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Abstract

We introduce a novel analysis that leverages
linguistic minimal pairs to probe the internal
linguistic representations of Large Language
Models (LLMs). By measuring the similar-
ity between LLM activation differences across
minimal pairs, we quantify the linguistic simi-
larity and gain insight into the linguistic knowl-
edge captured by LLMs. Our large-scale experi-
ments, spanning 100+ LLMs and 150k minimal
pairs in three languages, reveal properties of
linguistic similarity from four key aspects: con-
sistency across LLMs, relation to theoretical
categorizations, dependency to semantic con-
text, and cross-lingual alignment of relevant
phenomena. Our findings suggest that 1) lin-
guistic similarity is significantly influenced by
training data exposure, leading to higher cross-
LLM agreement in higher-resource languages.
2) Linguistic similarity strongly aligns with
fine-grained theoretical linguistic categories but
weakly with broader ones. 3) Linguistic simi-
larity shows a weak correlation with semantic
similarity, showing its context-dependent na-
ture. 4) LLMs exhibit limited cross-lingual
alignment in their understanding of relevant lin-
guistic phenomena. This work demonstrates
the potential of minimal pairs as a window
into the neural representations of language in
LLMs, shedding light on the relationship be-
tween LLMs and linguistic theory.

1 Introduction

The categorization of linguistic phenomena1 based
on their relevance has been a long-standing en-
deavor, dating back to Aristotle (Aristotle, 350 BC).

*Joint first authors. Xinyu Zhou is now affiliated with
Université Paris Cité and Sorbonne Université.

1Linguistic phenomena refer to observable patterns or fea-
tures in language use. For example, subject-verb agreement is
a linguistic phenomenon where verbs must agree with subjects
in number and person. An example would be: “The dog barks”
(correct) instead of “*The dog bark” (incorrect).

This has led to the widely accepted theoretical lin-
guistic consensus of a hierarchical categorization
of language structure encompassing syntax, seman-
tics, morphology, etc., which provides a structured
way to understand the intricate nature of language,
and allows linguists to investigate the interrelation-
ships and commonalities among these linguistic
domains (Comorovski, 2013; Li, 2004).

Alongside the theoretical discussions of linguis-
tic phenomena, a growing body of research on
quantitative measurement of similarities based on
statistical modeling on large-scale corpora has been
observed in computational linguistics. Examples
include lexical similarity (Holman et al., 2011),
syntactic similarity (Boghrati et al., 2018; Schoot
et al., 2016), semantic similarity (Pennington et al.,
2014; Reimers and Gurevych, 2019), among oth-
ers. These examples showcase the possibilities
of understanding the nature of language through
purely statistical methodologies. However, there
has been limited research on quantitatively measur-
ing the relationships between different linguistic
phenomena. Given that language is a complex sys-
tem composed of numerous interrelated linguistic
phenomena, addressing this gap could lead to a
more comprehensive understanding of language
structure and its underlying mechanisms.

In this work, we aim to uncover and analyze the
internal linguistic knowledge of Large Language
Models (LLMs) when presented with a wide range
of linguistic phenomena. LLMs are large-scale un-
supervised language learners without any prior lin-
guistic knowledge, and have demonstrated human-
level language capability, as evidenced by their
leading performance on language understanding
benchmarks and impressive language generation
fluency (Zhao et al., 2023; Bang et al., 2023). More
specifically, we are interested in how LLMs repre-
sent different linguistic phenomena, and whether
linguistically similar phenomena are represented
similarly in LLMs.
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Activations Difference

LLM ㊀Cheryl is thinking that Jerry thinks about her.
*Cheryl is thinking that Jerry thinks about herself.

Binding (syntax-semantics)

LLM ㊀Heidi was imagining that Travis wasn't referencing her.
*Heidi was imagining that Travis wasn't referencing herself.

Binding (syntax-semantics)

LLM ㊀
Most children listen to Regina.

*Most children listens to Regina.
Subject-Verb Agreement (morphology)

Linguistic Similarity: 0.6

Linguistic Similarity: 0.0

Linguistic Minimal Pairs 

Figure 1: The process of measuring linguistic similarity in an LLM. We extract LLM activations for sentences
in linguistic minimal pairs and compute their differences. Since the sentences differ solely in a specific linguistic
phenomenon, the resulting difference only contains information about that phenomenon. We then measure the
similarity between these activation differences, which we refer to as linguistic similarity.

To elicit such representations, we examine the
activations in LLMs in response to linguistic min-
imal pairs (Warstadt et al., 2020). As shown in
Fig. 1, these pairs consist of sentences that differ
only in a word/phrase, with one being grammatical
and the other ungrammatical. Since minimal pairs
differ only in one particular linguistic phenomenon,
information about other aspects (such as topic and
semantic meaning) will be canceled out through
subtraction. We interpret the remaining differences
as the LLMs’ internal representation of a specific
linguistic phenomenon. By calculating the simi-
larity between multiple such representations, we
derive a measure of linguistic similarity between
linguistic minimal pairs.

We then conduct an extensive analysis of linguis-
tic similarity in LLMs. Our experiment encom-
passes 100+ LLMs of varying scales and pretrain-
ing corpora, utilizing 150,000 linguistic minimal
pairs across 3 different languages. We report our
observations correspond to the following key ques-
tions:

1) How consistent is linguistic similarity
across different LLMs? LLMs have the high-
est alignment of linguistic similarity in English,
which is the most widely used language for LLM
pertaining, while the alignments are comparatively
weaker in Chinese and Russian. We further visu-
alized the relationships among these LLMs with
UMAP (McInnes et al., 2018). On Chinese sam-
ples, we observed a distinct clustering pattern:
bilingual and multilingual LLMs formed one clus-
ter, while English-only models formed another.
The above results suggest that the language distri-
bution in the training data influences the linguistic
similarity in LLMs.

2) Does linguistic similarity align with theo-

retical linguistic categorizations? We compared
linguistic similarity across three levels of theoreti-
cal linguistic categorizations. Our analysis revealed
that fine-grained classifications exhibit significantly
higher intra-class similarities compared to inter-
class similarities. However, this disparity dimin-
ishes considerably at higher categorization levels.
Meanwhile, we can also observe some highly cor-
related phenomena pairs that are not classified to
the same theoretical categorization.

3) To what extent does linguistic similarity
correlate with semantic similarity? We showed a
weak correlation between semantic similarity and
linguistic similarity, despite many existing samples
with low linguistic similarity and high semantic
similarity, and conversely, high in linguistic and
low in semantic. The weak correlation indicates
that linguistic similarity in LLMs has a context-
dependent nature.

