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Abstract

Large Language Models (LLMs) have shown
impressive abilities in solving various natural
language processing tasks and are now widely
offered as services. LLM services enable
users to accomplish tasks without requiring spe-
cialized knowledge, simply by paying service
providers. However, numerous providers of-
fer various LLM services with variations in
pricing, latency, and performance. These fac-
tors are also affected by different invocation
methods, such as the choice of context and the
use of cache, which lead to unpredictable and
uncontrollable service cost and quality. Conse-
quently, utilizing various LLM services invo-
cation methods to construct an effective (cost-
saving, low-latency and high-performance) in-
vocation strategy that best meets task demands
becomes a pressing challenge. This paper pro-
vides a comprehensive overview of methods
help LLM services to be invoked efficiently.
Technically, we define the problem of construct-
ing an effective LLM services invocation strat-
egy, and based on this, propose a unified LLM
service invocation framework. The framework
classifies existing methods into four categories:
input abstraction, semantic cache, solution de-
sign, and output enhancement, which can be
used separately or jointly during the invocation
life cycle. We discuss the methods in each cat-
egory and compare them to provide valuable
guidance for researchers. Finally, we empha-
size the open challenges in this domain and
shed light on future research.

1 Introduction

Large Language Models (LLM) are becoming a
fundamental tool for various natural language pro-
cessing tasks (Yang et al., 2024b), as they have
shown amazing emergent abilities, like in-context
learning (Dong et al., 2023), multi-step reason-
ing (Fu et al., 2023), instruction following (Lou
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Figure 1: Vision of effective invocation strategy con-
struction for various LLM services.

and Yin, 2024) and tool learning (Huang et al.,
2024). Due to commercial reasons, the potential
risk of misuse and expensive tuning cost, LLMs,
such as GPT-3 (Brown et al., 2020), GPT-4 (Ope-
nAI et al., 2024) and Claude1, are usually released
as LLM services through application programming
interface (API) instead of open sourcing model
weights, which is called Language Models as a
Service (LMaaS) (Zhao et al., 2021). By access-
ing these powerful LLMs as services through their
opened API, novice users do not need to possess
extensive computational resources and expertise in
deep learning, as they can solve the tasks of interest
by crafting task-specific input queries.

However, invoking LLM services is not free and
using them for high-throughput applications can be
very expensive. Estimated by Claudia Slowik2, a
business supporting 15,000 customer interactions
with text-davinci-003 could have a monthly cost
exceeding $14,400. We present the cost of us-
ing 25 different LLM services from some top-tier
providers (as shown in the Appendix) and find that
the costs of different LLM services can vary by up
to two orders of magnitude. For instance, the input

1https://claude.ai/
2https://neoteric.eu/blog

https://claude.ai/
https://neoteric.eu/blog
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cost for 1 million tokens is $10 for OpenAI’s GPT-4
but only $0.2 for Mistral 7B hosted by Textsynth.

In addition to cost considerations, various fac-
tors, including response time and performance for
the same input query, can also impact the user ex-
perience using LLM services. Ahia et al. (2023)
and Lai et al. (2023) find that different languages,
prompt methods or the inclusion of simple enhance-
ments can also lead to notable alterations in perfor-
mance. Meanwhile, Chen et al. (2023) discover that
affordable LLMs often complement expensive ones.
For instance, on the CoQA (Reddy et al., 2019)
dataset, GPT-4 makes errors in approximately 11%
of the questions, while the more affordable GPT-J
provides the correct answers.

From the fact that the heterogeneity in pricing
does not necessarily correlate with the user expe-
rience, it is a great need to explore effective in-
vocation methods for LLM services in practice.
As shown in Figure 1, we expect to make use of
various LLM services to construct an effective in-
vocation strategy, which can be easily adjusted and
reused according to the users’ different invocation
targets. To this end, we provide a comprehensive
study of the development and recent advances on ef-
fective invocation methods of LMaaS. In detail, we
first formalize the task of constructing an effective
invocation strategy as a multi-objective optimiza-
tion problem (Gunantara, 2018) , which entails si-
multaneous consideration of latency, performance,
and cost factors. Then, we propose a taxonomy
to provide a unified view on effective invocation
methods of LMaaS where existing methods are cat-
egorized into: input abstraction, semantic cache,
solution design, and output enhancement. These
four categories can be flexibly combined and uni-
fied into a flexible framework. Finally, we highlight
the challenges and potential directions.

