1,Pi

(D) by the PGM-EST algorithm.
4. Compute Var(vi) for Pi ∈ Rt−1 by Lemma 6.
5. Set the PGM threshold µthres to vj where

j = argminj′
∑j′

k=1 |Pk| ≥ (1− γ)|Θ|.
6. When t < T , add Pis with the largest vis satis-

fying vi > µthres + ν
√

Var(vi) in Rt−1 to St

as long as
∑

Pi∈St
|Pi| ≤ t · γ · |Θ|/T .

7. When t = T , we add Pis with the largest vis to
St as long as the total number of parameters in
the selected partitions does not exceed γ · |Θ|.

8. Set the remaining partition set Rt to Rt−1−St.
Finally, we return the set of parameters in ST . The
details of the PSEL algorithm are in Appendix C.

4.6 Computing the Noise Multiplier

We present the ComputeSigma algorithm that com-
putes the noise multipliers σSGD and σps for the
DP-SGD and PSEL algorithms, respectively, such
that the total privacy budget used by the DP-SGD
and PSEL algorithms does not exceed ϵ. It first
computes the minimum noise multiplier σSGD for
the DP-SGD algorithm such that the consumed pri-
vacy budget by the DP-SGD algorithm does not
exceed rϵ · ϵ where rϵ is the privacy budget ratio
for the DP-SGD algorithm. By using the obtained
noise multiplier σSGD, we next find the minimum
noise multiplier σps, which will be used by the
PSEL algorithm, such that the total privacy budget
used by the DP-SGD algorithm and the PSEL algo-
rithm does not exceed ϵ. To compute the minimum
noise multipliers σSGD or σps, we utilize the library
opacus (Yousefpour et al., 2021), which provides
the procedures to compute the privacy budget con-
sumption ϵ by the composition of algorithms based
on the RDP accountant method in (Mironov et al.,
2019; Balle et al., 2020). The details of the Com-
puteSigma algorithm are presented in Appendix C.

4.7 The DP-FROST Algorithm

We present the DP-FROST algorithm which splits
model parameters into partitions, computes the
noise multipliers σSGD and σps by the Compute-
Sigma algorithm, selects the partitions to be un-
frozen by the PSEL algorithm and updates only
the parameters in the selected partitions by the DP-
SGD algorithm. Unless otherwise stated, the DP-
FROST algorithm uses the DP-MGNA method in
Section 4.4 with α = 1 since it is more desirable
than α = 2 to select parameter partitions as dis-
cussed in Section 4.4.

Its pseudocode is provided in Algorithm 1. We
first split the model parameters into a set of par-
titions S = {P1, P2, . . . , PM} (line 1). We next
compute the noise multipliers σSGD and σps for
the DP-SGD algorithm (Abadi et al., 2016) and
the PSEL algorithm in Algorithm 4, respectively,
by calling the ComputeSigma algorithm (line 2).
Then, the parameter set P ∗ to be fine-tuned is ob-
tained by invoking the PSEL algorithm with the
noise multiplier σps (line 3). Furthermore, we set
TSGD and qSGD to the number of parameter up-
dates and the probability to sample each example,
respectively (lines 4-5). We update only the pa-
rameters in P ∗ by repeating the following steps
TSGD times (line 7-10): (1) draw a mini-batch X
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Algorithm 1 DP-FROST
Input: A dataset D, a privacy budget ϵ, a failure
constant δ, a batch size B, the number of epochs
E, a budget ratio rϵ, a clipping threshold c, a norm
order α, a budget tolerance τ , the number of itera-
tions during parameter selection T , the unfreezing
ratio γ, a gap coefficient ν, the sampling rate of
parameter selection qps

1: Create the set of disjoint parameter partitions
S = {P1, P2, . . . , PM}

2: σSGD, σps ← ComputeSigma(
D, ϵ, δ, B,E, rϵ, τ, T, qps)

3: P ∗ ← PSEL(D,S, σps, α, T, γ, ν, qps)
4: TSGD ← ⌊E · |D|/B⌋
5: qSGD ← B/|D|
6: for t← 1 to TSGD do
7: Draw a mini-batch X by sampling

each example with probability qSGD

8: Sample noise z from N (0, σ2
SGDc

2I)
9: Compute G̃cP ∗(X) =

1
B (
∑

x∈X C2
c (gP ∗(x)) + z)

10: Update(P ∗, G̃cP ∗(X))

11: return Θ

(line 7), (2) compute the noisy gradient G̃cP ∗(X) of
the mini-batch X by the DP-SGD algorithm with
the noise multiplier σSGD (lines 8-9), and (3) up-
date the parameters in P ∗ by the Update procedure
which utilizes an optimizer, such as Adam (Kingma
and Ba, 2015) or AdamW (Loshchilov and Hutter,
2019) (line 10).

To compute the noisy gradient of a mini-batch X
by the DP-SGD algorithm (lines 8-9), we clip the
per-example gradient gP ∗(x) of each example x,
insert noise z sampled from N (0, σ2

SGDc
2I) to the

sum of clipped gradients (i.e.,
∑

x∈X C2
c (gP ∗(x)))

and divide the noisy gradient by the batch size B.
As a result, for a mini-batch X , the DP-SGD algo-
rithm computes the noisy gradient G̃cP ∗(X) below.

G̃cP ∗(X) =
1

B

(∑
x∈X

C2
c (gP ∗(x)) + z

)
.

The details of the DP-FROST algorithm are in
Appendix C. We next show that the DP-FROST
algorithm satisfies (ϵ, δ)-differential privacy.

Lemma 7. The DP-FROST algorithm satisfies
(ϵ, δ)-differential privacy (DP).

Proof. Since DP-FROST is a composition of the
sampled Gaussian mechanisms, for a failure con-

stant δ, their sensitivities proven by Lemma 3 and
fixed standard deviations of noise by the mecha-
nisms, we can compute the privacy budget con-
sumption ϵ′ satisfying (ϵ′, δ)-DP based on the RDP
accountant method (Mironov et al., 2019; Balle
et al., 2020). In line 2 of DP-FROST in Algo-
rithm 1, we find the minimum standard deviations
of noise such that the consumed privacy budget ϵ′

with a failure constant δ does not exceed the given
privacy budget ϵ. Since we have ϵ′ ≤ ϵ, DP-FROST
satisfies (ϵ, δ)-DP by Definition 1.