4) Whether relevant phenomena in different
languages enjoy higher linguistic similarities?
We compare the linguistic similarity of the shared
three linguistic phenomena in English and Chinese.
Our UMAP visualization revealed that while En-
glish phenomena are clustered within a shared re-
gion, they are “attracted” by their relevant phenom-
ena in Chinese.

We hope this paper sparks new exploration
into LLMs’ internal linguistic representations, un-
covering deeper insights into their inner work-
ings and potentially informing linguistic theory.
To facilitate future research, the activation differ-
ences of the 100+ LLMs, pre-computed sample-
level linguistic similarities, and all the codes are
made publicly available at https://github.com/
ChenDelong1999/Linguistic-Similarity.

https://github.com/ChenDelong1999/Linguistic-Similarity
https://github.com/ChenDelong1999/Linguistic-Similarity
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2 Related Work

Linguistic Minimal Pairs. Acceptability judg-
ments (Chomsky, 1957) have long served as a
proxy for grammaticalness in generative syntax,
relying on native speakers’ intuitions to evaluate
whether sequences generated by a grammar are
perceived as acceptable. In the past decade, gram-
matical acceptability judgment tasks (Linzen et al.,
2016; Futrell et al., 2018; Wilcox et al., 2019;
Warstadt et al., 2019; Gauthier et al., 2020) have
been commonly used to evaluate language mod-
els by comparing output probabilities, providing a
direct linguistic measure of sentence acceptability.
Among these benchmarks, BLiMP (Warstadt et al.,
2020) introduced a large-scale linguistic minimal
pair benchmark in English. This work was fol-
lowed by many studies in other languages, namely
CLiMP (Xiang et al., 2021) and SLING (Song et al.,
2022) for Chinese, JBLiMP (Someya and Oseki,
2023) for Japanese, BHASA (Leong et al., 2023)
for Indonesian, RuBLiMP (Taktasheva et al., 2024)
for Russian and BLiMP-NL (Suijkerbuijk et al.,
2024) for Dutch.

Linguistic and Language Representation in
LLMs. A growing body of research is investigating
the linguistic mechanisms within LLMs through
probing and interventional strategies (Arora et al.,
2024; He et al., 2024; Duan et al., 2024; Weber
et al., 2024). These studies mostly focus on specific
linguistic phenomena, such as subject-verb agree-
ment (Giulianelli et al., 2018), plurality (Hanna,
2022), long-distance agreement (Li et al., 2023),
negative polarity items (DeCarlo et al., 2023), and
adjective order (Jumelet et al., 2024), see Millière
(2024) for a comprehensive review. Furthermore,
recent studies have also identified linguistic re-
gions (Zhang et al., 2024) and language-specific
neurons (Tang et al., 2024; Kojima et al., 2024) that
contribute to multilingual capabilities, and further
suggests that LLMs exhibit layer-wise specializa-
tion, with intermediate layers processing informa-
tion in a common "language" concept space and
final layers generating responses in the specific lan-
guage (Wendler et al., 2024; Zhong et al., 2024).

3 Measuring Linguistic Similarity in
Large Language Models

3.1 Definition
Let x+ denote a grammatically correct natural lan-
guage sentence, and x− represent an ungrammat-
ical sentence derived from x+ with a minimal

modification affecting a specific linguistic phe-
nomenon. The pair ⟨x+, x−⟩ is referred to as a
linguistic minimal pair. Let fLLM denote an LLM
that takes sentences as input and generates corre-
sponding hidden activations, i.e., z+ = fLLM(x+)
and z− = fLLM(x−), where z+, z− ∈ Rn and n is
the dimensionality of the hidden representations.

We compute the difference between the hidden
activations: ∆z = z+ − z−. While z+ and z− in-
dividually encode rich information about the input
sentences, including both semantic and linguistic
properties, their difference ∆z primarily captures
the representation of the specific linguistic phe-
nomenon that distinguishes the minimal pair, as
other aspects of the sentences are guaranteed to be
identical and thus will be canceled out. Formally,
given two linguistic minimal pairs ⟨x+1 , x

−
1 ⟩ and

⟨x+2 , x
−
2 ⟩, we define their linguistic similarity as

sim(∆z1,∆z2), where sim(·) is a similarity met-
ric and we used cosine similarity in this work.

3.2 Implementation
Data. We utilized linguistic minimal pairs
from three existing datasets: BLiMP (Warstadt
et al., 2020), SLING (Song et al., 2022), and
RuBLiMP (Taktasheva et al., 2024), which consist
of 67, 38, and 45 linguistic phenomena in English,
Chinese, and Russian, respectively. Each linguistic
phenomenon is associated with 1,000 correspond-
ing linguistic minimal pairs, yielding a total of
150,000 pairs.

LLMs. Each sentence was input into var-
ious LLMs without any prompts, and hidden
states were extracted from five evenly sampled
layers. We specifically extracted the activations
of the last-but-two token, as previous tokens re-
main visible, while the final tokens correspond
to the <end-of-sentence> token. A comprehen-
sive range of 104 LLMs from Huggingface was
employed; the complete list is provided in Ap-
pendix A.

Computation. All inferences on the LLMs were
conducted using half-precision (float-16). Given
the extensive volume of linguistic minimal pairs
and the number of LLMs, we optimized storage
by saving both the activation differences and the
computed pairwise linguistic similarity matrix in
int8 precision. Under this configuration, the acti-
vation differences for Llama-2-7B required 1.3 GB
of storage (a tensor of 67,000 samples × 5 layers
× 4096 neurons), while the similarity matrix of
67,000 × 67,000 necessitated 4.2 GB of storage.
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Figure 2: The relationship between linguistic similarity across LLMs. In English, LLMs form a single cluster,
while in Chinese, two distinct clusters emerge: one for bilingual and multilingual LLMs, and another for English-
only models. Detailed visualizations can be found in Appendix C.1.

4 Result and Discussion

4.1 Consistency of Linguistic Similarity
Across 104 LLMs

To quantitatively assess the consistency of linguis-
tic similarity across different LLMs, we adopted
the mutual k-nearest neighbors metric as proposed
in (Huh et al., 2024). Specifically, for a given lin-
guistic minimal pair, we retrieved the top-k closest
neighbors based on linguistic similarity from two
distinct LLMs and calculated the percentage of
overlapping samples among the retrieved sets as
the alignment score (see Huh et al., 2024 for further
details).

We computed pairwise alignment scores for all
104 LLMs across three datasets. For computational
efficiency, we randomly sampled 10% of the total
samples from each dataset (i.e., 6,700 for BLiMP,
3,800 for SLING, and 4,500 for RuBLiMP) and set
k to 1% of the sample pool size for retrieval (i.e., 67,
38, and 45). The distribution of alignment scores
is presented in Fig. 3. Notably, the BLiMP dataset
(English) exhibited the highest alignment, with
an average score of 0.471 (i.e., 47.1% of the top-
1% similar minimal pairs are shared across LLMs
on average), whereas the SLING (Chinese) and
RuBLiMP (Russian) demonstrated average align-
ment scores of 0.414 and 0.139, respectively.