The contributions of this survey can be con-
cluded as follows:

• Comprehensive Taxonomy. We define the
problem of constructing an LLM services
effective invocation strategy mathematically.
Based on this, we propose the taxonomy in
Figure 2, which categorizes existing methods
from four different aspects: input abstraction,
semantic cache, solution design, and output
enhancement.

• Flexible Framework. As shown in Figure 3,
we propose a framework that unifies the four

categories of methods. Our framework con-
nects different categories during the LLM ser-
vice invocation life cycle, allowing each of
them to be used separately or jointly.

• Related Resources. To facilitate the methods
of this task, the price rules of popular LMaaS
products are shown in Table 1. The anony-
mous GitHub repository presents the existing
methods available, with a demo website im-
plementing our framework.3

2 Background

In this section, we first formalize the problem of
constructing an effective invocation strategy of var-
ious LLM services. Then, we explain the problem
definition from the perspective of the LLM service
invocation lifecycle, which divides the invocation
process into three phases. According to the differ-
ent use phases and purposes when construction, we
propose our taxonomy and framework.

2.1 Problem Definition

In our topic, the problem is defined as how to
construct an effective (cost-saving, low-latency
and high-performance) invocation strategy s
given a task T among various LLM services.
The given task T consists of multiple identi-
cal query-answer pairs, represented as T =
{(q1, a1), (q2, a2), ..., (qn, an)}, where qi repre-
sents input query and ai represents output answer.
First, we consider a fixed LLM service M pub-
lished through API. Input a query q, the process of
obtaining the response ã by invocation of the LLM
service M can be represented as:

ã = M(q). (1)

To characterize the concerned factors for the
construction of effective invocation strategy with
a given query q and LLM service M , we use three
metric functions: latency fl(M, q), performance
fp(M, q), and cost fc(M, q). These three functions
are fixed values in a specific practical invocation
and can be estimated using certain methods. For
example, fl could be a function of the length of
the input and output sequences. fp often uses a
metric function r(·, ·) to compare the difference
between a and ã. While fc involves two different
pricing parts, input cost and output cost, we adopt

3https://anonymous.4open.science/r/
Effective-strategy-for-LMaas-BF83

https://anonymous.4open.science/r/Effective-strategy-for-LMaas-BF83
https://anonymous.4open.science/r/Effective-strategy-for-LMaas-BF83
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Input
Abstraction (§3)

Sentence
Simplification (§3.1)

Extractive
Methods

TCRA-LLM (Liu et al., 2023a), Mondrian (Si et al., 2023),
Learned Token Pruning (Kim et al., 2022),

Generative
Methods

Commercia Models (Ahia et al., 2023), R0-FoMo (Liu et al., 2023a),
OverPrompt (Li et al., 2023)

Prompt
Optimization (§3.2)

Prompt
Selection

LeanContext (Arefeen et al., 2024),
Cost-EffectiveL (Zhou et al., 2020), Frugal-Prompting (Santra et al., 2023)

Prompt
Augmentation

Black-Box Tuning (Yu et al., 2023), Cost Effective Testing (Zhou et al., 2020),
Vision Transformer (Haurum et al., 2023), Factual Consistency (Liu et al., 2023c),
Chain-of-Thought (Wu et al., 2023)

Semantic
Cache (§4)

Traditional
Cache (§4.1)

GPTCache (Bang, 2023), Retrieval-based Dialogues (Tao et al., 2021),
Service-Caching (Barrios and Kumar, 2024), Optimal-Caching (Zhu et al., 2023)

Neural
Cache (§4.2)

Cache-Distil (Ramírez et al., 2023), VaryGen (Rasool et al., 2024),
Retrieval-based Dialogues (Tao et al., 2021)

Solution
Design (§5)

Scoring
Function (§5.1)

Defined
Metrics

Cache-Distil (Ramírez et al., 2023), MOT (Yue et al., 2023),
Optimal Caching (Zhu et al., 2023), Reward-guided (Lu et al., 2023)

Scorers
FrugalGPT (Chen et al., 2023), FORC (Šakota et al., 2024),
Model-Routing (Shnitzer et al., 2023), EcoAssistant (Zhang et al., 2023),
HYBRID LLM (Ding et al., 2024), AutoMix (Madaan et al., 2023)

LLM
Router (§5.2)

Sequential
Structure

FrugalGPT (Chen et al., 2023), Cache-Distil (Ramírez et al., 2023),
MOT (Yue et al., 2023), EcoAssistant (Zhang et al., 2023)