5 Experiments

We run experiments 3 times in NVIDIA RTX 3090
GPU, and report the average results. Additional de-
tails and results of experiments are in Appendix D.
Compared methods: We implement the following
DP methods for fine-tuning a pre-trained model.
• Full: It fine-tunes all model parameters.
• Rand: It updates randomly selected parameters.
• PVAL: It is a SOTA (Luo et al., 2021) for CNN

models described in Section 2.
• LoRA: It is a SOTA method (Li et al., 2022) for

language models described in Section 2.
• Adapter: It is a SOTA method (Yu et al., 2022)

for language models described in Section 2.
• DP-FROST: It is our method in Section 4.

Experimental settings: We consider privacy pa-
rameters ϵ = 0.5, 2, 8 and δ = 1/(2|D|) where
|D| is the size of the training dataset. We com-
pared our methods with the other methods under
the same (ϵ, δ)-differential privacy which provides
the same level of privacy guarantee. We consider
the rank parameter values of 1, 2, 4 and 8 for LoRA
by following (Li et al., 2022) and 16, 48 and 96
for Adapter by following (Yu et al., 2022). For
DP-FROST and PVAL, we consider parameter ra-
tios γ of 0.25, 0.252, 0.253 and 0.254. The privacy
budget ratio rϵ of the DP-FROST algorithm is set
to 0.9. For PSEL algorithm, we set the number
of maximum iterations T to 5, the sampling prob-
ability qps to 0.02 and the gap coefficient ν to 5.
Moreover, we set the number of maximum itera-
tions J in the PGM-EST algorithm to 1,000.

In training deep learning model with differen-
tial privacy, a large batch sizes that can overflow
GPU memory are typically used (Li et al., 2022).
Thus, we use the gradient accumulation (Gao et al.,
2021), which splits a large batch into chunks and
accumulate gradients computed from the chunks,
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Method ϵ = 0.5 ϵ = 2.0 ϵ = 8.0

SST2 QNLI QQP MNLI SST2 QNLI QQP MNLI SST2 QNLI QQP MNLI

Non-private 94.92 92.74 91.81 87.23 94.92 92.74 91.81 87.23 94.92 92.74 91.81 87.23
Full 88.42 82.74 82.78 78.79 87.77 84.71 85.25 81.92 89.49 86.19 86.61 83.35
Rand 88.07 82.55 80.49 74.49 88.53 84.96 83.97 78.96 89.91 86.15 85.68 81.18
PVAL 88.46 83.34 83.40 78.96 89.91 85.42 85.57 82.27 90.83 86.90 86.96 83.84
LoRA 89.76 82.40 82.96 79.09 91.21 84.29 85.21 82.13 91.28 86.63 86.41 83.61

Adapter 89.30 82.04 82.27 78.72 90.56 85.45 84.75 82.15 91.17 87.00 86.28 83.85
DP-FROST 90.71 84.14 83.76 79.86 91.32 86.34 85.79 83.09 91.44 87.75 87.02 84.36

Table 1: The accuracy of text classification

whose size is called the physical batch size (Bu
et al., 2023). The physical batch size only affects
the speed or memory consumption but not the ac-
curacy of training process. We use the maximum
physical batch size such that the memory consump-
tion does not exceed the memory capacity.
Natural language processing (NLP) tasks: Fol-
lowing the settings in (Li et al., 2022; Yu et al.,
2022), we compare with the SOTAs for differ-
entially private fine-tuning using the pre-trained
RoBERTa-Base (Liu et al., 2019) on 4 real datasets
from GLUE benchmark (Wang et al., 2018).
• SST-2: It has 70,042 movie review sentences.

The task predicts the sentiment of a sentence.
• QNLI: It has 115,669 question-sentence pairs.

The task is to determine whether the sentence
contains the answer to the question.

• QQP: It is a collection of 795,241 question pairs.
The task is to determine whether a pair of ques-
tions are semantically equivalent.

• MNLI: It has 431,992 sentence pairs. The task
predicts the textual entailment of a sentence pair.

We conduct experiments similarly with (Li et al.,
2022). We use the AdamW optimizer (Loshchilov
and Hutter, 2019) with varying its learning rate
of 0.003, 0.001, 0.0003 and 0.0001 and set the
batch size in SST-2 to 1024. For each of QNLI,
QQP and MNLI, we set the batch size such that the
ratio of the batch size to the data size is the same
as that of the batch size in SST-2 to the data size.
Furthermore, for each dataset, we use the default
number of epochs provided in (Li et al., 2022). The
numbers of epochs for SST-2, QNLI, QQP and
MNLI are 3, 6, 18 and 18, respectively.
Computer vision (CV) task: Following the set-
tings in (Bu et al., 2022), we fine-tune the pre-
trained ViT-Base (Dosovitskiy et al., 2021) for
image classification on the CIFAR100 dataset
(Krizhevsky et al., 2009) consisting of 100 classes
with 600 images per class. We set the batch size

Table 2: The accuracy of image classification

Method ϵ = 0.5 ϵ = 2.0 ϵ = 8.0

Full 75.15 84.36 86.57
Rand 78.22 84.02 86.42
PVAL 82.52 87.19 88.65
LoRA 80.61 87.02 88.55
Adapter 75.17 84.40 86.67
DP-FROST 83.51 87.31 88.72

to 1,000 and the number of epochs to 3 following
the setting in (Bu et al., 2022). We use the Adam
optimizer (Kingma and Ba, 2015) with varying its
learning rate of 0.0003, 0.001 and 0.003.

5.1 Main Results

We experiment with both NLP and CV tasks to
validate the effectiveness of our proposed method.
NLP tasks: We present the text classification ac-
curacy of the fine-tuned RoBERTa-Base in Table
1. DP-FROST outperforms all other methods in
every dataset. Moreover, with decreasing privacy
budget ϵ, the performance gap between DP-FROST
and the other methods tends to increase. Thus,
DP-FROST is effective to improve the accuracy
especially for a small ϵ which is required for strong
privacy protection by inserting large noise.
CV task: We provide the accuracy of the fine-
tuned ViT-Base on CIFAR100 in Table 2. The ViT-
Base trained by DP-FROST performs the best for
ϵ = 0.5, 2, 8. The results show that the proposed
method also effective in the CV task.

