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Abstract

Integrating Large Language Models (LLMs)
with existing Knowledge Graph (KG)
databases presents a promising avenue for
enhancing LLMs’ efficacy and mitigating their
“hallucinations”. Given that most KGs reside
in graph databases accessible solely through
specialized query languages (e.g., Cypher), it is
critical to connect LLMs with KG databases by
automating the translation of natural language
into Cypher queries (termed as “Text2Cypher”
task). Prior efforts tried to bolster LLMs’
proficiency in Cypher generation through
Supervised Fine-Tuning (SFT). However,
these explorations are hindered by the lack
of annotated datasets of Query-Cypher pairs,
resulting from the labor-intensive and domain-
specific nature of such annotation. In this
study, we propose SyntheT2C, a methodology
for constructing a synthetic Query-Cypher pair
dataset, comprising two distinct pipelines: (1)
LLM-based prompting and (2) template-filling.
SyntheT2C is applied to two medical KG
databases, culminating in the creation of a
synthetic dataset, MedT2C. Comprehensive
experiments demonstrate that the MedT2C
dataset effectively enhances the performance
of backbone LLMs on Text2Cypher task via
SFT. Both the SyntheT2C codebase and the
MedT2C dataset will be released.

1 Introduction

Knowledge Graphs (KGs) constitute vital
reservoirs of information within the Retrieval-
Augmented Generation (RAG) paradigm (Lewis
et al., 2020) of Large Language Models (LLMs).
Distinguished from other information sources,
KGs boast structured and meticulously curated
data, rendering them conducive to seamless
updates and rectifications. Such attributes position
KGs as pivotal instruments for mitigating issues
of knowledge cutoff and “hallucinations” within
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Figure 1: SyntheT2C builds synthetic data with two
pipelines to SFT LLMs so that their performance on
Text2Cypher task is enhanced.

LLMs. The inherent fidelity and adaptability of
KGs make them practical assets for numerous
knowledge-intensive products and applications
(Kertkeidkachorn et al., 2023; Cui et al., 2024;
Xu et al., 2020). With the advent of LLMs, many
researchers have focused on synergizing KGs with
LLMs following the RAG framework, catapulting
KGs to the forefront of academic research.

The efficient utilization of KG remains a
formidable challenge because of the difference in
format. Early methodologies involve direct ex-
traction of triplets from KGs, subsequently inte-
grating these text-form triplets directly into the
prompts of LLMs (Fatemi et al., 2023). How-
ever, this approach often fails to concurrently pre-
serve both semantic and structural nuances inherent
within the KG. An alternative approach involves
querying existing graph databases just like human
users, promising accurate and interpretable results.
Nonetheless, the primary impediment lies in the
LLM’s ability to formulate correct and precise
queries. To address this limitation, numerous query
generation tools or methodologies (Zhang et al.,
2022; Abdelaziz et al., 2021; Shen et al., 2023)
are proposed, aiming to translate human users’ re-
quests (in natural language) into query languages.
This task assumes paramount importance for two
pivotal reasons: (1) it empowers LLMs to consis-
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tently produce reliable queries, thereby enabling
them to address knowledge deficits via direct inter-
action with KG databases; (2) it significantly facili-
tates human users’ interaction with KG databases
because learning the specific query language is no
longer necessary. Among the spectrum of query
generation research, the sub-task of translating nat-
ural language into the Cypher (Francis et al., 2018)
query language for Neo4j (Neo4j, 2012) databases
stands out as a prominent research focus for two
factors: (1) Neo4j is a widely adopted solution
for KG databases, positioning Cypher as an es-
sential tool for accessing these extensive reposito-
ries; (2) Cypher is a query language specifically
designed for querying graph structures, offering
significantly faster performance than other query
languages, such as SQL, when processing graph
data. Consequently, our work centers on this sub-
task, commonly termed as “Text2Cypher” (T2C).

A similar task to the Text2Cypher task is the
“Text2SQL” task, wherein researchers endeavor
to translate natural language sentences into SQL
queries. Leveraging manually annotated datasets
like SPIDER (Yu et al., 2019), numerous method-
ologies have emerged, including SpCQL (Guo
et al., 2022) and SQLNet (Xu et al., 2017). Con-
versely, scant attention has been directed towards
the Text2Cypher task. Existing approaches typi-
cally resort to decomposing a complete query into
smaller components and translating each part sep-
arately. For instance, R3-NL2GQL (Zhou et al.,
2023b) partitions the query generation process into
CRUD keywords prediction, clause selection, and
object type identification. Despite the success of
these methods, adapting them to a specific KG
database demands substantial extra effort. With the
rise of LLMs, using LLMs for Cypher query gener-
ation appears promising. Notably, to the best of our
knowledge, no endeavors have explored the poten-
tial application of LLMs to the Text2Cypher task.
Our work aims to bridge this gap in the literature.

The Cypher writing performance of vanilla
LLMs is not satisfactory. To improve it, we em-
ploy SFT, which necessitates a dataset of Question-
Cypher pairs. However, creating such a dataset
is challenging as it requires both domain-specific
knowledge of the KG’s content and expertise
in Cypher’s syntax. Consequently, there is cur-
rently no annotated dataset for the Text2Cypher
task. To overcome this obstacle, we introduce
SyntheT2C, a method designed to produce high-
quality synthetic Question-Cypher pairs through

two distinct pipelines: LLM-based prompting and
template-filling (as shown in Figure 1). The LLM-
based prompting pipeline aims to generate Cypher
queries with greater semantic flexibility, while the
template-filling pipeline focuses on producing syn-
tactically complex Cypher queries. The generated
Question-Cypher pairs undergo rigorous automated
and manual validation, before being used to fine-
tune backbone LLMs. The performance of Cypher
generation is evaluated with a manually annotated
evaluation dataset, complemented by a qualitative
assessment using GPT as a judge. Additionally, we
conduct a scalability test by fine-tuning the LLMs
with larger synthetic datasets, which demonstrates
that the synthetic data generated using our method
does not collapse into simple patterns, thereby es-
tablishing the robustness of our approach for larger-
scale applications.