We also observed that the distribution of align-
ment scores for English and Russian datasets
is unimodal, while the Chinese dataset exhibits
a bimodal distribution. To further investigate
this phenomenon, we employed UMAP (McInnes
et al., 2018) to embed the LLMs to 2D plane

Fr
eq

ue
nc

y

0.0 1.00.80.60.40.2

BLIMPSLINGRuBLIMP

LLM Alignment Scores

Figure 3: Distribution of LLM alignment scores, with
red dotted lines marks the average scores of 0.471
(BLiMP), 0.414 (SLING), and 0.139 (RuBLiMP).

based on a distance metric of distance =
− log(alignment score), following Huh et al.
(2024). As illustrated in Fig. 2, each dot repre-
sents an LLM, with closer dots indicating similar
linguistic similarities. LLMs from the same family
(e.g., models from the same creator with different
sizes or base/chat versions) are clustered together,
indicated by the same color. Interestingly, in Chi-
nese, we observed two distinct clusters: the left
cluster (marked with a green dotted line) predomi-
nantly consists of bilingual (English-Chinese) and
multilingual models, while the right cluster marked
with purple is primarily composed of English-only
trained LLMs. These results suggest a correlation
between alignment scores and LLMs’ pertaining
language.

Takeaway:

LLMs’ linguistic similarity is dependent on
their training data exposure. They show
stronger agreements in higher-resource lan-
guages like English.
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BLIMP (English) SLING (Chinese)

3rd level Classification
• Syntax
• Semantics

2nd level Classification
• Alternative Question
• Aspect
• Definiteness Effect
• Polarity Items
         …

1st level Classification
• 还是…吗 (haishi…ma)
• 在…过 (zai…guo) 
• 定指_每(definiteness_every)
• 或多或少 (more or less)
         …

3rd level Classification
• Syntax
• Semantics
• Morphology
• Syntax-Semantics

2nd level Classification
• Island Effects
• NPI Licensing
• Anaphor Agreement
• Binding
         …

1st level Classification
• Adjunct Island
• Only NPI Licensor Present
• Anaphor Gender Agreement
• Principle A Case 1
         …

Figure 4: Intra-class and inter-class linguistic similarities at different levels of linguistic classification. At
the most fine-grained level (1st level), intra-class similarities are significantly higher than inter-class similarities,
indicating a strong alignment with detailed theoretical linguistic categorizations. As we move to broader categories
(2nd and 3rd levels), the gap between inner and inter-class similarities narrows notably.

4.2 Alignment between Linguistic Similarity
and Theoretical Categorizations

To investigate the alignment between linguistic sim-
ilarity and theoretical linguistic categorizations, we
compared intra-class and inter-class similarities at
different levels of linguistic classification for both
English (BLiMP) and Chinese (SLING) datasets.
BLiMP and SLING provide hierarchical linguistic
classifications, with the 1st level being the most
fine-grained “phenomena”, the 2nd level capturing
broader categories of “terms”, and the 3rd level
representing the most general “fields” (examples
are shown in leftmost and rightmost columns in
Fig. 4).

The analysis in this section is based on averaged
linguistic similarities across the 104 LLMs. We
focused on BLiMP and SLING datasets due to
their high linguistic similarity alignment across
LLMs, as demonstrated in the previous Section 4.1.
We excluded the RuBLiMP (Russian) dataset with
weaker consensus across LLMs.

As shown in Fig. 4, our analysis revealed that at
the lowest level, intra-class similarities were signif-
icantly higher than inter-class similarities for both
BLiMP and SLING datasets. This suggests that lin-
guistic similarity effectively captures the nuanced
distinctions within these detailed categories. This
clear separation indicates a strong alignment be-
tween linguistic similarity and these fine-grained
theoretical linguistic categorizations. However, as
we moved to higher levels of classification, the
gap between intra-class and inter-class similari-
ties diminished considerably. For both datasets,

the disparity between inner and inter-class simi-
larities approximately halved with each ascent in
the categorization hierarchy. Higher-level linguis-
tic categories exhibit greater interconnectedness
and mutual influence than previously recognized,
which may explain the diminishing differentiation
in linguistic similarity at broader classification lev-
els.

We further visualize the phenomenon-level lin-
guistic similarity matrix in Fig. 5 (visualizations for
other datasets can be found in Appendix C.2). The
observations here confirm our above conclusions
from Fig. 4. The clearly distinguishable diagonal
entries represent the lowest linguistic phenomenon-
level similarity, which enjoys significant inter/intra
separation. For higher 2nd-level classification, as
noted by dashed black lines, there exist both ho-
mogeneous (e.g., anaphor agreement, determiner
none agreement) and heterogeneous (e.g., irregular
forms and many others) ones. We cannot observe
any clear clustering effects for the 3rd-level clas-
sification as separated by bold black lines, which
also aligns with our findings from Fig. 4.

Interestingly, we found that there are some pairs
of phenomena that do not belong to the exact same
theoretical categorization, but also enjoy consid-
erably high similarities. For example, “sentential
negation NPI licensor present” in the “NPI licens-
ing” term of “semantics” field has very high simi-
larity with “sentential negation NPI scope” in the

“NPI licensing” term of “syntax-semantics” field;
and “principle A domain 3” in the “binding” term
of “syntax-semantics” filed has considerably high
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Figure 5: Phenomena-level linguistic similarity matrix of BLiMP. Each grid corresponds to the average similarity
between two linguistic phenomena. The categorization in the 2nd-level (linguistic terms) and the 3rd-level are
respectively separated by dashed and bold black lines. On the left, we provide label of the 1st to 3rd levels of
linguistic classifications, separated by “|”. Visualizations of SLING and RuBLiMP can be found in Appendix C.2.

similarities to the phenomena in “anaphor agree-
ment” term of the “morphology” field. These ob-
servations underscore the potential of linguistic
similarity as a valuable tool for refining our under-
standing of language structure and organization.

Takeaway:

Linguistic similarity in LLMs aligns well
with fine-grained theoretical categoriza-
tions, but weakens at higher levels.

4.3 The Relationship Between Linguistic
Similarity and Semantic Similarity

To further investigate the nature of linguistic sim-
ilarity captured by our method, we compare it
with the semantic similarity between minimal
pairs. We employed a multilingual Sentence Trans-
former (Reimers and Gurevych, 2019) model2 to

2https://huggingface.co/sentence-transformers/
paraphrase-multilingual-MiniLM-L12-v2

generate sentence embeddings for the correct sen-
tence in the minimal pairs. Cosine similarity be-
tween these embeddings served as our measure of
semantic similarity following default practice. We
sampled 1k pairs of minimal pairs that have linguis-
tic similarity within each range of (0.9, 1.0), (0.8,
0.9), ..., (0, 0.1), (−∞, 0), and plotted their seman-
tic similarity against their linguistic similarity.