Other
Structure

LLM-Blender (Jiang et al., 2023), BRANCH-SOLVE-MERGE (Saha et al., 2023),
FORC (Šakota et al., 2024), Reward-guided (Lu et al., 2023),
AutoMix (Madaan et al., 2023), MCDM (Hosseinzadeh et al., 2020),
Service selection (Manqele et al., 2017)

Output
Enhancement (§6)

Thought
Reasoning(§6.1)

Prompting Survey (Liu et al., 2023b), Navigate Survey (Chu et al., 2024),
Model Alignment (Shen et al., 2023)

Ensemble
Learning (§6.2)

Ensemble Challenges (Mohammed and Kora, 2023), Model Merging (Yang et al., 2024a),
Medical QA (Yang et al., 2023), API Selection (Chen et al., 2022) ni

Figure 2: Taxonomy of effective invocation methods of LMaaS

the definition of the prompt length multiplied by
the token price as shown in the Eq. 2, where αi is
a constant representing the unit price.

fc ≜ α1||q||+ α2||ã||+ α3 (2)

Based on that, we extend a single LLM service to
K different LLM services Ms = {M1,M2, ...Mk}.
Our problem is formalized as in Eq. 3, where in
the search space S, we seek an optimal invocation
strategy s that minimizes latency fl, maximizes per-
formance fp, and minimizes cost fc on task T . The
optimal strategy s includes a sequence of selected
LLM services, represented as s = {Mi}, i ≤ K,
offering flexibility in choosing one or multiple ser-
vices in a specific order.

Minimize F(s) =

 fl(Mi, qj)
−fp(Mi, qj)
fc(Mi, qj)


subject to Mi ∈ s, qj ∈ T

(3)

This is a multi-objective optimization problem,
and we solve it using simply weighted sum or other
methods. In the construction strategy of a specific
invocation, constraints may be introduced. For ex-
ample, in the scenario of limited funds, the cost
fc ≤ C is used as a condition to obtain a strat-
egy with high-performance fp and low-latency fl,
where C is the maximum cost that can be used.

2.2 LLM Services Invocation Taxonomy and
Framework

Following the idea that building an effective invo-
cation strategy requires an understanding of the
key resources involved in the LLM service life cy-
cle (Bai et al., 2024), we organize our framework
by dividing the LLM service invocation into three
phases: before invocation, during invocation, and
after invocation. According to the different phases
and purpose, the taxonomy divides the methods
to effectively invoke LLM services into four ma-
jor categories, which are connected in a sequential
way in our proposed framework to optimize the
common goal in Eq. 3.

Before invocation, processing the input query
q that a user entered to express more meaningful
information in a more concise way is the first step
to construct the effective invocation strategy. The
related methods are summarized as input abstrac-
tion (Section 3), which can be further divided into
sentence simplification and prompt optimization
according to the different ways. Semantic cache
(Section 4) is also an important method to improve
service performance, reduce latency and cost be-
fore invocation, which is divided into traditional
cache and neural cache according to different
structures. The semantic cache checks whether
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Figure 3: LLM services invocation framework, shown by the phase of invocation.

there is a semantically similar query q in cache. If
so, it directly returns the previous answer ã, and
otherwise it goes into the invocation phase.

During invocation, solution design (Section 5)
aims to construct the best invocation solution s by
leveraging the complementary capabilities of vari-
ous LLM services Mi. It evaluates LLM services
Mi with a given query q, and the method of evalua-
tion is called scoring function. It can also be done
before the invocation. For example, the estimation
of fc can be used to guide the design of a cost-
saving solution. During the invocation phase, the
LLM router is used to organize routing structures
between LLM services according to the estimated
results. Through different routing structures, the
advantages of different services are utilized to build
optimal strategies for users.

After invocation, output enhancement (Sec-
tion 6) focuses on the information returned to the
user. The output ã is enhanced to improve clarity
and accuracy, allowing it to better meet different tar-
gets and enhance the overall user experience. Out-
put enhancement can be implemented in two main
ways: thought reasoning and ensemble learning
technology. In addition, the input and output of
this invocation are stored into the semantic cache
for future invocations.

In summary, we categorize effective invocation
methods for LLM services into four groups, as
shown in Figure 2, based on different phases of
use and their construction purposes. We discuss
these categories and compare the methods in later

sections, providing advantages, disadvantages, and
applicable scenarios. We propose the LLM services
invocation framework that can unify these methods
as illustrated in Figure 3, where different categories
of methods can be used separately or jointly.