SyntheT2C is tested with two medical KG
databases: the LHY database and the Hetionet
database (details in Section 4.1). The generated
synthetic dataset, “MedT2C”, will be made public.

In conclusion, our main contributions are:
(1) We propose the SyntheT2C framework con-

taining two pipelines to build synthetic datasets
with any Neo4j database. Our method can gener-
ate Cypher that are both grammatically correct and
syntactically diverse, facilitating the construction
of SFT datasets.

(2) We test and validate the effectiveness and
scalability of the synthetic dataset generated with
SyntheT2C. The LLMs after fine-tuning show im-
proved Cypher writing abilities.

(3) We opensource a synthetic dataset MedT2C
of optimal size, ready to be used for SFT.

2 Related works

2.1 Knowledge Graph and graph database

KGs have emerged as fundamental resources for or-
ganizing, representing, and querying vast amounts
of interconnected information or domain-specific
knowledge. These graphs find applications across
various domains, including but not limited to,
healthcare (Cui et al., 2024; Abu-Salih et al., 2022),
finance (Elhammadi et al., 2020; Kertkeidkachorn
et al., 2023), and e-commerce (Xu et al., 2020). In
the realm of Natural Language Processing, KGs
serve as invaluable sources of context and factual
knowledge, enabling systems to reason, infer, and
generate responses with enhanced accuracy and co-
herence. To handle the processing of graph data,
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a series of graph databases were invented, includ-
ing Neo4j (Neo4j, 2012), NebulaGraph (Wu et al.,
2022), and Amazon Neptune (Bebee et al., 2018).
Among them, our work focuses on the Neo4j
database (Neo4j, 2012), a widely adopted graph
database management system. Neo4j database em-
ploys Cypher query language for expressing com-
plex graph patterns during the retrieval.

2.2 Large Language Models

LLMs are advanced AI models that have been
trained on vast amounts of text data to understand
and generate human-like language. Following the
milestone release of InstructGPT (Ouyang et al.,
2022) by OpenAI, a series of LLMs are built, fea-
turing different advantages and drawbacks, e.g.,
the series of GPT models (Brown et al., 2020; Ope-
nAI, 2023) by OpenAI, Llama (Meta, 2024) by
Meta, Qwen (Bai et al., 2023) by Alibaba Cloud,
InternLM (Cai et al., 2024b) by Shanghai AI Lab,
etc. Recent researches highlight LLMs’ ability to
utilize external existing tools like calculator, search
engine, or databases (Patil et al., 2023; Nakano
et al., 2022; Cai et al., 2024a; Qin et al., 2023),
which is usually abstracted as “Function calling”.
Many of its implementations involve generating
codes or queries to interact with external tools.

2.3 Code generation

Code Generation is the process of automatically
producing executable code from a higher-level rep-
resentation or natural language. With the advent of
LLMs, code generation has experienced a signifi-
cant advancement. LLMs can now be trained on
vast amounts of code and programming-related text
materials, enabling them to understand and gener-
ate code snippets based on given requirements (e.g.,
Codex (Chen et al., 2021), Polycoder (Xu et al.,
2022), and Code Llama (Rozière et al., 2024)).
By leveraging the contextual understanding (Dong
et al., 2023) and language capabilities of LLMs,
code generation becomes more efficient, accurate,
and adaptable. Code generation with LLM is not
only useful in helping developers to write codes but
also in providing a powerful “language” for LLM
to interact with other tools: LLMs can be tuned to
output executable codes or queries to manipulate
external resources. This is the fundamental idea for
research in “Function Calling” and Multi-Agent
Systems. Current code generation methods rely on
two methods for evaluation: either with automatic
metrics calculated with an annotated evaluation

dataset (Papineni et al., 2002; Lin, 2004; Banerjee
and Lavie, 2005; Evtikhiev et al., 2023; Zhou et al.,
2023a) or with comparison by a judge (human or
powerful LLM like GPT-4) (Zheng et al., 2023).
Both evaluation methods are used in our work.

3 Methodology

3.1 Preliminaries

The goal of the Text2Cypher task is to automati-
cally translate a query q written in natural language
to corresponding Cypher query c. With the pro-
posed pipelines P1 and P2, a synthetic dataset S is
built to fine-tune the backbone LLM L. The syn-
thetic data is generated and validated with a Neo4j
database B and a series of automatic validators
V = [V1,V2, ...,V5]. The synthetic dataset after all
the validations is denoted as Sv. Using Sv, L is
fine-tuned into Lft . The Cypher queries generated
by L (resp. Lft) are noted as c1 (resp. c2).

3.2 Synthetic dataset generation

Generating the synthetic dataset is not trivial be-
cause synthetic data usually has difficulty in bal-
ancing grammatical correctness, semantic correct-
ness, node coverage, edge coverage, and Cypher
complexity. As a result, we propose a method of
generation with two pipelines, as illustrated in Fig-
ure 2). The LLM-based prompting pipeline (P1),
emphasizes semantic variety, while the template-
filling pipeline (P2), focuses on syntactic complex-
ity. By employing these complementary pipelines,
we aim to produce a synthetic dataset that captures
the nuanced balance of linguistic, semantic, and
structural properties.

3.2.1 LLM-based prompting pipeline
This pipeline adopts an idea similar to Knowledge
Distillation: we use the Cyphers generated by a
stronger LLM to SFT weaker LLMs. Half of S
is built by few-shot prompting GPT-4o (OpenAI,
2023). To simplify the process and ensure a higher
quality of the generated data, we split the whole
generation task into (1) extracting information from
the database; (2) determining the question cate-
gories; and (3) generating the Cyphers for each
category with extracted information.

The workflow for the LLM-based prompting
method is delineated in Figure 2 (upper part, P1).
Initially, we commence by extracting metadata
from the KG stored in the Neo4j database B. This
extraction includes sampling example nodes and
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Figure 2: Workflow of two pipelines inside SyntheT2C.

edges to construct few-shot prompts, along with
capturing the schema of the database to facilitate
the generation of grounded Cyphers. An illustra-
tive instance of extracted metadata is provided in
Appendix A. Subsequently, this metadata serves as
a foundational component in all ensuing prompts,
ensuring the generation of executable Cyphers. Be-
fore initiating the Cypher generation process, a
preliminary step involves prompting the LLM to
propose potential question categories, thereby mit-
igating the risk of redundant outputs. The back-
bone LLM undergoes multiple iterations to propose
these question categories, as detailed in the prompt
showcased in Appendix B.1. These proposed cate-
gories are then consolidated to eliminate duplicates,
as instructed in the prompt outlined in Appendix
B.3. After the deduplication, GPT-4o is prompted
to generate synthetic Question-Cypher pairs with
the prompt outlined in Appendix B.2. In our exper-
iment, we fix a list of 12 categories (referred to as
categories ) to facilitate the comparison.