Fig. 6 provides the results for the BLiMP and
SLING. We can observe a weak correlation be-
tween linguistic and semantic similarities for both
datasets, suggesting that the linguistic similarity in
LLMs is context dependent to some extent. How-
ever, as can be seen in Table 1, linguistic and se-
mantic similarities can vary independently. In En-
glish, two minimal pairs from the Binding (syntax-
semantics) phenomenon show high linguistic sim-
ilarity (>0.6) but low semantic similarity (<0.3),
indicating that while these pairs involve the same
linguistic structures, the semantic impact of the
changes differs substantially. Conversely, we found

https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
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BLIMP dataset (English) SLING dataset (Chinese)

Figure 6: Joint distribution of linguistic similarity and semantic similarity. Each dot in the plots represents a
pair of linguistic minimal pairs. We observed a weak correlation between the two similarity measurements, showing
that linguistic similarity has a context-dependent nature.

BLIMP dataset (English) SLING dataset (Chinese)

Low Semantic Similarity High Semantic Similarity Low Semantic similarity High Semantic Similarity

Low 
Linguistic
Similarity

Even Sonia had often hidden.
*Even Sonia had ever hidden.

NPI Licensing (semantics)

There proves to be a popsicle scaring Frank.
*There continued to be a popsicle scaring Frank.

Control Raising (syntax-semantics)

It's themselves that most teachers shocked.
*It's themselves that shocked most teachers.

Binding (syntax-semantics)

These children were stunned.
*These children were come here.

Argument Structure (syntax)

这里有⼀头牲畜。
*这里有每头牲畜。

Definiteness Effect (semantics)

五名男售货员正在摆脱他们自⼰。
*五名男售货员正在摆脱他自⼰。

Anaphor (syntax)

他们或多或少回眸了五四。
*他们或多或少没回眸五四。

Polarity Item (semantics)

她们在想这情况了。
*她们在想了这情况。

Aspect (syntax)

High 
Linguistic
Similarity

Stephanie imagined that Omar respected her.
*Stephanie imagined that Omar respected herself.

Binding (syntax-semantics)

Beth thinks that Ronald hates her.
*Beth thinks that Ronald hates herself.

Binding (syntax-semantics)

Anne hasn't respected herself.
*Anne hasn't respected itself.

Anaphor Agreement (morphology)

Dana hasn't respected herself.
*Dana hasn't respected itself.

Anaphor Agreement (morphology)

他在公交车站还是单位?
*他在公交车站还是单位吗?
Alternative Question (syntax)

你们在超市还是单位?
*你们在超市还是单位吗?

Alternative Question (syntax)

她是护⼠还是负责⼈?
*她是护⼠还是负责⼈吗?

Alternative Question (syntax)

他们是护⼠还是学者?.
*他们是护⼠还是学者吗?

Alternative Question (syntax)

Table 1: Examples of pairs of minimal pairs that have different levels of linguistic and semantic similarity.
“High” means similarity is larger than 0.6 while “low” means smaller than 0.3. Although linguistic similarity exhibits
a weak correlation to semantic similarity and is context-dependent, there are also many samples with low linguistic
similarity and high semantic similarity, and conversely, high in linguistic and low in semantic, in both English and
Chinese.

cases of low linguistic similarity (<0.3) but high
semantic similarity (>0.6) between minimal pairs
from Binding (syntax-semantics) and Argument
Structure (syntax). We also observed cases where
both linguistic and semantic similarities are con-
sistently high or low, which often emerges when
minimal pairs share similar vocabulary or address
completely unrelated linguistic features. The result
of SLING reveals similar patterns to those observed
in BLiMP.

Takeaway:

LLMs’ linguistic similarity shows a weak
correlation with semantic similarity, indi-
cating that it is context-dependent.

4.4 Linguistic Similarity Across Different
Languages

We are interested in how LLMs represent similar
linguistic phenomena across different languages–
for relevant phenomena in different languages,
whether they exhibit higher linguistic similarity?
We conducted a multi-lingual analysis focusing on

three key linguistic terms: anaphor agreement, po-
larity items, and filler-gap dependency, on both
BLiMP (English) and SLING (Chinese) datasets.
Linguistic phenomena within each of these terms
are considered relevant, and a total of 39 phenom-
ena are involved, leading to a total of 39k minimal
pairs.

To explore the relationship between those phe-
nomena, we used a representative state-of-the-
art multilingual LLM Llama-3.13, and employed
UMAP dimensionality reduction based on pair-
wise linguistic similarity. Figure 7 visualizes the
results. We observed a clear language-specific clus-
tering pattern, as evident by the purple-shaded area
where all English samples are clustered. It means
that relevant linguistic phenomena in different lan-
guages are considered to be different by multilin-
gual LLMs.

Interestingly, we also observe that relevant phe-
nomena across different languages often exhibit
closer proximity than unrelated phenomena within
the same language. This cross-lingual correlation

3https://huggingface.co/meta-llama/
Meta-Llama-3.1-8B

https://huggingface.co/meta-llama/Meta-Llama-3.1-8B
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B
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Anaphor Agreement Filler Gap DependenciesPolarity Item

Anaphor Gender & 
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self-male

self-female

pp-male & female

baseline-
male

baseline-
female

cl-self-male & female
cl-men-self-male & female

baseline-(cl)-(men)-
male & female

wh-questions-
object-gap

wh-vs-that-gap
(-long-distance)

wh-questions-subject-gap-long-distance
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more-or-
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any

even-wh

NPI-present-1&2

sentential-negation-NPI-
licensor-present & scope

matrix-question-NPI-
lincensor-present

only-NPI-licensor-
present & scope

Figure 7: UMAP visualization of minimal pairs in same categories (terms) but different languages. Linguistic
phenomena are dominantly grouped by their language in multilingual LLMs: English samples are all clustered
within purple-shaded areas. While relevant linguistic phenomena in different languages are not fully overlapped,
LLM does capture some relationships. As indicated by purple arrows, English samples seem to be “attracted” by
the corresponding Chinese samples.

Table 2: Average linguistic similarity of phenomena in
English and Chinese.

