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Abstract

Relation Extraction (RE) is a multi-task process
that is a crucial part of all information extrac-
tion pipelines. With the introduction of the
generative language models, Large Language
Models (LLMs) have showcased significant
performance boosts for complex natural lan-
guage processing and understanding tasks. Re-
cent research in RE has also started incorporat-
ing these advanced machines in their pipelines.
However, the full extent of the LLM’s poten-
tial for extracting relations remains unknown.
Consequently, this study aims to conduct the
first feasibility analysis to explore the viability
of LLMs for RE by investigating their robust-
ness to various complex RE scenarios stem-
ming from data-specific characteristics. By
conducting an exhaustive analysis of five state-
of-the-art LLMs backed by more than 2100 ex-
periments, this study posits that LLMs are not
robust enough to tackle complex data charac-
teristics for RE, and additional research efforts
focusing on investigating their behaviors at ex-
tracting relationships are needed. The source
code for the evaluation pipeline can be found
on here1.

1 Introduction

Relation Extraction (RE) in Natural Language Pro-
cessing (NLP) deals with extracting relationships
between target nouns or entities from textual data.
It is a critical step in Information Extraction (IE)
due to its wide-scale applicability for downstream
applications such as Knowledge Base (KB) cre-
ation and Question Answering (QA).

With the introduction of generative large lan-
guage models (LLMs) such as GPT-3 (Brown,
2020) and Llama (Touvron et al., 2023), research
in RE has also shifted to incorporating such ad-
vanced technologies to extract semantic relation-
ships. LLMs are pre-trained on massive amounts

1https://aaig.ece.ufl.edu/projects/
relation-extraction

of data and exhibit enhanced language understand-
ing capabilities. This prowess has made them a
natural choice for complex IE tasks. Although the
existing research community has readily adapted
to using LLMs for RE (Wan et al., 2023; Xu et al.,
2023), their capabilities at extracting relations in
the presence of complex data attributes have yet
to be thoroughly investigated (Li et al., 2023; Ma
et al., 2023).

Issues such as fine-grained and similar relation
types, multiple relations and overlapping entities,
and scarcity of annotated data have long challenged
traditional relation extractors (Aydar et al., 2020;
Swarup et al., 2024). These issues arise from the
complex nature of data and are abundant in fields
such as business, finance, and medicine, where nu-
merous entities interact to form an ecosystem. For
example, the sharing of entities between multiple
relations has been a challenging use case for most
traditional relation extractors as it leads to ambigu-
ous use cases. It is imperative to build relation
extractors that are robust to such complex char-
acteristics to apply them to real-world use cases.
LLMs, due to the vast knowledge contained in them
and the ability for common-sense reasoning, can
present a viable solution to efficiently tackle these
problems. Thus, this study aims to answer whether
LLMs are robust at extracting relationships in the
presence of such complex data characteristics. The
contributions of this study can be summarised as
follows:

• First feasibility study for RE that aims to an-
alyze state-of-the-art (SOTA) LLM families
such as GPT, Llama, Mistral, OpenChat, and
Gemma based on their capabilities of extract-
ing relationships from complex data.

• Highlights the challenges faced by the current
models and enlists insights for future research
backed by more than 2100 experiments.

mailto:aswarup@ufl.edu
https://aaig.ece.ufl.edu/projects/relation-extraction
https://aaig.ece.ufl.edu/projects/relation-extraction
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2 Related Work

A brief overview of the research endeavors asso-
ciated with RE, from traditional RE algorithms to
generative approaches, has been presented below.
The discussion not only details the flow of research
in this field but also highlights the various chal-
lenges faced by the relation extractors.

2.1 Traditional Approaches for RE

A plethora of research exists in RE that heavily em-
ploys neural networks. Early approaches focused
on relation classification (RC) and used CNNs and
LSTMs (Lee et al., 2019; Zhou et al., 2016) to ex-
tract contextual representations of the input that
could be used as feature representations for a clas-
sifier. With the introduction of the transformer
architecture, research shifted solely to finetuning
pre-trained language models (PLMs) for RC (Wu
and He, 2019; Zhou and Chen, 2022). Additionally,
the importance of entities in the extraction process
was emphasized, and many approaches aimed to
incorporate entity-specific knowledge into the clas-
sification process (Yamada et al., 2020; Zhang et al.,
2019, 2017a). Although the PLMs provided signif-
icant performance gains for RC, it was found that
such algorithms were not robust to complex scenar-
ios such as long-tail distribution of data, presence
of ambiguous context and relations, and overlap-
ping entities (Swarup et al., 2024; Han et al., 2020).

Subsequently, the focus of the community
shifted to the domain of joint entity and relation
extraction (JRE), which dealt with the extraction
of entities and relations in the form of triplets in a
single pipeline. The combined extraction helped
seamlessly share important entity-specific infor-
mation from the entity to the relation extraction
phases (Li et al., 2021; Sui et al., 2020; Tang et al.,
2022). This paradigm was especially valuable for
tackling the problem of overlapping entities (Zhao
et al., 2021) as it could extract multiple triplets for
the same text sample. Although JRE algorithms
were a natural solution for many of the problems
faced by their RC counterparts, they were found to
be extremely brittle to varying data characteristics.
Additionally, the algorithms were prone to high
false negative values due to the discrepancies in the
semantic structure of ground truth and predicted
labels (Wang et al., 2020).