3.2.2 Template-filling pipeline

The second pipeline of Cypher generation adopts
the template-filling method, a classic approach in
code generation known for its flexible output and
potentially complex syntax. We introduce this
pipeline as a complement to the first one, leverag-
ing manually crafted templates to generate Cyphers
with more advanced syntax, thereby enabling back-
bone L to solve complicated questions.

In this pipeline, depicted in Figure 2 (lower part,
P2), numerous templates are initially manually au-
thored. Subsequently, actual values from different
fields are sampled from the Neo4j database B to
populate these templates, resulting in the genera-
tion of complete executable Cypher queries.

One such template is illustrated in Figure 4. In
this example, the subschema is introduced to

manage cases where the entire database cannot
be loaded at once, necessitating the selection and
injection of only the relevant subgraph into the
prompt. The variables label_i and prop_j rep-
resent the randomly sampled names of nodes and
their attributes. These templates are initially crafted
taking inspiration from Cypher Generator (Onofrei,
2024), then enriched and verified by the authors.
More details about the construction process of the
templates are presented in Appendix C.

Once these templates are established, synthetic
Cyphers with complex syntax can be effortlessly
generated. However, it is important to note that
crafting and validating these templates require con-
siderable time and effort.

3.3 Quality validation

To ensure the quality of the generated synthetic
Question-Cypher pairs before their application in
SFT, it’s imperative to conduct thorough valida-
tion. However, manually scrutinizing thousands of
Cypher queries is arduous and time-consuming. In
response, a suite of automatic validators are pro-
posed to alleviate the burden of manual inspection.
In the end, the Cyphers that pass through these au-
tomated validators undergo a final round of meticu-
lous manual validation by researchers.

3.3.1 Automatic validation
We propose five automatic validators: the Gram-
matical Validator, Semantic Validator, Entity Val-
idator, Schema Validator, and Coherence Validator,
each playing a crucial role in ensuring the integrity
of the generated synthetic data. These validators’
fundamental concepts are illustrated in Figure 3.
The LLM used in the validators is GPT-3.5-Turbo.

The Grammatical Validator validates the syn-
tax correctness of each Cypher in S by executing
them in the deployed graph database B. If a Cypher
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Figure 3: Illustration of the automatic validators.

def prompter(label_1, prop_1, prop_2):
subschema = get_subgraph_schema(jschema,

[label_1], 2, True)
message = {

"prompt": "Convert the following question
into a Cypher query using the provided
graph schema!",

"question": f"""Find all {prop_1} for
{label_1} that have {prop_2} after
January 1, 2020!""",

"schema": f"Graph schema: {subschema}",
"cypher": f"MATCH (n:{label_1}) WHERE

date(n.{prop_2}) > date('2020-01-01')
RETURN n.{prop_1}" }

return message

Figure 4: Example template in Template-filling pipeline.

is executed without encountering any “Error/Excep-
tions”, it is deemed to have passed this validation.

The design of Semantic Validator is inspired by
the research in machine translation (Hoang et al.,
2018). This validator utilizes an LLM to trans-
late the generated Cypher back into a natural lan-
guage question. It then computes the semantic
similarity between the translated question and the
original question. If the similarity score exceeds
a predefined threshold, the Cypher passes valida-
tion. We also tested an alternative implementation,
where the LLM assesses semantic similarity di-
rectly. Both versions produce coherent validation
results, with the latter being adopted for efficiency
in subsequent experiments. The prompt used in
this validator is presented in Appendix D.1.

The Entity Validator assesses the coverage of
entities in the generated Cyphers. The entities in
the original question q are extracted via Named
Entity Recognition (NER) using the spaCy (Honni-
bal and Montani, 2017) model en_core_web_sm .
Entities in the generated Cypher c are parsed and
extracted using Regular Expressions. A successful

validation requires 100% coverage of q’s entities in
c. English entities are first transformed into lemmas
using spaCy for fuzzy matching.

Subsequently, the Schema Validator ensures the
correctness of relations in the generated Cyphers.
Relations in c are extracted via Regular Expres-
sions and validated against the schema of B. A
Cypher passes this validation only when all con-
tained relations are valid edges.

Lastly, the Coherence Validator executes the
Cypher against B and evaluates the coherence be-
tween the execution results and the original ques-
tion with LLM (with prompt in Appendix D.2).

In the end, only Cyphers that have passed all
validations proceed to manual validation.

3.3.2 Manual validation
Each Cypher checked by the validators is randomly
assigned to two researchers, who independently
assess its quality. If both researchers provide a
unanimous judgment, their consensus is adopted.
In cases of divergent opinions, a third researcher is
brought in for further review. The final validation
outcome for such Cyphers is determined through
a majority vote among the three researchers. Over
98% of the pairs passed the manual validation.
Manual expertise involved is marginal as only less
than 2% of the pairs failed the manual validation.

4 Experiments

4.1 LHY and Hetionet Graph databases

In our experiment, we employed two Neo4j
databases of general medical knowledge: the
LHY Medical Knowledge Database (referred to
as “LHY”) and the Hetionet Medical Knowl-
edge Database (referred to as “Hetionet”). Both
databases are publicly accessible, differing pri-
marily in language: LHY is written in Chinese,
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whereas Hetionet is written in English. Their de-
tailed statistics are presented in Appendix E.

The LHY Database (Liu, 2018) serves as
the backend database for a Medical Question-
Answering system. This database comprises com-
prehensive medical knowledge, encompassing a
wide array of diseases, symptoms, drugs, and re-
lated information. Its content is sourced from med-
ical websites, meticulously cleaned, reorganized,
and stored within a Neo4j database. There are
about 44k entities and 300k relations in it.