BLiMP dataset (English)
Anaphor

Agreement
Polarity

Item
Filler Gap

Dependency
SLING Anaphor Agreement .04853 .00643 -.01850
Dataset Polarity Item .01883 .01783 .00714

(Chinese) Filler Gap Dependency .02735 .01780 .01426

is illustrated by the purple arrows in Figure 7,
which “attracts” English samples to Chinese sam-
ples. Quantitatively, we calculated the average
pair-wise linguistic similarity of the three terms
in BLiMP and SLING. As Table 2, for each term
in English (i.e., each column), the corresponding
Chinese term always enjoys the highest similarity.
This “attraction” pattern suggests that LLMs may
have captured some relationships of these linguis-
tic structures that transcend individual language
boundaries.

Takeaway:

Linguistic phenomena are grouped by lan-
guage in multilingual LLMs. Relevant phe-
nomena in different languages are not fully
overlapped, but their relevance is indeed
being captured.

5 Conclusion

Our comprehensive analysis of linguistic similar-
ity in LLMs, spanning over 100 models and 150k
minimal pairs across three languages, reveals sev-
eral key insights. We found that linguistic simi-
larity consistency across LLMs is strongly influ-

enced by pertaining data, with high-resource lan-
guages showing greater alignment. LLMs’ inter-
nal representations align well with fine-grained lin-
guistic categorizations, but this alignment weakens
at broader levels. The weak correlation between
linguistic and semantic similarities suggests that
LLMs’ representation of linguistic phenomena is
context-dependent. Cross-lingually, while LLMs
tend to group phenomena by language, they do
capture some relationships between relevant phe-
nomena across languages.

These findings contribute to our understanding
of LLMs’ internal language processing, potentially
bridging the gap between neural language models
and linguistic theory. As LLMs continue to ad-
vance, this work provides a foundation for future
research into their linguistic representations, in-
forming model development and offering insights
into both artificial and human language processing.

6 Limitations and Future Works

Our study’s findings are inherently dependent on
the quality and scope of existing linguistic minimal
pair datasets, which may have the possibility of vi-
olating the assumption of having only difference of
individual phenomena. Additionally, our analysis
is limited to three languages, which cannot fully
represent global linguistic diversity. Despite exam-
ining 150 linguistic phenomena, this still captures
only a fraction of language’s complexity. Future
directions include developing more high-quality
minimal pairs, broadening language coverage to
include more diverse linguistic families, and in-
creasing the range of phenomena studied.
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A The List of 104 LLMs

The following is a list of all LLMs that are adopted
in our analysis, grouped by model families:

Llama-2

• NousResearch/Llama-2-7b-chat-hf: Total 33 layers,
4096 neurons per layer. Sampled layers: 5, 11, 16, 22,
27.

• NousResearch/Llama-2-13b-chat-hf: Total 41 lay-
ers, 5120 neurons per layer. Sampled layers: 6, 13, 20,
27, 34.

Llama-3 & Llama-3.1

• meta-llama/Meta-Llama-3-8B: Total 33 layers, 4096
neurons per layer. Sampled layers: 5, 11, 16, 22, 27.

• meta-llama/Meta-Llama-3-8B-Instruct: Total 33
layers, 4096 neurons per layer. Sampled layers: 5, 11,
16, 22, 27.

• meta-llama/Meta-Llama-3.1-8B: Total 33 layers,
4096 neurons per layer. Sampled layers: 5, 11, 16,
22, 27.

• meta-llama/Meta-Llama-3.1-8B-Instruct: Total
33 layers, 4096 neurons per layer. Sampled layers: 5,
11, 16, 22, 27.

Mistral-7B-v0.3

• mistralai/Mistral-7B-v0.3: Total 33 layers, 4096
neurons per layer. Sampled layers: 5, 11, 16, 22, 27.

• mistralai/Mistral-7B-Instruct-v0.3: Total 33
layers, 4096 neurons per layer. Sampled layers: 5, 11,
16, 22, 27.

OLMo

• allenai/OLMo-1B-hf: Total 17 layers, 2048 neurons
per layer. Sampled layers: 2, 5, 8, 11, 14.

• allenai/OLMo-7B-hf: Total 33 layers, 4096 neurons
per layer. Sampled layers: 5, 11, 16, 22, 27.

• allenai/OLMo-7B-Instruct-hf: Total 33 layers,
4096 neurons per layer. Sampled layers: 5, 11, 16,
22, 27.

Qwen, Qwen-1.5, & Qwen-2

• Qwen/Qwen-7B: Total 33 layers, 4096 neurons per layer.
Sampled layers: 5, 11, 16, 22, 27.

• Qwen/Qwen-7B-Chat: Total 33 layers, 4096 neurons
per layer. Sampled layers: 5, 11, 16, 22, 27.

• Qwen/Qwen-14B: Total 41 layers, 5120 neurons per
layer. Sampled layers: 6, 13, 20, 27, 34.

• Qwen/Qwen-14B-Chat: Total 41 layers, 5120 neurons
per layer. Sampled layers: 6, 13, 20, 27, 34.

• Qwen/Qwen1.5-0.5B: Total 25 layers, 1024 neurons per
layer. Sampled layers: 4, 8, 12, 16, 20.

• Qwen/Qwen1.5-0.5B-Chat: Total 25 layers, 1024 neu-
rons per layer. Sampled layers: 4, 8, 12, 16, 20.

• Qwen/Qwen1.5-1.8B: Total 25 layers, 2048 neurons per
layer. Sampled layers: 4, 8, 12, 16, 20.

• Qwen/Qwen1.5-1.8B-Chat: Total 25 layers, 2048 neu-
rons per layer. Sampled layers: 4, 8, 12, 16, 20.

• Qwen/Qwen1.5-4B: Total 41 layers, 2560 neurons per
layer. Sampled layers: 6, 13, 20, 27, 34.

• Qwen/Qwen1.5-4B-Chat: Total 41 layers, 2560 neu-
rons per layer. Sampled layers: 6, 13, 20, 27, 34.

• Qwen/Qwen1.5-7B: Total 33 layers, 4096 neurons per
layer. Sampled layers: 5, 11, 16, 22, 27.

• Qwen/Qwen1.5-7B-Chat: Total 33 layers, 4096 neu-
rons per layer. Sampled layers: 5, 11, 16, 22, 27.

• Qwen/Qwen1.5-14B: Total 41 layers, 5120 neurons per
layer. Sampled layers: 6, 13, 20, 27, 34.

• Qwen/Qwen1.5-14B-Chat: Total 41 layers, 5120 neu-
rons per layer. Sampled layers: 6, 13, 20, 27, 34.

• Qwen/Qwen2-0.5B: Total 25 layers, 896 neurons per
layer. Sampled layers: 4, 8, 12, 16, 20.

• Qwen/Qwen2-0.5B-Instruct: Total 25 layers, 896
neurons per layer. Sampled layers: 4, 8, 12, 16, 20.

• Qwen/Qwen2-1.5B: Total 29 layers, 1536 neurons per
layer. Sampled layers: 4, 9, 14, 19, 24.