5.2 Ablation Study

We compare the accuracy of fine-tuned models with
different parameter selection methods with ϵ = 0.5
and show the results in Table 3. PARAM selects
the model parameters individually based on the
noisy gradient magnitudes. DP-MG, DP-MGN and
DP-MGNA denote the DP-FROST methods with
the corresponding private PGM computation meth-
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Table 3: Comparison of parameter selection methods

Method SST-2 QNLI QQP MNLI

PARAM 84.40 81.44 78.03 70.59
DP-MG (SINGLE) 87.96 81.84 79.81 74.27
DP-MG 88.11 82.18 80.85 74.49
DP-MGN (SINGLE) 87.54 82.52 82.44 75.26
DP-MGN 88.65 82.36 83.83 79.77
DP-MGNA (SINGLE) 89.56 83.64 83.83 80.35
DP-MGNA 90.71 84.14 83.76 79.86

Table 4: Varying the number of partition selections K

K SST-2 QNLI QQP MNLI

1 90.71 84.14 83.76 79.86
2 90.71 83.73 82.24 75.70
4 89.79 83.85 80.89 72.50

ods, respectively. Moreover, SINGLE indicates
the variant of DP-FROST that selects partitions at
once without using the PSEL algorithm. As we
expected, the partition-wise selection is more effec-
tive than individual selection methods. DP-MGN
significantly outperforms DP-MG on QQP due to
the effectiveness of the proposed normalization.
In addition, we observed additional performance
improvement when we use the absolute value of
each element in the gradient (DP-MGNA). Since
the PSEL algorithm estimates the true PGMs of
partitions more accurately by reducing the effect
of inserted noise in the noisy PGMs of partitions,
using it is better or similar to the methods without
the PSEL algorithm (SINGLE).

5.3 Hyperparameter Analysis

Partition selections during training: While DP-
FROST selects the unfreezed partitions only once
before training, we study how the accuracy changes
if we also change the unfreezed partitions multiple
times during training. Let K and U be the numbers
of partition selections and batch updates while we
fine-tune the pre-trained model, respectively. At
the beginning of every batch update (k−1) ·⌊U/K⌋
with 1≤k≤K, we select the unfreezed partitions
by calling the PSEL algorithm in Section 4.5. Table
4 shows the accuracy of the fined-tuned RoBERTa-
Base for ϵ = 0.5. The fine-tuned model with K=1
(i.e., selecting once before training) outperforms
those with K =2, 4. This is because the inserted
noise becomes large when the privacy budget is
divided for multiple partition selections.
Training times: Table 5 shows the training times
using RoBERTa-Base for ϵ = 0.5. Since DP-

Table 5: The training time (secs) of text classification

Method SST-2 QNLI QQP MNLI

Full 957 6798 39024 52425
PVAL 1215 7692 46818 57970
LoRA 354 3672 18180 26113
Adapter 284 2154 14850 25657
DP-FROST 367 2580 20463 27774

Table 6: Varying the sampling rate qps of PSEL

qps 1.0 0.1 0.05 0.02 0.01

Accuracy 91.13 91.09 90.67 90.71 90.10
Running time 2138 514 435 384 367

FROST, LoRA and Adapter compute gradients of
only some weight matrices, they are faster than Full
and PVAL that compute gradients of all weight ma-
trices. Although DP-FROST computes gradients
over the entire weight matrices during parameter
selection, since it computes the gradients of sample
examples only, its parameter selection of takes at
most 11 % of its total training time. DP-FROST
takes up to 38 % more time than the fastest Adapter,
but DP-FROST is the most accurate as in Table 1.

Varying the sampling rate qps: To see the effect
of using a sample of training data to perform the
parameter selection by the PSEL algorithm, for
SST-2 with ϵ = 0.5, we present the accuracy and
running time (in seconds) of DP-FROST with vary-
ing the sampling probability qps in Table 6. When
qps ≥ 0.02, there is almost no difference in ac-
curacy. However, when qps < 0.02, the accuracy
decreases due to a small sample size.

6 Conclusion

We have studied the differentially private fine-
tuning of pre-trained models with freezing model
parameters. We proposed the DP-FROST method
which selects important model parameters based
on the gradient magnitudes of parameter partitions.
The experimental results showed the effectiveness
of our proposed method.

Limitations: We focus on improving the accura-
cies of fine-tuned models and the proposed method
is not the the fastest among the compared meth-
ods and takes up to a little more time than the
fastest compared method. Moreover, extending
our research to the local differential privacy and
federated learning is a future work.
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A The Proofs of Lemmas

Lemma 1. For a subset P of the parameter set Θ,
we have ∥Cα

c (gP (x))∥α ≥ ∥[Cα
c (gΘ(x))]P ∥α.

Proof. For a subset P of the parameter set Θ, we
have ∑

p∈P

∣∣∣∣∂L(x)∂p

∣∣∣∣α ≤∑
p∈Θ

∣∣∣∣∂L(x)∂p

∣∣∣∣α . (2)

Since the α-norm of a vector v = ⟨v1, v2, . . . , vd⟩,
denoted by ∥v∥α, is ∥v∥α = (

∑d
i=1 |xi|

α)1/α and
we have ∥gP (x)∥α ≤ ∥gΘ(x)∥α by Equation (2),
we can derive

∥Cα
c (gP (x))∥α

= ∥min(1, c/∥gP (x)∥α) · gP (x)∥α
(by Definition 3)

≥ ∥min(1, c/∥gΘ(x)∥α) · gP (x)∥α
= ∥min(1, c/∥gΘ(x)∥α) · [gΘ(x)]P ∥α
= ∥[min(1, c/∥gΘ(x)∥α) · gΘ(x)]P ∥α
= ∥[Cα

c (gΘ(x))]P ∥α. (by Definition 3)

Thus, ∥Cα
c (gP (x))∥α ≥ ∥[Cα

c (gΘ(x))]P ∥α holds.

Lemma 2. Assume that we update only a single
model parameter by using the gradient descent. If
the learning rate of the gradient descent is small
enough that the gradient does not change in every
parameter value between the current and updated
values of the parameter with a gradient descent
step, the reduction of loss is proportional to the
square of the gradient magnitude of the parameter.

Proof. Let p′ be the current value of parameter p
and p′′ be the updated value of the parameter p
after a gradient descent step with a learning rate η

(i.e., p′′ = p′ − η · ∂L(X)
∂p

∣∣∣
p=p′

). Since the gradient

does not change when the value of the parameter
p is between p′ and p′′ in the gradient descent step,
∂L(X)
∂p is constant. By the fundamental theorem of

calculus (Apostol, 1967), we obtain

L(X)|p=p′ − L(X)|p=p′′

=

∫ p′

p′′

∂L(X)

∂p
dp = (p′ − p′′) · ∂L(X)

∂p

∣∣∣∣
p=p′

= η ·
( ∂L(X)

∂p

∣∣∣∣
p=p′

)2
.

(since p′′ = p′ − η · ∂L(X)
∂p

∣∣∣
p=p′

)
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Lemma 3. Given a partition set S = {P1, P2, . . .,
P|S|}, for α = 1, 2, we have

• ∆µc
S = c/(minP∈S |P |)1/α

• ∆µn
S = ∆µa

S = c̄ = c/(
∑

P∈S |P |
|S| )1/α

Proof. We prove (1) ∆µc
S = c/(minP∈S |P |)1/α,

(2) ∆µn
S = c̄ = c/(

∑
P∈S |P |
|S| )1/α and (3) ∆µa

S =

c̄ = c/(
∑

P∈S |P |
|S| )1/α.