Hetionet (Himmelstein et al., 2017) is an open
and free-to-use database of biomedical knowledge
resource implementing “hetnet” model. Aggre-
gating insights from 29 public databases, Het-
ionet boasts a knowledge network spanning various
fields, encompassing a wide array of entities, in-
cluding genes, compounds, anatomical structures,
diseases, symptoms, side effects, etc. There are ap-
proximately 47k entities and 2.2 million relations
in the Hetionet database.

4.2 Evaluation dataset and metrics

We utilize a dataset comprising 300 manually an-
notated and verified samples to evaluate our experi-
ments. This dataset includes 150 questions anno-
tated based on the Hetionet and LHY databases,
respectively. Take Hetionet as an example, for ev-
ery category among the 12 categories generated in
Section 3.2.1, we employ GPT-3.5-Turbo to gen-
erate 10 new questions, forming 120 “in-domain”
questions. Additionally, we introduce 3 unseen
categories and generate 10 new questions for each
new category, totaling 30 “out-of-domain” ques-
tions. For each of the 300 questions, the authors
write a ground-truth Cypher query and test them
manually to get the ground-truth execution results.

This annotated dataset allows us to evaluate two
aspects of LLMs’ Cypher generating performance:

(1) Cypher quality, which is crucial if the gen-
erated Cypher is integrated into larger systems;

(2) Execution result accuracy, to gauge the
quality of the output for end users.

4.2.1 Evaluation of Cypher quality
The backbone LLMs, both pre-SFT and post-SFT,
are tasked with generating Cyphers for the 300
questions in the evaluation dataset. Using GPT-4o
(OpenAI, 2023), we determine the superior Cypher
from the two provided versions. For each pair of
Cyphers, we conduct two evaluations by varying
the order of presenting the Cypher queries in the

prompt to mitigate order-induced bias. If evalu-
ations of both orders yield identical results, this
judgment is accepted as the final outcome; other-
wise, it is deemed a “Draw”.

4.2.2 Evaluation of execution result accuracy
The generated Cyphers c2 are executed on database
B to get execution results resgen. Then the ac-
curacy (acc) is calculated with the ground-truth
execution results resgt like this:

acc =
#(resgen ∩ resgt)

#(resgen)
, (1)

where #(.) calculates the cardinality of a set.

4.3 Experiment setup
4.3.1 Cypher LLMs (baselines)
Extensive experiments are conducted with four
LLMs, including open/closed-source models. For
open-source models, we evaluate Llama3, Qwen2
and InternLM2. For closed-sources model, we test
GPT. The exact versions of the backbone LLMs
are listed in Appendix F. Our experiments focus on
the performance boost brought by the SFT, there-
fore, the pre-SFT vanilla LLMs are used as the
natural baselines. Empirically, the vanilla LLMs
of the parameter size around 7B perform poorly on
Cypher writing task. Only about 15%-20% of the
few-shot generated Cyphers are executable, and the
rate of semantically correct Cyphers is even lower.
Thus, the few-shot prompting has become a default
choice for 7B-level LLMs on Cypher writing task,
and all the prompts we used in the experiments are
2-shot prompts.

We selected these 7B level models for our exper-
iments to highlight the effectiveness of our method
to enhance the smaller models with the synthetic
data constructed with larger models.

On top of this, we also report the performance
of GPT-4 as a reference: when tested on the Eval-
uation dataset, GPT-4 achieves the averaged Exe-
cution Result Accuracy of 49.07% (zero-shot) and
50.42% (2-shot).

4.3.2 Supervised Fine-Tuning
We utilize Low-Rank Adaptation (LoRA) to fine-
tune the vanilla LLMs. Specifically, the open-
source models are trained for 6 epochs with a lin-
ear scheduler, starting at a learning rate of 1e-6.
AdamW is used as the optimizer, and the training
batch size is 6. The fine-tuning of GPT is facilitated
by its official API. The experiments on all LLMs,
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Figure 5: Result of Supervised Fine-Tuning each LLMs with MedT2C. Accuracy annotations marked in white box.

are conducted on Nvidia GeForce 4090 GPU. All
the experiments totaled about 1100 GPU hours.

4.4 Supervised Fine-Tuning experiments

The backbone LLMs are fine-tuned with the
MedT2C dataset. MedT2C contains 3000 sam-
ples in total, with 750 samples generated from each
combination of the two pipelines and the two Neo4j
databases. The MedT2C dataset contains high-
quality Question-Cypher pairs that passed all the
automatic validations as well as the manual valida-
tion. In Appendix G we report the passing rate of
each validator as a guide for further improvement
of MedT2C’s data quality.

A list of LLMs including GPT, Llama, Qwen,
and InternLM are fine-tuned using MedT2C. We
evaluated the change in Cypher writing perfor-
mance of these LLMs, and the results are shown in
Figure 5. The results show that MedT2C helps the
LLM to produce more Cypher queries that are on
par with or better than the human annotated ones.

In Figure 5, the win rates are calculated in com-
parison with the ground-truth Cyphers. We fur-
ther conduct an experiment to compare directly
the c1 and c2 generated with the same LLM with
GPT-4o, using the prompt presented in Appendix
H. The comparison results are shown in Figure
6. From these results, we can conclude that while
the improvement may appear minor when com-
paring against the ground-truth Cyphers, a visible
enhancement in Cypher quality is evident when
comparing to the Cyphers generated by the pre-SFT
model. We explain this difference as follows: the
human annotations have a far higher quality than
the Cyphers generated by vanilla LLMs. Therefore,
even though the LLMs are enhanced after SFT,
their output is still inferior to the human-annotated
Cyphers, which is why the evaluation results in
Figure 5 seem largely unchanged.

Figure 6: Impact of SFT on each LLM. The Cypher gen-
erated with pre-SFT and post-SFT LLMs are compared
directly with GPT-4o.