• Qwen/Qwen2-1.5B-Instruct: Total 29 layers, 1536
neurons per layer. Sampled layers: 4, 9, 14, 19, 24.

• Qwen/Qwen2-7B: Total 29 layers, 3584 neurons per
layer. Sampled layers: 4, 9, 14, 19, 24.

• Qwen/Qwen2-7B-Instruct: Total 29 layers, 3584 neu-
rons per layer. Sampled layers: 4, 9, 14, 19, 24.

SeaLLMs

• SeaLLMs/SeaLLMs-v3-1.5B: Total 29 layers, 1536 neu-
rons per layer. Sampled layers: 4, 9, 14, 19, 24.

• SeaLLMs/SeaLLMs-v3-1.5B-Chat: Total 29 layers,
1536 neurons per layer. Sampled layers: 4, 9, 14, 19,
24.

• SeaLLMs/SeaLLMs-v3-7B: Total 29 layers, 3584 neu-
rons per layer. Sampled layers: 4, 9, 14, 19, 24.

• SeaLLMs/SeaLLMs-v3-7B-Chat: Total 29 layers, 3584
neurons per layer. Sampled layers: 4, 9, 14, 19, 24.

SmolLM

• HuggingFaceTB/SmolLM-135M: Total 31 layers, 576
neurons per layer. Sampled layers: 5, 10, 15, 20, 25.

• HuggingFaceTB/SmolLM-135M-Instruct: Total 31
layers, 576 neurons per layer. Sampled layers: 5, 10, 15,
20, 25.

• HuggingFaceTB/SmolLM-360M: Total 33 layers, 960
neurons per layer. Sampled layers: 5, 11, 16, 22, 27.

• HuggingFaceTB/SmolLM-360M-Instruct: Total 33
layers, 960 neurons per layer. Sampled layers: 5, 11, 16,
22, 27.

https://huggingface.co/NousResearch/Llama-2-7b-chat-hf
https://huggingface.co/NousResearch/Llama-2-13b-chat-hf
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/allenai/OLMo-1B-hf
https://huggingface.co/allenai/OLMo-7B-hf
https://huggingface.co/allenai/OLMo-7B-Instruct-hf
https://huggingface.co/Qwen/Qwen-7B
https://huggingface.co/Qwen/Qwen-7B-Chat
https://huggingface.co/Qwen/Qwen-14B
https://huggingface.co/Qwen/Qwen-14B-Chat
https://huggingface.co/Qwen/Qwen1.5-0.5B
https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat
https://huggingface.co/Qwen/Qwen1.5-1.8B
https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat
https://huggingface.co/Qwen/Qwen1.5-4B
https://huggingface.co/Qwen/Qwen1.5-4B-Chat
https://huggingface.co/Qwen/Qwen1.5-7B
https://huggingface.co/Qwen/Qwen1.5-7B-Chat
https://huggingface.co/Qwen/Qwen1.5-14B
https://huggingface.co/Qwen/Qwen1.5-14B-Chat
https://huggingface.co/Qwen/Qwen2-0.5B
https://huggingface.co/Qwen/Qwen2-0.5B-Instruct
https://huggingface.co/Qwen/Qwen2-1.5B
https://huggingface.co/Qwen/Qwen2-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2-7B
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/SeaLLMs/SeaLLMs-v3-1.5B
https://huggingface.co/SeaLLMs/SeaLLMs-v3-1.5B-Chat
https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B
https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat
https://huggingface.co/HuggingFaceTB/SmolLM-135M
https://huggingface.co/HuggingFaceTB/SmolLM-135M-Instruct
https://huggingface.co/HuggingFaceTB/SmolLM-360M
https://huggingface.co/HuggingFaceTB/SmolLM-360M-Instruct
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• HuggingFaceTB/SmolLM-1.7B: Total 25 layers, 2048
neurons per layer. Sampled layers: 4, 8, 12, 16, 20.

• HuggingFaceTB/SmolLM-1.7B-Instruct: Total 25
layers, 2048 neurons per layer. Sampled layers: 4, 8, 12,
16, 20.

TinyLlama

• TinyLlama/TinyLlama_v1.1: Total 23 layers, 2048
neurons per layer. Sampled layers: 3, 7, 11, 15, 19.

• TinyLlama/TinyLlama_v1.1_chinese: Total 23 lay-
ers, 2048 neurons per layer. Sampled layers: 3, 7, 11,
15, 19.

• TinyLlama/TinyLlama_v1.1_math_code: Total 23
layers, 2048 neurons per layer. Sampled layers: 3, 7, 11,
15, 19.

Yi

• 01-ai/Yi-1.5-6B: Total 33 layers, 4096 neurons per
layer. Sampled layers: 5, 11, 16, 22, 27.

• 01-ai/Yi-1.5-6B-Chat: Total 33 layers, 4096 neu-
rons per layer. Sampled layers: 5, 11, 16, 22, 27.

• 01-ai/Yi-1.5-9B: Total 49 layers, 4096 neurons per
layer. Sampled layers: 8, 16, 24, 32, 40.

• 01-ai/Yi-1.5-9B-Chat: Total 49 layers, 4096 neu-
rons per layer. Sampled layers: 8, 16, 24, 32, 40.

Bloom & Bloomz

• bigscience/bloom-560m: Total 25 layers, 1024 neu-
rons per layer. Sampled layers: 4, 8, 12, 16, 20.

• bigscience/bloomz-560m: Total 25 layers, 1024 neu-
rons per layer. Sampled layers: 4, 8, 12, 16, 20.

• bigscience/bloom-1b1: Total 25 layers, 1536 neu-
rons per layer. Sampled layers: 4, 8, 12, 16, 20.

• bigscience/bloomz-1b1: Total 25 layers, 1536 neu-
rons per layer. Sampled layers: 4, 8, 12, 16, 20.

• bigscience/bloom-1b7: Total 25 layers, 2048 neu-
rons per layer. Sampled layers: 4, 8, 12, 16, 20.

• bigscience/bloomz-1b7: Total 25 layers, 2048 neu-
rons per layer. Sampled layers: 4, 8, 12, 16, 20.

• bigscience/bloom-3b: Total 31 layers, 2560 neurons
per layer. Sampled layers: 5, 10, 15, 20, 25.

• bigscience/bloomz-3b: Total 31 layers, 2560 neu-
rons per layer. Sampled layers: 5, 10, 15, 20, 25.

• bigscience/bloom-7b1: Total 31 layers, 4096 neu-
rons per layer. Sampled layers: 5, 10, 15, 20, 25.

• bigscience/bloomz-7b1: Total 31 layers, 4096 neu-
rons per layer. Sampled layers: 5, 10, 15, 20, 25.