(1) The proof of ∆µc
S = c/(minP∈S |P |)1/α:

Consider a pair of neighboring datasets D and
D′ which are identical except that D′ has an ad-
ditional example x′ (i.e., D′ − D = {x′}).
By Definition 2, the sensitivity ∆µc

S is
maxD,D′ ∥µc

S(D) − µc
S(D

′)∥2. We next
show that ∆µc

S = c/(minP∈S |P |)1/α by prov-
ing (a) c/(minP∈S |P |)1/α ≤ ∆µc

S and (b)
∆µc

S ≤ c/(minP∈S |P |)1/α.

(1-a) The proof of c/(minP∈S |P |)1/α ≤ ∆µc
S:

Since ∆µc
S is the maximum value of ∥µc

S(D) −
µc
S(D

′)∥2 for every pair of neighboring datasets
D and D′, we have ∆µc

S = maxD,D′ ∥ µc
S(D) −

µc
S(D

′)∥2 ≥ ∥µc
S(D

′′) − µc
S(D

′′′)∥2 for any pair
of neighboring datasets D′′ and D′′′. Thus, let
D′′ = {} and D′′′ = {x′} where x′ is an example.

∆µc
S = max

D,D′
∥µc

S(D)− µc
S(D

′)∥2

≥ ∥µc
S(D

′′)− µc
S(D

′′′)∥2
= ∥µc

S({})−µc
S({x′})∥2

= ∥µc
S({x′})∥2 (since µc

S({}) = 0)

=
( |S|∑
i=1

(µc
S,Pi

({x′}))2
)1/2

(by Definition 9)

Since for any Pi ∈ S, we have

( |S|∑
i=1

(µc
S,Pi

({x′}))2
)1/2

≥ ((µc
S,Pi

({x′}))2)1/2 = µc
S,Pi

({x′})

and µc
S,Pi

(D) = ∥[
∑

x∈D Cα
c (g(

⋃
P∈S P )(x))]Pi

∥α/|Pi|1/α by Definition 8, we obtain the follow-
ing

∆µc
S ≥ µc

S,Pmin
({x′})

= ∥[Cα
c (g(

⋃
P∈S P )(x))]Pmin∥α/|Pmin|

1
α

where Pmin is a partition P ∈ S such that
|Pmin| = minP∈S |P |. Since the above inequality

holds for any possible example x′ and 0 ≤
∥[Cα

c (g(
⋃

P∈S P )(x))]Pmin∥α ≤ c, we have
c/(minP∈S |P |)1/α ≤ ∆µn

S .

(1-b) The proof of ∆µc
S ≤ c/(minP∈S |P |)1/α:

For vectors a and b, the triangular inequality is

∥a+ b∥α ≤ ∥a∥α + ∥b∥α. (3)

Furthermore, for vectors v and w, by letting a =
v −w and b = w in Equation (3), we obtain ∥(v −
w) +w∥α = ∥v∥α ≤ ∥v−w∥α + ∥w∥α, which is
equivalent to

∥v∥α − ∥w∥α ≤ ∥v − w∥α. (4)

By combining Definitions 2 and 9, we get

∆µc
S

= max
D,D′

( |S|∑
i=1

(∥[∑x∈D Cα
c (g(

⋃
P∈S P )(x))]Pi∥α

|Pi|
1
α

−
∥[
∑

x∈D′ Cα
c (g(

⋃
P∈S P )(x))]Pi∥α

|Pi|
1
α

)2) 1
2

≤ max
D,D′

( |S|∑
i=1

( 1

|Pi|
1
α

∥∥∥[∑
x∈D

Cα
c (g(

⋃
P∈S P )(x))

]
Pi

−
[∑
x∈D′

Cα
c (g(

⋃
P∈S P )(x))

]
Pi

∥∥∥
α

)2) 1
2
.

(by Equation (4))

Since D′ − D = {x′}, the above inequality be-
comes

∆µc
S

≤ max
x′

( |S|∑
i=1

(∥[Cα
c (g(

⋃
P∈S P )(x

′))]Pi∥α
|Pi|

1
α

)2) 1
2

≤
maxx′(

∑|S|
i=1(∥[C

α
c (g(

⋃
P∈S P )(x

′))]Pi∥α)2)
1
2

minP∈S |P | 1
α

.

(5)

For a vector v = ⟨v1, v2, ..., vd⟩, we have the fol-
lowing inequality (Daners, 2008).

( d∑
i=1

v2i

) 1
2
= ∥v∥2 ≤ ∥v∥1 =

d∑
i=1

|vi|. (6)

By combining Equations (5) and (6) as well as
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letting α = 1, we can derive

∆µc
S

≤
maxx′(

∑|S|
i=1(∥[C1

c (g(
⋃

P∈S P )(x
′))]Pi∥1)2)

1
2

minP∈S |P |

≤
maxx′(

∑|S|
i=1 |∥[C1

c (g(
⋃

P∈S P )(x
′))]Pi∥1|)

minP∈S |P |
(by Equation (6))

≤
maxx′(

∑|S|
i=1 ∥[C1

c (g(
⋃

P∈S P )(x
′))]Pi∥1)

minP∈S |P |
(since ∥[C1

c (g(
⋃

P∈S P )(x
′))]Pi∥1 ≥ 0)

=
maxx′ ∥C1

c (g(
⋃

P∈S P )(x
′))∥1

minP∈S |P |
(by the definition of 1-norm)

= c/(min
P∈S
|P |)

(since ∥C1
c (g(

⋃
P∈S P )(x

′))∥1 ≤ c)

On the other hand, letting α = 2 in Equation (5)
derives

∆µc
S

≤
maxx′(

∑|S|
i=1(∥[C1

c (g(
⋃

P∈S P )(x
′))]Pi∥2)2)

1
2

minP∈S |P |
1
2

= max
x′

∥C2
c (g(

⋃
P∈S P )(x

′))∥2
minP∈S |P |

1
2

(by the definition of 2-norm)

= c/(min
P∈S
|P |)1/2.

(since ∥C2
c (g(

⋃
P∈S P )(x

′))∥2 ≤ c)

Since c/(minP∈S |P |)1/α ≤ ∆µc
S and ∆µc

S ≤
c/(minP∈S |P | )1/α, we have

∆µc
S = c/(min

P∈S
|P |)1/α.