4.5 Scaling experiments
In this section, we test the scalability of our pipeline
for generating synthetic data. We rerun the data
generation pipelines to create scaled versions that
are 1/16, 1/4, 4, 8, and 16 times the size of the orig-
inal MedT2C. Vanilla LLMs are then fine-tuned
with these scaled datasets. The results are reported
in Figure 7. These results demonstrate that, up
to the size of the MedT2C dataset, increasing the
size of the synthetic dataset leads to better per-
formance, especially in terms of Cypher Quality.
However, once the size exceeds that of MedT2C,
further increasing the dataset size results in either
marginal improvements or decreases. Based on this
experiment, we determine the optimal size for the
published MedT2C dataset (highlighted in red), as
it balances efficiency and performance.

4.6 Ablation experiments
To evaluate the efficacy of each component intro-
duced, we conduct a series of ablation experiments.
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Figure 7: Plots of scaling test’s results.

Settings Cypher Quality Result Acc.
Pre-SFT 38.67%(–) 27.83%(–)

LHY-LLM 41.67%(+3.00) 27.86%(+0.03)
LHY-Temp. 34.67%(-4.00) 26.54%(-1.29)
Hetionet-LLM 42.83%(+4.16) 33.09%(+5.26)
Hetionet-Temp. 36.00%(-2.67) 26.68%(-1.15)
only LLM 41.00%(+2.33) 29.02%(+1.19)

All (MedT2C) 44.00%(+5.33) 39.65%(+11.82)

Table 1: Results of pipeline ablation test.

First, we test the pipelines by running SFT ex-
periments using only the data generated by each
pipeline individually. We then verify the effec-
tiveness of each automatic validator by evaluating
them in isolation, using only one validator at a time.
Since each component is designed to be modular
and independent, we adopt this mode of ablation,
rather than removing the components one by one
from the complete setting, to emphasize the incre-
ment brought by each component separately. For
both ablation tests, the backbone LLM is fixed as
Llama3. The dataset size is set to be the same as
MedT2C (3000 in total). The experiments results
are reported in Table 1 and Table 2 respectively.
Here the Cypher Quality is calculated with respect
to ground-truth Cyphers.

As presented in Table 1, when we use only the
data generated by the template-filling pipeline to
SFT the Llama3 model, the post-SFT performance
actually declines. The reasons are: (1) template-
filling pipeline generates rigid Cyphers which are
easier to overfit; (2) when SFT with only template-
filling data, LLMs tend to produce unnecessarily
complicated Cypher queries (e.g., breaking one
query into two and then merging them). From a
global perspective, using data from both pipelines

Settings Cypher Quality Result Acc.
Pre-SFT 38.67%(–) 27.83%(–)

No validator 38.34%(-0.33) 27.96%(+0.13)
✓Grammar V. 38.34%(-0.33) 28.95%(+1.12)
✓Semantic V. 43.67%(+5.00) 31.65%(+3.82)
✓Entity V. 40.00%(+1.33) 28.03%(+0.20)
✓Schema V. 42.00%(+3.33) 26.11%(-1.72)
✓Coherence V. 41.33%(+2.66) 32.05%(+4.22)

All (MedT2C) 44.00%(+5.33) 39.65%(+11.82)

Table 2: Results of validator ablation test.

(marked as “All”) can enhance the LLM’s general-
ization capacity, as shown in comparison with the
result obtained by fine-tuning only using the data
generated with pipeline 1 (marked as "only LLM").
In other words, even though the template-filling
data seems to have a negative impact, adding them
to the fine-tuning dataset can further improve the
overall Cypher writing performance.

Table 2 shows that each individual validator
contributes some improvement, either in terms of
Cypher quality or the accuracy of the execution re-
sults. Notably, the combination of all five validators
yields the most significant increase in performance.
This can be attributed to the validators’ collective
ability to mitigate the majority of the bugs in the
SFT dataset, thereby enhancing the overall quality
of the generated Cypher queries.

5 Limitations

The primary limitation of our work is the challenge
in writing the templates. Besides, some adapta-
tion work is necessary when applying them to new
Neo4j databases (more details about adaptation to
new database are discussed in Appendix I). Also, a
portion of the generated Cypher queries are directly
filtered out during the construction of MedT2C,
which is not the most efficient solution. Finally,
our current work focuses only on Cypher query
language, similar method can be applied on other
structured query languages in future research.

6 Potential risks

Though SyntheT2C is designed to automatically
generate synthetic datasets, its usage requires close
monitoring to prevent the inadvertent inclusion of
private or sensitive information. Additionally, there
is a slight residual risk for post-SFT LLMs of pro-
ducing endless embedded Cyphers, which could
potentially lead to issues such as Out-of-Memory.



680

7 Conclusion

We present SyntheT2C, a comprehensive frame-
work to generate synthetic data for SFT various
LLMs on the Text2Cypher task. Our approach
encompasses dataset construction, data validation,
and SFT evaluation, providing a reference frame-
work for future research in the Cypher-related field.
Additionally, our findings confirm the effectiveness
of synthetic data, suggesting that similar techniques
can address problems where annotation is difficult
or insufficient. Finally, we will also open-source
the MedT2C dataset, aiming to contribute to the
technical advancements in relevant topics.
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A Example of extracted KG information

Here we present the information (metadata) ex-
tracted from the KG database “Hetionet” in Figure
8. We stored the metadata of the KG, including the
node properties, the relationship properties, and the
valid relationships. This information is integrated
in the following prompts to ensure that the LLM
output is correct Cyphers. In other prompts, this
metadata is referred to as schema .

B Prompts for LLM-based prompting
pipeline

In this appendix, we present all the prompts we
used in the LLM-based prompting pipeline.

B.1 Prompt to propose categories of questions
In Figure 9 we show the prompt used to propose
candidate categories of questions. We decided to
first generate categories of questions instead of gen-
erating directly the questions because this practice
helps reduce duplicated questions.

B.2 Prompt to generate questions for each
category

This prompt presented in Figure 11 is used to gener-
ate questions in natural language for each proposed
category . This prompt includes few-shot exam-

ples to help ensure the output Cypher follows the
format requirements.

B.3 Prompt to merge categories of questions
The prompt presented in Figure 10 is used to
merge the previously generated categories. The
merged and de-duplicated list of categories is then
stored and will be referred to as category in later
prompts.