Gemma & Gemma-2

• google/gemma-2b: Total 19 layers, 2048 neurons per
layer. Sampled layers: 3, 6, 9, 12, 15.

• google/gemma-2b-it: Total 19 layers, 2048 neurons
per layer. Sampled layers: 3, 6, 9, 12, 15.

• google/gemma-7b: Total 29 layers, 3072 neurons per
layer. Sampled layers: 4, 9, 14, 19, 24.

• google/gemma-7b-it: Total 29 layers, 3072 neurons
per layer. Sampled layers: 4, 9, 14, 19, 24.

• google/gemma-2-2b: Total 27 layers, 2304 neurons
per layer. Sampled layers: 4, 9, 13, 18, 22.

• google/gemma-2-2b-it: Total 27 layers, 2304 neu-
rons per layer. Sampled layers: 4, 9, 13, 18, 22.

• google/gemma-2-9b: Total 43 layers, 3584 neurons
per layer. Sampled layers: 7, 14, 21, 28, 35.

• google/gemma-2-9b-it: Total 43 layers, 3584 neu-
rons per layer. Sampled layers: 7, 14, 21, 28, 35.

GLM

• THUDM/glm-4-9b: Total 41 layers, 4096 neurons per
layer. Sampled layers: 6, 13, 20, 27, 34.

• THUDM/glm-4-9b-chat: Total 41 layers, 4096 neurons
per layer. Sampled layers: 6, 13, 20, 27, 34.

GPT-Neo

• EleutherAI/gpt-neo-125m: Total 13 layers, 768 neu-
rons per layer. Sampled layers: 2, 4, 6, 8, 10.

• EleutherAI/gpt-neo-1.3B: Total 25 layers, 2048 neu-
rons per layer. Sampled layers: 4, 8, 12, 16, 20.

• EleutherAI/gpt-neo-2.7B: Total 33 layers, 2560 neu-
rons per layer. Sampled layers: 5, 11, 16, 22, 27.

• EleutherAI/gpt-neox-20B: Total 45 layers, 6144 neu-
rons per layer. Sampled layers: 7, 15, 22, 30, 37.

GPT-2

• openai-community/gpt2: Total 13 layers, 768 neu-
rons per layer. Sampled layers: 2, 4, 6, 8, 10.

• openai-community/gpt2-medium: Total 25 layers,
1024 neurons per layer. Sampled layers: 4, 8, 12, 16,
20.

• openai-community/gpt2-large: Total 37 layers,
1280 neurons per layer. Sampled layers: 6, 12, 18,
24, 30.

• openai-community/gpt2-xl: Total 49 layers, 1600
neurons per layer. Sampled layers: 8, 16, 24, 32, 40.

InternLM-2.5

• internlm/internlm2_5-1_8b: Total 25 layers, 2048
neurons per layer. Sampled layers: 4, 8, 12, 16, 20.

• internlm/internlm2_5-1_8b-chat: Total 25 layers,
2048 neurons per layer. Sampled layers: 4, 8, 12, 16,
20.

• internlm/internlm2_5-7b: Total 33 layers, 4096
neurons per layer. Sampled layers: 5, 11, 16, 22, 27.

• internlm/internlm2_5-7b-chat: Total 33 layers,
4096 neurons per layer. Sampled layers: 5, 11, 16,
22, 27.

• internlm/internlm2_5-20b: Total 49 layers, 6144
neurons per layer. Sampled layers: 8, 16, 24, 32, 40.

https://huggingface.co/HuggingFaceTB/SmolLM-1.7B
https://huggingface.co/HuggingFaceTB/SmolLM-1.7B-Instruct
https://huggingface.co/TinyLlama/TinyLlama_v1.1
https://huggingface.co/TinyLlama/TinyLlama_v1.1_chinese
https://huggingface.co/TinyLlama/TinyLlama_v1.1_math_code
https://huggingface.co/01-ai/Yi-1.5-6B
https://huggingface.co/01-ai/Yi-1.5-6B-Chat
https://huggingface.co/01-ai/Yi-1.5-9B
https://huggingface.co/01-ai/Yi-1.5-9B-Chat
https://huggingface.co/bigscience/bloom-560m
https://huggingface.co/bigscience/bloomz-560m
https://huggingface.co/bigscience/bloom-1b1
https://huggingface.co/bigscience/bloomz-1b1
https://huggingface.co/bigscience/bloom-1b7
https://huggingface.co/bigscience/bloomz-1b7
https://huggingface.co/bigscience/bloom-3b
https://huggingface.co/bigscience/bloomz-3b
https://huggingface.co/bigscience/bloom-7b1
https://huggingface.co/bigscience/bloomz-7b1
https://huggingface.co/google/gemma-2b
https://huggingface.co/google/gemma-2b-it
https://huggingface.co/google/gemma-7b
https://huggingface.co/google/gemma-7b-it
https://huggingface.co/google/gemma-2-2b
https://huggingface.co/google/gemma-2-2b-it
https://huggingface.co/google/gemma-2-9b
https://huggingface.co/google/gemma-2-9b-it
https://huggingface.co/THUDM/glm-4-9b
https://huggingface.co/THUDM/glm-4-9b-chat
https://huggingface.co/EleutherAI/gpt-neo-125m
https://huggingface.co/EleutherAI/gpt-neo-1.3B
https://huggingface.co/EleutherAI/gpt-neo-2.7B
https://huggingface.co/EleutherAI/gpt-neox-20B
https://huggingface.co/openai-community/gpt2
https://huggingface.co/openai-community/gpt2-medium
https://huggingface.co/openai-community/gpt2-large
https://huggingface.co/openai-community/gpt2-xl
https://huggingface.co/internlm/internlm2_5-1_8b
https://huggingface.co/internlm/internlm2_5-1_8b-chat
https://huggingface.co/internlm/internlm2_5-7b
https://huggingface.co/internlm/internlm2_5-7b-chat
https://huggingface.co/internlm/internlm2_5-20b
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• internlm/internlm2_5-20b-chat: Total 49 layers,
6144 neurons per layer. Sampled layers: 8, 16, 24,
32, 40.

OPT
• facebook/opt-125m: Total 13 layers, 768 neurons per

layer. Sampled layers: 2, 4, 6, 8, 10.

• facebook/opt-1.3b: Total 25 layers, 2048 neurons
per layer. Sampled layers: 4, 8, 12, 16, 20.

• facebook/opt-2.7b: Total 33 layers, 2560 neurons
per layer. Sampled layers: 5, 11, 16, 22, 27.

• facebook/opt-6.7b: Total 33 layers, 4096 neurons
per layer. Sampled layers: 5, 11, 16, 22, 27.

• facebook/opt-13b: Total 41 layers, 5120 neurons per
layer. Sampled layers: 6, 13, 20, 27, 34.