3 Input Abstraction

Input abstraction is designed for better performance
at lower cost and latency to invoke a given LLM.
The generalization and in-context capabilities allow
LLM services to obtain good answers on untrained
samples (Dong et al., 2023), and input content di-
rectly affects the cost, latency or performance of
the service. For example, concatenating the prompt
“Just tell me the option" with the question as input
to the LLM will generate shorter output, reducing
invocation cost and latency. However, it may cause
the LLM to lose its ability to think step by step,
resulting in performance degradation.

We group the methods into two categories based
on different goals, sentence simplification and
prompt optimization. The input query q typically
consists of a question (representing the user’s task)
and multiple prompts (optional information to aid
in task completion). Sentence simplification reduce
the length of the input query without changing the
semantics, while prompt optimization ensures the
quality of the query and improves the performance
of the invocation by optimizing prompts.
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3.1 Sentence Simplification

Sentence simplification is the process of making
input more concise and simple while retaining its
core meaning by modifying, removing, or replac-
ing words, phrases, or structures in a sentence. The
process is similar to the summarization task, and
many methods used in summarization can be ap-
plied (Huang et al., 2021; Watanangura et al., 2024;
Antony et al., 2023; Mridha et al., 2021). We col-
late the methods available for LMaaS, and classify
them into extractive and generative methods based
on whether derived entirely from the original input.

Extractive methods. Extractive methods select
sentences from long original input by extracting
key sentences or phrases, where the content is en-
tirely sourced from the origin. Pruning semanti-
cally irrelevant tokens according to the relevance
to the contexts is an effecitve approach (Liu et al.,
2023a). Iterative deletion and substitution of to-
kens are another methods (Si et al., 2023; Kim
et al., 2022), removing unimportant tokens based
on the attention mechanism.

Extractive methods are straightforward and ef-
ficient, making it convenient for the real-time use.
However, the extractive methods may ignore some
global information. And it has limitations in some
tasks such as language translation, as it cannot dis-
cern which parts need to be translated or deleted.

Generative methods. The generative methods
refer to rewriting based on the original input, al-
lowing for the generation of new words. Language
encoding is a simple processing method. Ahia et al.
(2023) conduct extensive experiments with differ-
ent languages and tokenizers, where the cost varied
by up to 5 times. AE.studio4 employs encryption
to provide an online platform that sacrifices read-
ability, reducing the length of input tokens by half.
Besides, utilizing fast and low cost generative mod-
els (Li et al., 2023) presents a viable option for
sentence simplification.

Generative methods are flexible, as the gener-
ated sentences contain less redundant information
while preserving the main content. However, it
may introduce grammatical or factual errors.

3.2 Prompt Optimization

Prompt optimization is the adjustment of user-
provided input prompts to guide LLM to produce
more accurate, useful, and tailored output. The ef-
fectiveness of prompt optimization stems from the

4Prompt Reducer: https://www.promptreducer.com/

LLM’s ability to learn from few-shot demonstra-
tions (Liu et al., 2023b), where appropriate prompts
can complement the context of a task, highlight key
information, or improve the explainability.

Based on the different granularity of optimiza-
tion objective, we distinguish two types of prompt
optimization methods. Prompt selection selects or
combines some sentences in prompts to guide invo-
cations more effectively. Prompt augmentation is
concerned with the quality of the content and aims
to maximize the potential of the context.

Prompt selection. Prompt selection selects the
most meaningful prompt from possible prompts
to accurately guide LLM. It removes the interfer-
ence of irrelevant prompts, and helps in efficient
invocation. Zhou et al. (2020) select representa-
tive samples that can be highly beneficial in few-
shot tasks. Santra et al. (2023) combine various
methods involving instructions, examples, and ad-
ditional context to propose a more compact method
for providing prompts in dialogues. Arefeen et al.
(2024) consider the concatenation of prompts and
retrieves the most important k sentences, enabling
the shared use of prompts for similar questions.

Prompt selection directly guide LLM to focus
on specific information and understand user needs
more accurately without too much personalization.
However, this approach cannot maximize the po-
tential of LLM capability for complex prompts be-
cause no additional knowledge is introduced.

Prompt augmentation. Prompt augmentation
considers the understanding ability of LLM to elicit
more accurate and desirable responses. Knowledge
retrieval is a direct method of augmentation, as
it helps achieving a comprehensive understanding
during the invocation. Haurum et al. (2023) respond
the limitations of factual knowledge in LLM and
optimizes the reasoning process with minimal re-
trieval cost. Yu et al. (2023) and Zhou et al. (2020)
propose black-box fine-tuning methods to optimize
continuous prompts using non-derivative methods.
Model alignment (Liu et al., 2023c) and chain of
thought reasoning (Wu et al., 2023), are also key
focuses in prompt optimization.