(2) The proof of ∆µn
S = c̄ = c/(

∑
P∈S |P |
|S| )1/α:

Consider a pair of neighboring datasets D and
D′ which are identical except that D′ has an
additional example x′ (i.e., D′ −D = {x′}). By
Definition 2, the sensitivity ∆µn

S is maxD,D′ ∥
µn
S(D)− µn

S(D
′)∥2. We next show that ∆µn

S = c̄
by proving (a) ∆µn

S ≤ c̄ and (b) c̄ ≤ ∆µn
S .

(2-a) The proof of ∆µn
S ≤ c̄: By Definitions 2

and 9, we get

∆µn
S = max

D,D′

( |S|∑
i=1

(∥∥∥[∑
x∈D

Cα
c̄ (ḡ

α
S(x))

]
Pi

∥∥∥
α

−
∥∥∥[∑

x∈D′

Cα
c̄ (ḡ

α
S(x))

]
Pi

∥∥∥
α

)2) 1
2

≤ max
D,D′

( |S|∑
i=1

∥∥∥[∑
x∈D

Cα
c̄ (ḡ

α
S(x))

]
Pi

−
[∑
x∈D′

Cα
c̄ (ḡ

α
S(x))

]
Pi

∥∥∥2
α

) 1
2

(by Equation (4))

Since D′ − D = {x′}, the above inequality be-
comes

∆µn
S ≤ max

D,D′

( |S|∑
i=1

∥[Cα
c̄ (ḡ

α
S(x

′))]Pi∥2α
) 1

2
. (7)

By letting α = 1 in Equation (7), we can derive

∆µn
S ≤ max

D,D′

( |S|∑
i=1

∥[C1
c̄ (∇̄1

SL(x′))]Pi∥21
) 1

2

≤ max
D,D′

( |S|∑
i=1

|∥[C1
c̄ (∇̄1

SL(x′))]Pi∥1|
)

(by Equation (6))

≤ max
D,D′

( |S|∑
i=1

∥[C1
c̄ (∇̄1

SL(x′))]Pi∥1
)

(since ∥[C1
c̄ (∇̄1

SL(x′))]Pi∥1 ≥ 0)

= max
x′

∥∥C1
c̄ (∇̄1

SL(x′))
∥∥
1
= c̄.

(by the definition of 1-norm)

On the other hand, letting α = 2 in Equation (7)
derives

∆µn
S ≤ max

D,D′

( |S|∑
i=1

∥[C2
c̄ (ḡ

α
S(x

′))]Pi∥22
) 1

2

= max
x′
∥C2

c̄ (ḡ
α
S(x

′))∥2 = c̄.

(by the definition of 2-norm)

(2-b) The proof of c̄ ≤ ∆µn
S: Since ∆µn

S is the
maximum value of ∥µn

S(D) − µn
S(D

′)∥2 for ev-
ery pair of neighboring datasets D and D′, we
have ∆µn

S = maxD,D′ ∥µn
S(D) − µn

S(D
′)∥2 ≥

∥µn
S(D

′′) − µn
S(D

′′′)∥2 for any pair of neighbor-
ing datasets D′′ and D′′′. Thus, let D′′ = {} and
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D′′′ = {x′} where x′ is an example.

∆µn
S = max

D,D′
∥µn

S(D)− µn
S(D

′)∥2

≥ ∥µn
S(D

′′)−µn
S(D

′′′)∥2
≥ ∥µn

S({})−µn
S({x′})∥2

= ∥µn
S({x′})∥2 (since µn

S({}) = 0)

=
( |S|∑
i=1

(µn
S,Pi

({x′}))2
)1/2

. (by Definition 9)

Since for any Pi ∈ S, we have

( |S|∑
i=1

(µn
S,Pi

({x′}))2
)1/2

≥ ((µn
S,Pi

({x′}))2)1/2 = µn
S,Pi

({x′})

and µn
S,Pi

(D) = ∥[
∑

x∈D Cα
c (ḡ

α
S(x))]Pi∥α by

Definition 8, we obtain the following

∆µn
S ≥ µn

S,P1
({x′}) = ∥[Cα

c̄ (ḡ
α
S(x

′))]Pi∥α.

Since the above inequality holds for any possible
example x′ and 0 ≤ ∥[Cα

c (ḡ
α
S(x

′))]P1∥α ≤ c̄, we
have c̄ ≤ ∆µn

S .

Combining (1) ∆µn
S ≤ c̄ and (2) c̄ ≤ ∆µn

S , we
have

∆µn
S = c̄ = c/(

∑
P∈S |P |
|S|

)1/α.

(3) The proof of ∆µa
S = c̄ = c/(

∑
P∈S |P |
|S| )1/α:

It is similar to the proof of ∆µn
S = c̄ =

c/(
∑

P∈S |P |
|S| )1/α. The only difference between µn

S

and µa
S is whether we clip ḡα

S(x) or abs(ḡα
S(x))

for every example x. Furthermore, even though
we apply any transformation to the gradient of an
example x before clipping it with a clipping thresh-
old c̄, the α-norm of the clipped gradient of the
example x is also bounded by c̄ by Definition 3.
Thus, in the proof of ∆µn

S = c̄ = c/(
∑

P∈S |P |
|S| )1/α,

if we replace ḡα
S(x) and µn

S to abs(ḡα
S(x)) and

µa
S , respectively, we can prove that ∆µa

S = c̄ =

c/(
∑

P∈S |P |
|S| )1/α.

Lemma 4. Given v1, . . . , vM , the log-likelihood
ℓ(ṽ1, . . . , ṽt) of noisy PGMs is maximized by λj =

(
∑

Pi∈Rj−1

ṽj,ivi
∆2

j
)/(
∑

Pi∈Rj−1

v2i
∆2

j
) with 1≤j≤ t.

Proof. Recall that the log-likelihood ℓ(ṽ1, . . . , ṽt)
is

ℓ(ṽ1, . . . , ṽt) =

−
t∑

t′=1

∑
Pi∈Rt′−1

log(σps∆t′
√
2π)

−
t∑

t′=1

1

2(σps∆t′)2

∑
Pi∈Rt′−1

(ṽt′,i − λt′vi)
2.

(8)

In Equation (8), since σps, ∆1, ∆2, . . . ,
∆t−1 and ∆t are constants, −

∑t
t′=1

∑
Pi∈Rt′−1

log(σps∆t′
√
2π) is constant. Thus, maximizing

the log-likelihood ℓ(ṽ1, . . . , ṽt) is equivalent to
maximizing the following objective function:

ℓo(ṽ1, . . . , ṽt)

= −
t∑

t′=1

∑
Pi∈Rt′−1

(
ṽt′,i − λt′vi

)2
∆2

t′

(9)

Furthermore, we have

∂ℓo(ṽ1, . . . , ṽt)

∂λt′
= −2

∑
Pi∈Rt′−1

vi
∆2

t′

(
ṽt′,i − λt′vi

)
.