Phi
• microsoft/phi-1: Total 25 layers, 2048 neurons per

layer. Sampled layers: 4, 8, 12, 16, 20.

• microsoft/phi-1_5: Total 25 layers, 2048 neurons
per layer. Sampled layers: 4, 8, 12, 16, 20.

• microsoft/phi-2: Total 33 layers, 2560 neurons per
layer. Sampled layers: 5, 11, 16, 22, 27.

• microsoft/Phi-3-mini-128k-instruct: Total 33
layers, 3072 neurons per layer. Sampled layers: 5, 11,
16, 22, 27.

• microsoft/Phi-3-small-128k-instruct: Total 33
layers, 4096 neurons per layer. Sampled layers: 5, 11,
16, 22, 27.

Pythia
• EleutherAI/pythia-1.4b: Total 25 layers, 2048 neu-

rons per layer. Sampled layers: 4, 8, 12, 16, 20.

• EleutherAI/pythia-12b: Total 37 layers, 5120 neu-
rons per layer. Sampled layers: 6, 12, 18, 24, 30.

• EleutherAI/pythia-14m: Total 7 layers, 128 neurons
per layer. Sampled layers: 1, 2, 3, 4, 5.

• EleutherAI/pythia-160m: Total 13 layers, 768 neu-
rons per layer. Sampled layers: 2, 4, 6, 8, 10.

• EleutherAI/pythia-1b: Total 17 layers, 2048 neu-
rons per layer. Sampled layers: 2, 5, 8, 11, 14.

• EleutherAI/pythia-2.8b: Total 33 layers, 2560 neu-
rons per layer. Sampled layers: 5, 11, 16, 22, 27.

• EleutherAI/pythia-410m: Total 25 layers, 1024 neu-
rons per layer. Sampled layers: 4, 8, 12, 16, 20.

• EleutherAI/pythia-6.7b: Total 33 layers, 4096 neu-
rons per layer. Sampled layers: 5, 11, 16, 22, 27.

• EleutherAI/pythia-70m: Total 7 layers, 512 neurons
per layer. Sampled layers: 1, 2, 3, 4, 5.

Others
• anas-awadalla/mpt-1b-redpajama-200b: Total 24

layers, 2048 neurons per layer. Sampled layers: 4, 8, 12,
16, 20.

• CohereForAI/aya-23-8B: Total 33 layers, 4096 neu-
rons per layer. Sampled layers: 5, 11, 16, 22, 27.

• distilbert/distilgpt2: Total 7 layers, 768 neurons
per layer. Sampled layers: 1, 2, 3, 4, 5.

B List of Linguistic Phenomena used in
Section 4.4

BLIMP Dataset (English)

• Anaphor agreement

– anaphor gender agreement

– anaphor number agreement

• Polarity item

– matrix question npi licensor present

– npi present 1

– npi present 2

– only npi licensor present

– only npi scope

– sentential negation npi licensor present

– sentential negation npi scope

• Filler gap dependency

– wh questions object gap

– wh questions subject gap

– wh questions subject gap long distance

– wh vs that no gap

– wh vs that no gap long distance

– wh vs that with gap

– wh vs that with gap long distance

SLING Dataset (Chinese)

• Anaphor agreement

– self male

– cl men self female

– pp male

– baseline male

– baseline cl men female

– baseline cl female

– cl self male

– cl men self male

– self female

– pp female

– baseline cl men male

– menself female

– menself male

– cl self female

– baseline cl male

– baseline female

– baseline men female

– baseline men male

• Polarity item

– any

– more or less

– even wh

• Filler gap dependency

– rc resumptive noun

– rc resumptive pronoun

https://huggingface.co/internlm/internlm2_5-20b-chat
https://huggingface.co/facebook/opt-125m
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/facebook/opt-2.7b
https://huggingface.co/facebook/opt-6.7b
https://huggingface.co/facebook/opt-13b
https://huggingface.co/microsoft/phi-1
https://huggingface.co/microsoft/phi-1_5
https://huggingface.co/microsoft/phi-2
https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
https://huggingface.co/microsoft/Phi-3-small-128k-instruct
https://huggingface.co/EleutherAI/pythia-1.4b
https://huggingface.co/EleutherAI/pythia-12b
https://huggingface.co/EleutherAI/pythia-14m
https://huggingface.co/EleutherAI/pythia-160m
https://huggingface.co/EleutherAI/pythia-1b
https://huggingface.co/EleutherAI/pythia-2.8b
https://huggingface.co/EleutherAI/pythia-410m
https://huggingface.co/EleutherAI/pythia-6.7b
https://huggingface.co/EleutherAI/pythia-70m
https://huggingface.co/anas-awadalla/mpt-1b-redpajama-200b
https://huggingface.co/CohereForAI/aya-23-8B
https://huggingface.co/distilbert/distilgpt2


6879

C Additional Visualizations

C.1 Consistency of Linguistic Similarity Across 104 LLMs

Figure 8: Pair-wise alignment scores of 104 LLMs in BLiMP dataset (English), corresponding to Fig. 2 left.
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Figure 9: UMAP visualization based on LLM alignment scores on BLiMP dataset (English), corresponding to
Fig. 2 left.



6881

Figure 10: Pair-wise alignment scores of 104 LLMs in SLING dataset (Chinese), corresponding to Fig. 2 right.
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Figure 11: UMAP visualization based on LLM alignment scores on SLING dataset (Chinese), corresponding to
Fig. 2 right.
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Figure 12: Pair-wise alignment scores of 104 LLMs in RuBLiMP dataset (Russian).
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Figure 13: UMAP visualization based on LLM alignment scores on RuBLiMP dataset (Russian).
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C.2 Alignment between Linguistic Similarity and Theoretical Categorizations

Figure 14: Self-similarities of linguistic phenomena in English, Chinese, and Russian
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Figure 15: Phenomena-level linguistic similarity matrix of SLING
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Figure 16: Phenomena-level linguistic similarity matrix of RUBLiMP
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C.3 Linguistic Similarity Across Different Languages
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Figure 17: Extended detailed visualization of Fig. 7.


	Introduction
	Related Work
	Measuring Linguistic Similarity in Large Language Models
	Definition
	Implementation

	Result and Discussion
	Consistency of Linguistic Similarity Across 104 LLMs
	Alignment between Linguistic Similarity and Theoretical Categorizations
	The Relationship Between Linguistic Similarity and Semantic Similarity
	Linguistic Similarity Across Different Languages

	Conclusion
	Limitations and Future Works
	The List of 104 LLMs
	List of Linguistic Phenomena used in Section 4.4
	Additional Visualizations
	Consistency of Linguistic Similarity Across 104 LLMs
	Alignment between Linguistic Similarity and Theoretical Categorizations
	Linguistic Similarity Across Different Languages