The improvement in invocation performance
through prompt augmentation is significant, despite
it may resulting in more complex processing proce-
dures. However, the general method is difficult to
explore, requiring professional knowledge.

https://www.promptreducer.com/
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4 Semantic Cache

Semantic cache is an approach to improve LLM in-
vocation efficiency and performance by storing and
quickly retrieving information. Unlike traditional
data cache, semantic cache focuses on storing high-
level semantics information such as meaning, rela-
tionship, rather than just raw data. The semantic
cache is checked before the LLM service is in-
voked. If cache hit, the output given by the cache
is returned, avoiding subsequent costly invocations
while responding faster. With the gradual increase
in the scale of LLM, the semantic cache plays a
more important role in accelerating computation,
reducing data transmission costs, and supporting
high concurrent requests (Miao et al., 2023), pro-
viding users with low-latency, high-performance,
and cost-saving services.

There are two typical structures for implement-
ing semantic cache in LMaaS, and unlike other
subsections, these two structures generally cannot
be used jointly. Traditional caches use key-value
pairs for storage and retrieval, returning the same
value for similar input. Neural caches, on the other
hand, use neural networks to respond in a predictive
manner, learning semantic relationships between
inputs without relying on a fixed storage structure.

4.1 Traditional Cache
The current paradigm of traditional cache consists
of three parts (Bang, 2023): the cache manager,
similarity evaluator and post processor. The cache
manager is responsible for storing content in the
form key-value pairs, and managing eviction. The
similarity evaluator is used to determine if any of
the keys in the cache match the input query. The
post processor organizes the final response to be
returned to the user. If no similar query is found
in the cache, the LLM service is invoked by the
post processor to generate the output and then the
generated output is stored in the cache.

Bang (2023) represents a typical implementation
of traditional cache, which utilizes question embed-
ding for similarity matching and provides various
matching methods. The open-source application
Zep5 supports storage LLM applications, storing
information in the database. Through theoretical
proof, Zhu et al. (2023) introduce the cache scheme
with minimum expected cost considering the query
frequency. Besides, methods for query and conver-
sations cache (Tao et al., 2021; Barrios and Kumar,

5https://github.com/getzep/zep

2024) can be migrated to LLM services.
Implementing traditional cache is usually simple,

requiring only basic data structures such as hash
set. This approach is general, but it may not capture
semantic similarity between inputs because it relies
heavily on the key matching.

4.2 Neural Cache

Neural cache uses neural networks or deep learning
models to learn and store data representations. Neu-
ral cache maps input data into a high-dimensional
space by learning the representation of the data,
which can capture the semantic similarity of the
input. Unlike the compositional paradigm of tradi-
tional cache, neural cache has no specific structure.

Ramírez et al. (2023) train a student model us-
ing T5-base6 for providing early feedback in clas-
sification tasks. To address the semantic cache
missing issue, Rasool et al. (2024) generate similar
input to hit the cache as much as possible. Further-
more, a retrieval-based dialogue response selection
model (Tao et al., 2021) also can serve as an alter-
native choice for neural cache.

The neural cache often outperforms the tradi-
tional cache, especially in domain-specific prob-
lems. However, its implementation and updates
can be relatively complex. As such, it is important
to carefully consider the effectiveness of the cache
to avoid incurring unnecessary resource waste.

5 Solution Design

Solution design considers different scenarios and
targets, dynamically selecting one or more LLM
services that are most suitable for the invocation,
and organizing them to provide flexible and effi-
cient solutions. The solution design helps to select
LLM services that best solve the task, taking ad-
vantage of LLM services’ heterogeneous costs and
performance. When new queries arrive or require-
ments change, the solution can be flexibly updated
to achieve optimal performance and cost savings.

Solution design has two main parts working to-
gether to achieve dynamic LLM service selection
and routing. The scoring function is responsible for
evaluating the performance of each available LLM
service, which reflects the concerned factors for
invocation such as quality and speed. The router,
based on the evaluation results of the scoring func-
tion, performs query routing between services, and

6https://huggingface.co/docs/transformers/
model_doc/t5

https://github.com/getzep/zep
https://huggingface.co/docs/transformers/model_doc/t5
https://huggingface.co/docs/transformers/model_doc/t5
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selects the appropriate one in a dynamic manner.