By setting the derivative ∂ℓo(ṽ1,...,ṽt)
∂λt′

to zero, we
have ∑

Pi∈Rt′−1

vi
∆2

t′
ṽt′,i =

∑
Pi∈Rt′−1

λt′
v2i
∆2

t′
.

By re-arranging the above equation, we get

λt′ =

∑
Pi∈Rt′−1

ṽt′,ivi
∆2

t′∑
Pi∈Rt′−1

v2i
∆2

t′

.

Lemma 5. Given λ1 = qps, λ2, . . . , λt, the log-
likelihood ℓ(ṽ1, . . . , ṽt) of noisy PGMs is maxi-

mized by vi=(
∑

j∈Tt,i
ṽj,iλj

∆2
j
)/(
∑

j∈Tt,i
λ2
j

∆2
j
) where

Tt,i={j |Pi∈Rj−1 ∧ 1≤j≤ t} with 1≤ i≤M .

Proof. In Equation (8), since σps, ∆1, ∆2, . . . ,
∆t−1 and ∆t are constants, −

∑t
t′=1

∑
Pi∈Rt′−1

log(σps∆t′
√
2π) is constant. Thus, maximizing

the log-likelihood ℓ(ṽ1, . . . , ṽt) is equivalent to
maximizing the objective function ℓo(ṽ1, . . . , ṽt)
in Equation (9). Furthermore, we have

∂ℓo(ṽ1, . . . , ṽt)

∂vi
= −2

∑
t′∈Tt,i

λt′

∆2
t′

(
ṽt′,i − λt′vi

)
.
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By setting the derivative ∂ℓo(ṽ1,...,ṽt)
∂vi

to zero, we
have ∑

t′∈Tt,i

λt′

∆2
t′
ṽt′,i =

∑
t′∈Tt,i

λ2
t′

∆2
t′
vi.

By re-arranging the above equation, we get

vi =

∑
t′∈Tt,i

ṽt′,iλt′

∆2
t′∑

t′∈Tt,i
λ2
t′

∆2
t′

.

Lemma 6. Given λ1, . . . , λt, the variance of vi,

denoted by Var(vi), is σ2
ps/(

∑t
j=1

λ2
j

∆2
j
) for every

partition Pi ∈ Rt at the t-th iteration.

Proof. For Pi ∈ Rt−1, by Lemma 5, we have

Var(vi) = Var

(∑t
t′=1

ṽt′,iλt′

∆2
t′∑t

t′=1

λ2
t′

∆2
t′

)
.

For a random variable v, let Var(v) be the variance
of v. Then, we have

Var(av) = a2Var(v)

where a is a constant (Cormen et al., 2022). Since
λt′s and ∆t′s are constant, for Pi ∈ Rt−1, we get

Var(vi) =

∑t
t′=1

λ2
t′

∆4
t′
Var(ṽt′,i)(∑t

t′=1

λ2
t′

∆2
t′

)2 .

Since ṽt,i has the following probability density
function f of the Gaussian distribution

f(ṽt,i) =
1

σps∆t

√
2π

exp
(
−1

2

( ṽt,i − λtvi
σps∆t

)2)
,

the variance of ṽt,i (i.e., Var(ṽt,i)) is σ2
ps∆

2
t′ . Thus,

for Pi ∈ Rt−1, we obtain

Var(vi) =
σ2
ps

(∑t
t′=1

λ2
t′

∆2
t′

)
(∑t

t′=1

λ2
t′

∆2
t′

)2 =
σ2
ps∑t

t′=1

λ2
t′

∆2
t′

.

B Computing the Noise Multiplier

We present the ComputeSigma algorithm that com-
putes the noise multiplier σSGD for the DP-SGD
algorithm and the noise multiplier σSGD for the
PSEL algorithm. It first computes the minimum
noise multiplier σSGD for the DP-SGD algorithm
such that the consumed privacy budget by the DP-
SGD algorithm does not exceed rϵ · ϵ where rϵ is

the privacy budget ratio for the DP-SGD algorithm.
By using the obtained noise multiplier σSGD, we
next find the minimum noise multiplier σps, which
will be used by the PSEL algorithm, such that the
total privacy budget used by the DP-SGD algo-
rithm and the PSEL algorithm does not exceed ϵ.
To compute the minimum noise multipliers σSGD

or σps, we utilize the library opacus2, which pro-
vides the procedures to compute the privacy budget
consumption ϵ by the composition of algorithms
based on the RDP accountant method in (Mironov
et al., 2019; Balle et al., 2020).
Applying RDP accountant method: For an exam-
ple set D and a set of algorithms A1, A2, . . . , AL,
assume that each algorithm Ai performs the follow-
ing noise insertion procedure Ti times.

1. Obtain a set X of examples by sampling each
example in D with probability qi.

2. Insert noise sampled from N (0,∆2σ2
i I) to the

output of a function with the sensitivity ∆
where the function takes the set X of exam-
ples as input.

Since the spent privacy budget by each algorithm
Ai is determined by σi, qi and Ti, let us denote
the account representation of the algorithm Ai by
(σi, qi, Ti). Furthermore, let us denote the composi-
tion of the algorithms Ais by an account represen-
tation set SAR = {(σ1, q1, T1), (σ2, q2, T2), . . . ,
(σL, qL, TL)}. Given a failure constant δ and an
account representation set SAR, we invoke the
RDPAccountant function provided in the opacus
library to compute the total privacy budget con-
sumption ϵ′ based on the RDP accountant method.
Finding the noise multiplier σ given a pri-
vacy budget ϵ: Given the noise multipliers
σ1, σ2, . . . , σL of algorithms A1, A2, . . . , AL, we
want to find the minimum noise multiplier σL+1

of an algorithm AL+1 such that the total privacy
budget ϵ′ consumed by A1, A2, . . . , AL+1 does not
exceed a given privacy budget ϵ. Since the to-
tal privacy budget consumption ϵ′ computed by
the RDPAccountant function decreases as σL+1

increases, we find the minimum noise multi-
plier σL+1 with the binary search by calling the
ComputeNoiseMultiplier procedure.