C Details about constructing the
templates

Our templates are based on the 60 templates intro-
duced in Cypher Generator (Onofrei, 2024). These
templates were originally written for an older ver-
sion of Neo4j, so the authors first correct and up-
date them to match the syntax of Neo4j 5.13. Addi-
tionally, the authors refer to the official Neo4j docu-
mentation to create 20 new templates that cover the
new syntax and new features in Neo4j 5.13. All the
80 templates are tested by filling them with sam-
pled values and executing them manually. After
testing, all templates are confirmed to be able to
generate executable Cypher queries.

D Prompts used in automatic validators

D.1 Prompt of Semantic Validator
Here we present the prompt used in the Semantic
Validator in Figure 12. The schema mentioned in
this prompt is the metadata presented in Appendix
8. The example represents the few-shot examples
written by the authors, here we show the English
example for the Hetionet database in Figure 13.
Lastly, the json_object in the prompt contains
the question and the Cypher query to be evaluated.

D.2 Prompt of Coherence Validator

In this appendix, we present the prompt used in
the Coherence Validator in Figure 14. Similar to
other prompts, we provided few-shot examples in
this prompt. The question and results in the
prompt are the original question and execution re-
sults used as the input for this validation.

E Important statistics of the LHY and the
Hetionet databases

Here we present the important statistics of the LHY
database in Table 3 and Table 4, including the ex-
amples of nodes and entities inside this database.
The examples in both tables are translated from Chi-
nese to English. Similarly, the important statistics
of the Hetionet database with examples of nodes
and entities are grouped in Table 5 and Table 6.

F Exact versions of the backbone LLMs

The exact versions of the LLMs used in our experi-
ments are listed in Table 7. Except GPT-3.5-Turbo,
the backbone LLMs are deployed locally using the
versions available on HuggingFace.

G Passing rate of MedT2C for each
automatic validator

The passing rate of MedT2C dataset for each au-
tomatic validator is reported in Table 8. The LLM
used in the Semantic Validator and the Coherence
Validator is GPT-3.5-Turbo. These two validators
are not run on the LLM-based prompting pipeline
because this pipeline uses GPT-4o. Given that GPT-
4o is more powerful than GPT-3.5-Turbo, it is not
accurate to evaluate its output with GPT-3.5-Turbo,
nor with GPT-4o itself. Besides, noted that the pass-
ing rate of Coherence Validator is especially low
compared to other passing rate. This is because for
Coherence Validator specifically, the samples that
failed any one of the previous validators is judged
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as False directly to save the calling of GPT API.
Therefore the passing rate of Coherence Validator
reported here is lower than the actual one, but it
does not affect the “All passed” ratio.

H Prompts used for Cypher quality
evaluation

We use GPT-4o to judge the quality of two versions
of Cypher queries corresponding to the same set of
questions written in natural language. The prompt
used for this part is shown in Figure 15. We pro-
vide different aspects of evaluation and ask GPT-4o
to give detailed reasons when evaluating because
these techniques bring more accurate evaluation
results in practice.

I Adaptation of templates to new
database

The challenge of adapting a template-based
pipeline to unseen databases is a known issue as
described in the section of Limitations. It is even a
common drawback of all template-based methods.
However, we have made efforts to mitigate this in-
convenience. Our templates are written based on
the work Cypher Generator (Onofrei, 2024) and
enriched referring to the official documentation of
Cypher Query Language, aiming to cover all syn-
tax patterns of Cypher. When adapting to a new
database, we comment out the templates involv-
ing non-existent data types (e.g., there is no DATE
data in LHY database, so we comment out the
DATE-related templates when applying on LHY
database). Similarly, developers can comment or
un-comment these templates when applying them
to other databases, using these templates directly
without rewriting from scratch. This method has
proven to be effective when we adapted the pipeline
to Hetionet and LHY databases during our experi-
ments.
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Node properties are the following:
Disease {easy_get: STRING, cure_lasttime: STRING, cured_prob: STRING, name: STRING, desc:

STRING, prevent: STRING, cure_way: LIST, cause: STRING, cure_department: LIST},Drug
{name: STRING},Food {name: STRING},Check {name: STRING},Department {name:
STRING},Producer {name: STRING},Symptom {name: STRING}

Relationship properties are the following:
recommand_eat {name: STRING}, no_eat {name: STRING}, do_eat {name: STRING}, belongs_to {name:

STRING}, common_drug {name: STRING}, drugs_of {name: STRING}, recommand_drug {name:
STRING}, need_check {name: STRING}, has_symptom {name: STRING}, acompany_with {name:
STRING}

The relationships are the following:
(:Disease)-[:belongs_to]->(:Department), (:Disease)-[:common_drug]->(:Drug),

(:Disease)-[:recommand_drug]->(:Drug), (:Disease)-[:need_check]->(:Check),
(:Disease)-[:has_symptom]->(:Symptom), (:Disease)-[:acompany_with]->(:Disease),
(:Disease)-[:recommand_eat]->(:Food), (:Disease)-[:no_eat]->(:Food),
(:Disease)-[:do_eat]->(:Food), (:Department)-[:belongs_to]->(:Department),
(:Producer)-[:drugs_of]->(:Drug)

Figure 8: The metadata extracted from the Hetionet database.

You are an experienced and useful Python and Neo4j/Cypher developer.

I have a knowledge graph for which I would like to generate interesting questions that span
12 categories (or types) about the graph. They should cover single-node questions, two
or three more nodes, relationships, and paths. Please suggest 12 categories together
with their short descriptions. Here is the graph schema:

{schema}

Figure 9: The prompt used to generate categories of questions.

You are an experienced doctor and you have a knowledge graph for which you would like to
generate interesting questions of 12 categories.

Here are some candidate categories:

{categories_list}.

You should merge similar categories and remove the duplicates. Finally, give me a short
description of each category.

Figure 10: The prompt used to merge proposed categories.