5.1 Scoring Function
The scoring function is a comprehensive evaluation
of LLM services given a specific task, considering
both targets and scenarios, which is used to guide
the routing path in the solution. The scoring func-
tion may be influenced by multiple factors, such as
response time, query cost, and accuracy of answers.
The scoring function plays a decision-making role,
and helps to understand the relative performance
of each LLM service. The scoring function can be
implemented in two different ways.

Defined metrics. Defined metrics provide a mea-
surable way to achieve direct quantification of fac-
tors that affect invocation. For instance, accuracy
in classification tasks, BLEU score in generation
tasks, packet loss in web, and quality of service
(QoS) are all applicable indicators. Ramírez et al.
(2023) use interval sampling and predictive en-
tropy to determine whether to invoke LLM services.
Considering three sources of consistency, decision-
making for LLM services is performed through
sampling and voting (Yue et al., 2023). Calculat-
ing the cost expectations between two models, Zhu
et al. (2023) extend the decision when invoking
multiple LLM services. Reward ranking from an-
swers provided by different services is used as an
evaluation criterion by Lu et al. (2023), incurring
minimal computational cost in the solution.

The defined metrics are intuitive and easily un-
derstandable, which are often based on statistical
data or experiments, being less susceptible to sub-
jective factors. However, setting thresholds for
evaluating the quality of LLM services can be chal-
lenging and may not adapt well to the dynamic
and changing environment. Additionally, certain
complex factors may be difficult to capture with
defined metrics, leading to limitations in scoring.

Scorers. A scorer is a tool for scoring LLM ser-
vices based on metrics that cannot be defined by a
particular formula. The scorer utilizes prior knowl-
edge, training data, or rules to provide scores in a
less interpretable manner, typically using smaller
neural networks (Chen et al., 2023). For exam-
ple, ALBERT (Lan et al., 2020) is used as a
scorer (Šakota et al., 2024), with the query and
predicted output as x, and the accuracy of invoca-
tion as y. Using DistilBERT (Sanh et al., 2020) as a
scorer, with query and model ID as x, Shnitzer et al.
(2023) predict whether an LLM can solve the prob-
lem. A comparison of LLM performances on differ-

ent benchmark datasets is conducted, with Zhang
et al. (2023) modeling it as a binary selection prob-
lem and providing guiding suggestions. For spe-
cific tasks, such as the predictor of execution results
in the code generation task (Zhang et al., 2023), the
classifier of query difficulty in the task of ques-
tion and answer (Ding et al., 2024; Madaan et al.,
2023), and estimator of LLM service capability
in the dataset benchmark test task (Shnitzer et al.,
2023) are all reasonable scorers.

Compared with metrics defined by formulas, the
scorers can be updated based on real-time data
and feedback, demonstrating strong generalization
across different scenarios. However, it is equivalent
to using a more powerful model and incurring its
training and usage costs. Moreover, it still requires
labeled examples, which is applicable only when
the query dataset is larger than the training dataset.

5.2 LLM Router
The LLM router emphasizes the organizational
structure between LLM services, connecting mul-
tiple independent services in a specific order log-
ically. It focuses on constructing a flexible and
reusable solution to address continuously chang-
ing queries or targets. Depending on the scoring
function and position used, the LLM router can
construct various target-oriented solutions, such as
cost-oriented or performance-oriented solutions.

Sequential Structure. Sequential structure is
the simplest structure, which selects one or several
available services from the extensive pool of LLM
services and invokes them in sequence. The scor-
ing function is used to decide whether to accept
the answer or proceed to the next step (Chen et al.,
2023). The number of models is typically limited to
three in a sequential structure, and possible options
are determined through permutation, with pruning
techniques applied (Ramírez et al., 2023). The use
of small models as a cache, with large models be-
ing invoked in sequence when cache misses occur,
can also be regraded as a fixed sequential struc-
ture (Yue et al., 2023). For problems like code gen-
eration (Zhang et al., 2023), an initial response is
obtained using a cost-saving LLM, which is tracked
as context for subsequent queries.