Its pseudocode is provided in Algorithm 2. We
first compute an upper bound of the minimum σL+1

by repeatedly doubling σhigh from 10 until the con-
sumed privacy budget ϵhigh becomes not larger than

2https://github.com/pytorch/opacus
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Algorithm 2 ComputeNoiseMultiplier
Input: A privacy budget ϵ, a failure con-
stant δ, an account representation set SAR =
{(σ1, q1, T1), (σ2, q2, T2), . . . , (σL, qL, TL)}, a
sampling rate qL+1, the number of steps TL+1 and
a budget tolerance τ

1: ϵhigh ←∞
2: σhigh ← 10
3: while ϵhigh > ϵ do
4: σhigh ← 2 · σhigh
5: ϵhigh ← RDPAccountant(

δ, SAR ∪ {(σhigh, qL+1, TL+1)})
6: σlow ← 0
7: while (ϵ− ϵhigh) > τ do
8: σ′ ← σlow+σhigh

2
9: ϵ′ ← RDPAccountant(

δ, SAR ∪ {(σ′, qL+1, TL+1)})
10: if ϵ′ < ϵ then
11: σhigh ← σ′

12: ϵhigh ← ϵ′

13: else
14: σlow ← σ′

15: return σ′

ϵ (lines 1-5). Then, we perform the binary search
by updating the range of [σlow, σhigh] until the dif-
ference between ϵ and ϵ′ less than τ (lines 8-14).
Specifically, it first computes the budget consump-
tion ϵ′ for σ′ = (σlow + σhigh)/2. We update the
range to [σlow, σ

′] if ϵ′ < ϵ and [σ′, σhigh] other-
wise. This process is repeated until ϵ− ϵhigh ≤ τ
to find the minimum σL+1 with satisfying (ϵ, δ)-
differential privacy.

The ComputeSigma algorithm: We present the
ComputeSigma algorithm that computes the noise
multiplier σSGD for the DP-SGD algorithm and
the noise multiplier σSGD for the PSEL algorithm.
Its pseudocode is presented in Algorithm 3. We
first set qSGD and TSGD to the sampling rate and
the number of iterations used by the DP-SGD al-
gorithm (lines 1-2). Since we do not consider any
other algorithm than the DP-SGD algorithm during
computation of σSGD, we set the account repre-
sentation set SAR to an empty set (line 3). Then,
we set σSGD to the noise multiplier computed by
invoking the ComputeNoiseMultiplier with the pri-
vacy budget rϵ · ϵ, the account representation set
SAR, the sampling rate qSGD and the number of
iterations TSGD (line 4). Since we also consider the
DP-SGD algorithm with the determined noise mul-

Algorithm 3 ComputeSigma
Input: A dataset D, a privacy budget ϵ, a failure
constant δ, a batch size B, the number of epochs E,
a budget ratio for DP-SGD rϵ, a budget tolerance τ ,
the number of iterations during parameter selection
Tps, the sampling rate of parameter selection qps

1: qSGD ← B/|D|
2: TSGD ← ⌊E · |D|/B⌋
3: SAR ← {}
4: σSGD ← ComputeNoiseMultiplier(

rϵϵ, δ, SAR, qSGD, TSGD, τ)
5: SAR ← {(σSGD, qSGD, TSGD)}
6: σps ← ComputeNoiseMultiplier(

ϵ, δ, SAR, 1, Tps, τ)
7: return σSGD, σps

tiplier σSGD while computing the noise multiplier
σps for the PSEL algorithm, we set the account
representation set SAR to the set only containing
the account representation (σSGD, qSGD, TSGD) of
the DP-SGD algorithm (line 5). Then, we set σps
to the noise multiplier computed by invoking the
ComputeNoiseMultiplier with the privacy budget
ϵ, the account representation set SAR, the sampling
rate qps and the number of iterations Tps (line 6).
Finally, the ComputeSigma algorithm returns the
noise multipliers σSGD and σps (line 7).

C The Details of the Proposed Algorithms

The DP-FROST algorithm in Section 4.7 computes
the input noise multipliers σps of the PSEL algo-
rithm and σSGD of the DP-SGD algorithm by in-
voking the ComputeSigma algorithm. Furthermore,
it selects the parameters to be fine-tuned by invok-
ing the PSEL algorithm. When the PSEL algorithm
selects the partitions to be fine-tuned, it utilizes
estimated µa

S,Pi
(D)s of partitions by invoking the

PGM-EST algorithm. We provide the pseudocode
and the details of the ComputeSigma, PSEL and
PGM-EST algorithms.

C.1 The PSEL Algorithm
Its pseudocode is provided in Algorithm 4. Let S
be the partition set {P1, P2, . . . , PM} of the dis-
joint partitions of Θ. We first set the remaining
partition set R0 to the partition set S and set the
selected partition set S1 to {} (line 1). Then, for
each t-th iteration with t = 1, . . . , T , we repeatedly
perform the following steps.

1. Obtain a set of examples Xt by sampling each
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Algorithm 4 PSEL
Input: A dataset D, a partition set S, a noise multi-
plier σps, a norm order α, the number of maximum
iterations T , a unfreezing ratio γ, a gap coefficient
ν, the sampling rate of parameter selection qps

1: R0 ← S, S1 ← {}
2: for t← 1 to T do
3: Xt ← a subset of D by sampling each

example with probability qps
4: ∆t ← ∆µa

Rt−1
by Lemma 3

5: for Pi ∈ Rt−1 do
6: Compute µa

Rt−1,Pi
(Xt) by Definition 8

7: Sample z from N (0, σ2
ps∆

2
t )

8: ṽt,i ← µa
Rt−1,Pi

(Xt) + z

9: v1, . . . , vM ← PGM-EST(
ṽ1, . . . , ṽt,∆1, . . . ,∆t)

10: σvi ←
√

σ2
ps∆

2
t′

1+
∑t

t′=1 λ
2
t′

by Lemma 6

11: Sort partitions Pis in Rt−1 with non-
decreasing order of vi

12: Assume that vi1 ≤ vi2 ≤ · · · ≤ vi|Rt−1|
13: j ← 1
14: np ← |Pij |
15: while np < (1− γ)|Θ| do
16: j ← j + 1
17: np ← np + |Pij |
18: µthres ← vij
19: j ← |Rt−1|
20: while |Pij |+

∑
P∈St

|P | ≤ tγ|Θ|/T do
21: if t = T or vij > µthres + νσvij then
22: St ← St ∪ {Pij}
23: j ← j − 1

24: Rt ← Rt−1 − St

25: return
⋃

P∈ST
P

example in D with probability qps (line 3).

2. For each partition Pi ∈ Rt−1, compute ṽt,i by
Equation (1) (lines 4-8).

3. For i = 1, . . . ,M , set vi to the estimated true
µa
Rt−1,Pi

(D) by the PGM-EST algorithm (line
9).