Ent. Type # Ent. Examples
Check 3,353 Bronchography
Department 54 Department of Plastic and Reconstructive Surgery
Disease 8,807 Thrombosed Vasculitis
Drug 3,828 Jingwanhong Hemorrhoid Cream
Food 4,870 Tomato and Vegetable Beef Ball Soup
Producer 17,201 Tongyi Pharmaceutical Penicillin V Potassium Tablets
Symptom 5,998 Hypertrophy of breast tissue
Total 44,111 /

Table 3: Entities in LHY Database.
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You are an experienced Cypher developer and English-speaking doctor and a helpful assistant
designed to output JSON

Generate {k} questions and their corresponding Cypher statements about the Neo4j graph
database with the following schema:

{schema}

The questions should cover {category} and should be phrased in a natural conversational
manner. Make the questions diverse and interesting. Make sure to use the latest Cypher
version and that all the queries are working Cypher queries for the provided graph. You
may add values for the node attributes as needed. Do not add any comments, do not label
or number the questions.

Here are some examples of the Question-Cypher pairs to be generated:

"question": "What are the diseases that commonly accompany 'Depression'?",
"cypher": "MATCH (d1:Disease {{name:'Depression'}}) -[:acompany_with]-> (d2:Disease) RETURN

d2.name"

"question": "Can you list diseases that commonly accompany 'Cancer'?",
"cypher": "MATCH (d1:Disease {{name:'Cancer'}}) -[:acompany_with]-> (d2:Disease) RETURN

d2.name",

Now it's your turn to generate the question and Cypher pairs:

Figure 11: The prompt used to generate questions.

Rel. Type # Rel. Examples
belongs_to 8,844 <Gynaecology, belongs_to, Obstetrics and Gynaecology>
common _drug 14,649 <Yang Qiang, common_drug, Phentolamine mesylate dispersible

tablets>
do_eat 22,238 <Thoracic spine fracture, do_eat, Blackfish>
drugs_of 17,315 <Penicillin V Potassium Tablets, drugs_of, Tongyi Pharmaceuticals

Penicillin V potassium tablets>
need _check 39,422 < Unilateral emphysema, need_check, Bronchography>
no_eat 22,247 <Lip disease, no_eat, Almonds>
recommend_drug 59,467 <Mixed hemorrhoids, recommend_drug, Jingwanhong Hemorrhoid

Cream>
recommend_eat 40,221 <Synovial effusion, recommend_eat, Beef Ball Soup with Tomato and

Vegetable Punch>
has_ symptom 5,998 <Early Breast Cancer, has_symptom, Hypertrophy of breast tissue>
accompany _with 12,029 <Valvular insufficiency of the traffic veins of the lower extremities,

accompany_with, Thromboembolic vasculitis>
Total 294,149 /

Table 4: Relations in LHY Database.

Ent. Type # Ent. Examples
Anatomy 402 Digestive System
Biological_process 11,381 Protein Sialylation
Cellular_component 1,391 Meiotic Spindle
Compound 1,552 Mannitol
Disease 137 Hypertension
Gene 20,945 STRIP2
Molecular_function 2,884 Vitamin Transporter Activity
Pathway 1,822 Glycolysis
Pharmacologic_class 345 Decreased Blood Pressure
Side_effect 5,734 Subileus
Symptom 438 Ageusia
Total 47,031 /

Table 5: Entities in Hetionet Database.
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Rel. Type # Rel. Examples
Anatomy–downregulates–Gene 102,240 <Bronchus, downregulates, GRIA2>
Anatomy–expresses–Gene 526,407 <Myocardium, expresses, EFHD1>
Anatomy–upregulates–Gene 97,848 <Adipose tissue, upregulates, PARM1>
Compound–binds–Gene 11,571 <Sildenafil, binds, CYP3A4>
Compound–causes–Side_Effect 138,944 <Ciprofloxacin, causes, Visual Disturbance>
Compound–downregulates–Gene 21,102 <Tacrolimus, downregulates, UBE2C>
Compound–palliates–Disease 390 <Fluvoxamine, palliates, Panic Disorder>
Compound–resembles–Compound 6,486 <Clotrimazole, resembles, Bifonazole>
Compound–treats–Disease 755 <Reserpine, treats, Hypertension>
Compound–upregulates–Gene 18,756 <Estriol, upregulates, KLHL9>
Disease–associates–Gene 12,623 <Parkinson’s Disease, associates, HTR7>
Disease–downregulates–Gene 7,623 <Schizophrenia, downregulates, MLST8>
Disease–localizes–Anatomy 3,602 <Migraine, localizes, Brain>
Disease–presents–Symptom 3,357 <Lung Cancer, presents, Constipation>
Disease–resembles–Disease 543 <Bone Cancer, resembles, Head and Neck Cancer>
Disease–upregulates–Gene 7,731 <Malaria, upregulates, JAK2>
Gene–covaries–Gene 61,690 <IMP3, covaries, OR8U8>
Gene–interacts–Gene 147,164 <TRIM27, interacts, MED21>
Gene–participates–Biological_Process 559,504 <ABCA1, participates, Lipid Homeostasis>
Gene–participates–Cellular_Component 73,566 <KLHL14, participates, Neuronal Cell Body>
Gene–participates–Molecular_Function 97,222 <TOP2B, participates, ATPase Activity>
Gene–participates–Pathway 84,372 <GGT5, participates, Metabolism>
Gene-regulates-Gene 265,672 <BCCIP, regulates, HLTF>
Pharmacologic_Class–includes–Compound 1,029 <Allergens, includes, Benzocaine>
Total 2,250,197 /

Table 6: Relations in Hetionet Database.

LLM name LLM version LLM site
GPT gpt-3.5-turbo-16k https://platform.openai.com/docs/models/gpt-3.5-turbo

Llama3 Meta-Llama-3-8B https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
InternLM2 internlm2-7B https://huggingface.co/internlm/internlm2-base-7b

Qwen2 Qwen2-7B https://huggingface.co/Qwen/Qwen2-7B

Table 7: Versions of the backbone LLMs

Database Pipeline Grammatical
Validator

Semantic
Validator

Entity
Validator

Schema
Validator

Coherence
Validator All passed

LHY LLM-based prompting 99.69% N/A 99.62% 82.77% N/A 83.87%
LHY Template-filling 99.87% 92.34% 100% 99.87% 28.59% 27.21%

Hetionet LLM-based prompting 96.08% N/A 99.08% 61.69% N/A 64.79%
Hetionet Template-filling 100% 91.81% 99.52% 100% 38.15% 36.66%

Table 8: MedT2C’s passing rates of each automatic validator.
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You are an experienced Cypher developer, English Master, and a helpful assistant that helps
me to verify whether the cypher is coherent with the question!