This structure is simple and effective, and a
limited number of permutations can be searched
quickly in the entire space. However, the sequential
structure may result in the invocation of all LLM
services in the sequential structure. Thus, it is dif-
ficult to extend, because all LLM services need to
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Figure 4: A simple invocation strategy composed of existing methods, using Prompt Reducer in input abstraction,
Zep in semantic cache, FrugalGPT in solution design, and nothing in output enhancement.

be rearranged when adapting to new requirements.
Other Structure. Parallel structure, similar

to the bagging in machine learning, can enhance
the performance of LLM services, with task de-
composition and merging being key aspects (Jiang
et al., 2023). Star structure, as seen in Šakota et al.
(2024); Lu et al. (2023), involves decision-making
by a meta-model, allocating the current query to
the most suitable model. For the third category of
unsolvable queries, pruning is applied by Madaan
et al. (2023) to prevent unnecessary costs for partic-
ularly challenging problems. The tree structure is
considered to be promising, combining advantages
of both star-shaped and sequential structures. It
initially routes query to the most probable branch,
and then invokes services in sequence. Addition-
ally, certain selection solutions specific to HTTP
services (Hosseinzadeh et al., 2020; Manqele et al.,
2017) are also noteworthy to be explored.

Other structure offers more flexible and exten-
sible solutions, while also introducing complexity
into the routing process. Moreover, designing and
implementing these structures can be challenging,
particularly when dealing with dynamic query en-
vironments or evolving system requirements

6 Output Enhancement

Output enhancement refers to the process of fur-
ther optimizing and adjusting the output generated
by the invocation. This process improve the syn-
tactic correctness, semantic accuracy, and overall
fluency of the generated output to meet needs of
the user under the specific scenario. Depending on
the method, output enhancement can be classified
into thought reasoning and ensemble learning.

The thought reasoning focuses on the internal
reasoning process of the LLM to improve the or-
ganization and explanation of outputs. Ensemble
learning technology emphasizes the cooperation
of multiple service invocations. By combining the
strengths of different models, it enhances the sta-

bility and robustness of the LLM, and reduces the
bias and error of the output of a single service.

6.1 Thought Reasoning

Thought reasoning improve reasoning clarity and
logical flow in outputs by changing the path of rea-
soning inside LLM services. Liu et al. (2023b)
guide an LLM to give concise answers using care-
fully designed prompt, reducing unnecessary out-
put tokens. Chu et al. (2024) use X-of-Thought to
refer to the chain of thought in a broad sense, sys-
tematically organize the current research according
to the classification of methods. In addition, work
on model alignment identifies (Shen et al., 2023)
and reduces the bias or unsafe behavior that LLM
may produce in inference, reducing the need for
subsequent human intervention.

The thought reasoning is easy to implement and
obviously enhances the logicality and organization
of the output through simple prompt optimization.
However, thought reasoning relies on carefully de-
signed prompts, and the effect is limited by the
ability of the underlying LLM service.

6.2 Ensemble Learning

Ensemble learning is a powerful technique that
combines multiple LLM services to improve perfor-
mance over individual LLM services. Mohammed
and Kora (2023) and Yang et al. (2024a) discusse
the work and challenges of model merging, com-
bining structure or knowledge from multiple mod-
els into a single model. To solve domain-specific
tasks, Yang et al. (2023) enhance medical question
answering capabilities based on boosting and clus-
tering methods, and (Chen et al., 2022) aggregate
responses from multiple low-cost LLM services
to improve the precision of multi-label prediction
tasks.

By combining the predictions of multiple LLM
services, ensemble learning techniques signifi-
cantly improve the accuracy and stability of the
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output, reduce the risk of overfitting, and flexibly
adapt to multi-domain tasks. However, this ap-
proach requires more computational resources and
time, leading to high costs, while the complexity of
the model also makes the system difficult to debug
and interpret.

7 Conclusion and Challenges

In conclusion, this paper provide a comprehensive
overview of effective invocation methods in the
realm of LMaaS. Through the establishment of a
taxonomy, we categorize existing methods into four
categories: input abstraction, semantic cache, solu-
tion design, and output enhancement. We formal-
ize the problem of effective LLM services strategy
construction, and propose an LLM services invo-
cation framework. Methods of different categories
in the framework can be used separately or jointly
to form the effective strategy invocation that are
low-latency, high-performance, and cost-saving.

Most existing methods focus only on one cate-
gory in the framework, and the methods in different
categories can be used as plugins. A practical ex-
ample of a simple invocation strategy built from
three existing methods to save money is shown in
Figure 4. In addition, other factors may also be
important when calling LLM services, including
but not limited to interpretability, security, automa-
tion rate, etc. Our framework is open and flexible,
allowing for easy expansion to these aspects. We
look forward to future research further advancing
the field, and here are some open challenges.