4. Set σvi to the standard deviation of vi for Pi ∈
Rt−1 by Lemma 6 (line 10).

5. Sort partitions Pis in Rt−1 with non-decreasing
order of vi. Assume that vi1 ≤ vi2 ≤ · · · ≤
vi|Rt−1|

(lines 11-12).

6. Set the PGM threshold µthres to vj where
j = argminj′

∑j′

k=1 |Pk| ≥ (1 − γ)|Θ| (lines
13-18).

7. When t < T , add additional partitions Pis with
the largest vis satisfying vi > µthres + νσvi
in Rt−1 to the selected partition set St as long
as
∑

Pi∈St
|Pi| ≤ t · γ · |Θ|/T . When t = T ,

we select the partitions Pis with the largest vis
such that the total number of parameters in the
selected partitions does not exceed γ · |Θ| (lines
19-23).

8. Set the remaining partition set Rt to the set
obtained by excluding St from Rt−1 (line 24).

After finishing the outer for-loop in lines 2-24, we
return the set of selected parameters in ST (line
25).

C.2 The PGM-EST Algorithm
Its pseudocode is presented in Algorithm 5. If
t = 1 (i.e., the first iteration), we immediately
return the noisy µa

S,Pi
(D)s of all partitions (lines

1-2). If t ≥ 2, we first initialize λ1, . . . , λt to 1
(lines 3-4). Then, we repeatedly perform the fol-
lowing steps J times: (1) calculate v1, . . . , vM to
maximize ℓo(ṽ1, . . . , ṽt) with the current values of
λ1, . . . , λt by Lemma 5 (line 6-7), and (2) update
λ1, . . . , λt to maximize ℓo(ṽ1, . . . , ṽt) with the cur-
rent values of v1, . . . , vM by Lemma 4 (line 8-9).
After finishing the outer for-loop in lines 5-9, we
return v1, . . . , vM .

D Additional Experimental Study

D.1 Ablation Study
We compare the accuracy of fine-tuned models with
different parameter selection methods on the SST-2,
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Method α SST-2 QNLI QQP MNLI

ℓ1-DP-MG (SINGLE) 1 87.96 81.84 79.81 74.27
ℓ1-DP-MG 1 88.11 82.18 80.85 74.49
ℓ1-DP-MGN (SINGLE) 1 87.54 82.52 82.44 75.26
ℓ1-DP-MGN 1 88.65 82.36 83.83 79.77
ℓ1-DP-MGNA (SINGLE) 1 89.56 83.64 83.83 80.35
ℓ1-DP-MGNA 1 90.71 84.14 83.76 79.86
ℓ2-DP-MG (SINGLE) 2 88.26 81.84 80.43 74.35
ℓ2-DP-MG 2 88.34 82.22 81.35 74.71
ℓ2-DP-MGN (SINGLE) 2 90.10 82.06 83.23 77.58
ℓ2-DP-MGN 2 89.60 83.16 83.16 77.57
ℓ2-DP-MGNA (SINGLE) 2 90.41 83.60 83.15 77.40
ℓ2-DP-MGNA 2 90.02 83.70 82.94 77.27

Table 7: Comparison of parameter selection methods

Algorithm 5 PGM-EST
Input: ṽ1, . . . , ṽt, ∆1, . . . ,∆t, the number of max-
imum iterations J , the number of partitions M

1: if t = 1 then
2: return ṽ1,1, . . . , ṽ1,M

3: for t′ ← 2 to t do
4: λt′ ← 1

5: for j ← 1 to J do
6: for i← 1 to M do

7: vi ←
∑

t′∈Tt,i

ṽt′,iλt′
∆2
t′∑

t′∈Tt,i

λ2
t′

∆2
t′

by Lemma 5

8: for t′ ← 2 to t do

9: λt′ ←
∑

Pi∈Rt′−1

ṽt′,ivi
∆2
t′∑

Pi∈Rt′−1

v2
i

∆2
t′

by Lemma 4

10: return v1, . . . , vM

QNLI, QQP and MNLI for ϵ = 0.5. The results are
shown in Tables 7. Note that inserted noise to sat-
isfy the (ϵ, δ)-differential privacy is stronger when
ϵ = 0.5 than when ϵ > 0.5. DP-MG, DP-MGN
and DP-MGNA denote the DP-FROST methods
with the corresponding private PGM computation
methods, respectively. Moreover, SINGLE indi-
cates the variant of DP-FROST that selects parti-
tions at once without using the PSEL algorithm.
DP-MGN outperforms DP-MG in most cases and
it indicates the effectiveness of DP-MGN by reduc-
ing the sensitivity of partition-wise PGMs. More-
over, DP-MGNA with α = 1 tends to show stable
performance such that the difference between the
accuracies of DP-MGNA and the second-best per-
former is at most 0.07 %. Thus, it is desirable
to employ DP-MGNA with α = 1 to achieve the
accuracy close to the best performer.

Table 8: The accuracy of text classification using
RoBERTa-large

Method SST-2 QNLI QQP MNLI

Full 89.98 86.78 84.68 84.57
PVAL 90.44 86.61 84.86 84.66
LoRA 91.97 86.84 84.91 85.19
Adapter 90.18 84.70 84.16 85.09
DP-FROST 92.24 87.74 84.86 85.47

Table 9: The training time (seconds) using RoBERTa-
large

Method SST-2 QNLI QQP MNLI

Full 5036 24618 240914 305815
PVAL 5904 28219 266399 400021
LoRA 1466 9375 65523 97821
Adapter 1221 8871 64273 92226
DP-FROST 1625 9763 66969 99214

D.2 Experiments with RoBERTa-large

While we compared our methods with the state-of-
the-art for differentially private fine-tuning meth-
ods by using the pre-trained RoBERTa-Base (Liu
et al., 2019) in Section 5, we also show the text
classification accuracies with RoBERTa-large on
SST-2, QNLI, QQP and MNLI for ϵ = 0.5 in Table
8. Similar to the results with RoBERTa-Base, our
DP-FROST method outperforms the other meth-
ods on SST-2, QNLI and MNLI. On QQP, the DP-
FROST method achieves second-best performance
and the gap between the accuracies of DP-FROST
and the second-best performer is at most 0.05 %.
Thus, we can conclude that DP-FROST is effective
for large models too.

Table 9 shows the training times using RoBERTa-
large on SST-2, QNLI, QQP and MNLI for ϵ =
0.5. Except that it takes longer time to train
RoBERTa-large than RoBERTa-Base, the results
using RoBERTa-large in Table 9 show similar
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trends to the results using RoBERTa-Base in Table
5. On MNLI dataset that takes the longest train-
ing time among all the tested datasets, applying
our method to RoBERTa-large increases the train-
ing time by only 7.6 % compared to applying the
fastest Adapter method.
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