You will be given a JSON object containing a question and a cypher query. You should first
take a look at the schema provided below. The schema is the graph database on which the
cypher queries will be run.

The schema:

{schema}

You must organize your answer step by step and in the end, you should make your judgment.

Here are three areas that you should pay attention to:
1. whether the output of cypher is coherent with the question, which means that the output of

cypher must contain the information that the question asks.
2. If the question points out a piece of key information, you should check whether this key

information is pointed out in the cypher. For example, if the question provides a piece
of exact information such as the exact name of the disease, this information can not be
inconsistent in the cypher. If there is no exact key information, you can skip this area.

3. whether this cypher answers the question provided in the JSON object. You should simulate
the cypher step by step according to the schema provided. Then you should judge whether
this cypher is in line with the question.

You should make your judgment according to these three areas. If there are no problems in
these three areas in the cypher, you must answer with 'True'. Otherwise, you should
answer with 'False'.

Here are some example JSON objects:

{example}

Now it's your turn to answer! Here is the JSON object you should evaluate:

{json_object}

Now evaluate carefully the JSON object and provide your answer step by step.

Figure 12: The prompt used in Semantic validator.



690

<|Example 1|>
{

"question": "Which diseases belong to the 'Psychiatry' department?",
"cypher": "MATCH (d:Disease)-[:belongs_to]->(dept:Department) WHERE dept.name =

'Neurology' RETURN d.name"
},
<|Answer 1|>
The cypher is not in line with the question because the question is to find the diseases in

the 'Psychiatry' department but the department name in the cypher is 'Neurology'
department.

Since the key information is inconsistent, I would mark this JSON object as False.

<|Example 2|>
{

"question": "Which foods should be avoided for the disease 'Brain tumor'?",
"cypher": "MATCH (d1:Disease {name:'Brain tumor'})-[:no_eat]->(d2:Food) RETURN d2.name"

}
<|Answer 2|>
Firstly, the output of cypher contains the key information 'the food' asked by the question.
Secondly, the key information 'Brain tumor' provided in the question is contained in the

cypher.
Finally, the logic of cypher is exactly similar to the question.
So, I think this JSON object is True.

<|Example 3|>
{

"question": "What pathways do the genes 'BRCA1' and 'BRCA2' participate in?",
"cypher": "MATCH (g:Gene)-[:PARTICIPATES_GpPW]->(:Pathway) WHERE g.name IN ['BRCA1',

'BRCA2'] RETURN g.name"
}
<|Answer 3|>
There are two errors.
Firstly, as the question asks for pathways but the output of cypher is the name of the gene,

the output of the cypher is inconsistent with the question.
Secondly, the question is to find the pathway that both the genes 'BRCA1' and 'BRCA2'

participate in. But the cypher matches the pathways that 'BRCA1' or 'BRCA2' participates
in. The logic 'AND' and 'OR' are totally different.

Therefore, I think this JSON object is False.

Figure 13: The English few-shot examples used in the Semantic Validator.
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You are an experienced medical assistant who has mastered English and medical knowledge.

You will be given a question and the responses given by the doctor. The doctor is very
professional, he gives direct responses. But he sometimes misunderstands the problem.
Your task is to check if the results are coherent with the question by analyzing the
category.

For example, if the question asks for food and the answer is food, in this case, it is
relevant because the category is the same. Even if the foods don't seem to be directly
related, you can not deny them because the doctor is professional.

But if the question asks for food, the doctor gives the response on sports. You should point
out this error because the category is different.

As a medical assistant, you just need to pay attention to whether the category of the answer
corresponds to the category that the question asks. You don't need to think about the
reasonableness of the answer.

Answer with 'True' if the category is the same. Otherwise, answer with 'False'.
You need to carefully explain your answer.

Here are some examples of questions and results:

<Example 1>
Question: Find out the diseases associated with the 'Oncology' department.
Responses by the doctor: Breast cancer, Pancreatic cancer, Colon cancer
Your reply: Breast cancer, pancreatic cancer, and colon cancer belong to the Oncology

department. And the question asks for diseases. So I think it is relevant, and my answer
is True.

<Example 2>
Question: Which foods should be avoided for the disease 'Coeliac disease'?
Responses by the doctor: Swimming, Running, Biking, Walking
Your reply: The responses are sports. But this question asks for food. So I think it is not

relevant, my answer is False.

Now it's your turn to verify if the responses are relevant to the question.
Remember! You just need to pay attention to whether the answer corresponds to the question.

You don't need to think about the reasonableness of the answer.

Question:{question}
Responses by the doctor: {results}
Your reply:

Figure 14: The prompt used in Coherence Validator.
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You are an expert in medical field and Cypher query language. You are asked to evaluate the
quality of the Cypher queries generated by 2 models for the same question. You will be
first given the question written in natural language. Then you will be given the Cypher
queries generated by 2 models. Your task is to compare the quality of these two Cyphers
and select the better one. You should consider the following aspects when selecting the
better Cypher:
1. Syntactical correctness: whether the Cypher query is syntactically correct;
2. Semantic correctness: whether the Cypher query can correctly answer the question;
3. Readability: whether the Cypher query is easy to read and understand;
4. Efficiency: whether the Cypher query is efficient in terms of time and space

complexity;
5. Conciseness: whether the Cypher query is concise and clear;
6. Completeness: whether the Cypher query can cover all the necessary information in the

database.
You should select the better Cypher query based on these aspects. Output your selected

Cypher as well as your reasons.

Here is the question:
{

"question": "{{ question }}"
}

Here are the outputs of the models:
[

{
"number": "1",
"cypher": "{{ cypher_1 }}"

},
{

"number": "2",
"cypher": "{{ cypher_2 }}"

}
]
Your output should be in the following format, DO NOT output anything other than this JSON

object:
{
"better_cypher": "1",
"reason": "reasons why 1 is selected"
}

Now select the better Cypher and give your reasons:

Figure 15: The prompt used in Cypher quality evaluation.
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