Input Abstraction. One of the main chal-
lenges faced in the input abstraction category is
the processing of multi-modal input (Yin et al.,
2023). More comprehensive and balanced meth-
ods (Zhang et al., 2024) are needed to optimize
multiple types of input such as text, image, and
speech. Input abstraction methods for dynamically
changing queries are also worth exploring, such as
real-time data streaming (Räth et al., 2023) or user
interaction with the system.

Semantic Cache. In the semantic cache cat-
egory, how to design and select cache meth-
ods (Brais et al., 2021) more efficiently to accom-
modate different inputs and queries is the main
challenge faced in traditional cache, while seman-
tic representation (Brito, 2023) can be achieved
by neural cache. The study of more efficient al-
gorithms for cache storage and update (Jin et al.,
2024) is also a technique worth discussing.

Solution Design. In terms of solution design,
a quantitative evaluation of LLM services (Chang
et al., 2024) is an extension of the scoring function,
which adaptation and interpretability need to be
paid more attention to in the future. The LLM
router needs to focus on designing more powerful
service integration methods that not only focus on
a task, but also take into account requirements of
different resources (Xu et al., 2024).

Output Enhancement. The importance of out-
put enhancement is gradually seen by people. The
balance between specification and diversity (Chung
et al., 2023) of output is a key issue. When a task
is completed, the user’s satisfaction is an impor-
tant indicator to measure the quality of service, and
future research may focus on building more intelli-
gent and user-oriented (Chisari et al., 2022) output
enhancement methods.

Other Challenges. Basic work such as quali-
tative description and quantitative comparison in
experiments still has a gap to be filled, and the lack
of baselines results in no uniform standard for the
comparison of the LLM services invocation meth-
ods. Futher studies, such as how to choose the tok-
enizer (Alyafeai et al., 2023) with the shortest input,
how to set the best suitable size of cache (Vavoulio-
tis et al., 2022), and the choice of different pricing
methods for the LLM service, need to be explored.
In additionally, We specifically call for attention to
fairness (Sah et al., 2024) and privacy issues (Luo
et al., 2024; Utpala et al., 2023) of LMaaS.

Limitations

First, in defining the construction of an effective in-
vocation strategy for LLM services, we select three
key factors and model the topic as a multi-objective
optimization problem. It is not comprehensive be-
cause there are many other factors in the actual
invocation of LLM services, which also affect each
other. Second, we summarize the effective LLM
service invocation methods, aiming to provide a
general framework to help users build the cost-
saving, low-latency and high-performance invoca-
tion strategy. However, some of these methods are
limited because we do not consider whether they
can be directly applied to black-box LLM services
that are only published through APIs. Furthermore,
due to the variety of experimental datasets and eval-
uation metrics, we are unable to conclude a unified
baseline for this topic, which would be a strong
support for future research.
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Appendix

Provider LLM Input Cost Output Cost

OpenAI
gpt-4 $30.0 $60.0
gpt-4-turbo $10.0 $30.0
gpt-3.5-turbo-1106 $1.00 $2.00

Anthropic
Claude-2.0 $11.02 $32.68
Claude-instant-1.2 $1.63 $5.51

AI21
Jurassic-2 Ultra $15.0 $15.0
Jurassic-2 Mid $10.0 $10.0
Jurassic-2 Light $3.00 $3.00

Textsynth

M2M100 1.2B $0.15 $3.00
GPT-J 6B $0.20 $5.00
Falcon 7B $0.20 $5.00
Mistral 7B $0.20 $2.00
Llama2 7B $0.20 $2.00
Flan-T5-XXL $0.20 $5.00
Falcon 40B $3.30 $10.00

Cohere
command $1.00 $2.00
command-light $0.30 $0.60

Baidu

Llama-2-13B-Chat ¥6.00 ¥6.00
Llama-2-70B-Chat ¥35.0 ¥35.0
ERNIE-Bot 4.0 ¥150 ¥300
ChatGLM2-6B-32K ¥4.00 ¥4.00
Llama-2-7B-Chat ¥4.00 ¥4.00
ERNIE-Bot ¥12.0 ¥12.0
BLOOMZ-7B ¥4.00 ¥4.00
ERNIE-Bot-turbo-0922 ¥8.00 ¥12.0

Table 1: Price list of different LLM services. The cost is
priced per 1 million tokens. Typically, the cost of invok-
ing LLM services consists of two components: (1) input
cost (proportional to the length of the input prompt), (2)
output cost (proportional to the length of the generated
sequence). Note that Baidu’s LLM services are priced
in Chinese Yuan (¥), while the other LLM services are
priced in US Dollars ($). The data updated to May 2024.
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