2.2 Generative Approaches for RE

With the introduction of GPT-2 (Radford et al.,
2019), the concept of prompt-based RE algorithms
became popular. Initial algorithms focused on find-
ing optimal prompts to be used as input to a PLM
(Han et al., 2022; Chen et al., 2022). Subsequently,
with the introduction of chat-based models, the do-
main of RE has moved to the use of generative
models for classification and extraction. LLMs are
trained on vast amounts of data and can make effi-
cient decisions by looking at a few data points dur-
ing inference. Thus, the potential of LLMs as few-
shot or low-resource extractors has been widely
studied. However, the consensus remains uncertain.
Some studies suggest that LLMs efficiently extract
relationships under few-shot settings (Wei et al.,
2023). In contrast, others present a contrary belief
and support that the LLMs should be used to aid
traditional extractors (Ma et al., 2023). Finally, an-
other major issue with using LLMs for RE, similar
to traditional JRE, is the difficulty in accurate evalu-
ations. It has been highlighted that the open-ended
nature of generative models results in predictions
that, although semantically accurate, might differ
from the ground truth labels. This issue leads to
high false negatives and has become a major con-
cern as without proper evaluation techniques, it is
difficult to analyze the capabilities of using LLMs
for RE (Wadhwa et al., 2023). To alleviate this
issue, the GenRES (Jiang et al., 2024) evaluation
benchmark was introduced recently, which aims to
qualitatively analyze LLM-based relation predic-
tions.

3 Methodology

The research in RE has been segregated into two
paradigms: Relation Classification (RC) and Joint
Relation Extraction (JRE). RC can be defined as
extracting a relationship r between two entities e1
and e2 such that r ∈ R where R is a set of prede-
fined relation types. On the other hand, JRE can
be described as extracting entity relation triplets
(entity1, relation, entity2) from text when the
entity information is unknown before extraction.
This study takes a two-pronged approach and ex-
plores both paradigms to achieve a holistic view of
the problem.

Although LLMs have been shown to provide
significant performance gains, especially in low-
resource settings, it has been observed that the
LLM’s performance is not stable and is usually
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Figure 1: Evaluation pipeline for LLM-based RC and JRE inference.

highly susceptible to inference conditions. Some
such techniques include the choice of learning strat-
egy (zero-shot vs few-shot) and prompt construc-
tion. Thus, to fully investigate LLMs, this study
examines their performance under various infer-
ence conditions. The overall evaluation pipeline
can be divided into three key components: 1) learn-
ing strategy, 2) prompt engineering, and 3) eval-
uation. Figure 1 depicts the overall pipeline, and
more details of each strategy are discussed below.

3.1 Learning Strategy
The first phase of the evaluation pipeline deals with
the strategy used to help the LLM learn the tar-
get task. Although LLMs can perform tasks in
low-resource settings such as zero-shot, it has been
observed that the LLM’s performance increases
many-fold when few training samples are provided
during inference (Wei et al., 2022). To achieve
this, in-context learning (ICL) has emerged as one
of the most popular strategies where an LLM is
given knowledge of the task through selective train-
ing samples and labels that act as demonstrations
(Dong et al., 2022). This study employs three pop-
ular ICL strategies to retrieve demonstrations from
training data along with zero-shot inference. The
details are as follows:

• Zero-shot Inference (zero): Only the test data
is provided as input via a prompt without in-
corporating any training samples as demon-
strations.

• Random retriever (random) - randomly se-
lects K training samples to be used as demon-

strations for the LLM.

• KNN-based retriever (topK) - extracts K most
semantically similar samples to the test sam-
ples. The semantic similarity is calculated us-
ing BERT-based sentence embeddings, and
nearest neighbors are found using a KNN
(Wan et al., 2023; Liu et al., 2022).

• Diversity-based retriever (voteK) - a two-
stage process that uses graph-based tech-
niques to extract N selective samples from
the training set. This smaller pool is then used
to select K samples using a prompt-retrieval
strategy optimized using the context length of
the prompt. The fast-votek implementation
of the work was used for this study (Su et al.,
2022).

3.2 Prompt-Engineering

Next, prompts were carefully curated with the RC
and JRE tasks in mind. Two key variables when
creating prompts for RE can be the incorporation
of relation label verbalizations and entity-type in-
formation in the prompts. Thus, based on the past
literature (Jiang et al., 2024; Wadhwa et al., 2023),
the following prompting strategies were used for
LLM inference:

• No additional information (open): used to
analyze the performance of the LLM in an
open-ended setting where no prior informa-
tion about the target relation labels and entity
types has been provided. Used for both RC
and JRE.
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• Only relation information (rel++): used to
analyze RE capabilities of the LLMs when the
target relation set is provided in the prompt
using label verbalizations. Used only for RC.

• Only entity type information (ent++): used to
study the influence of prior knowledge of en-
tity type information on the RE process. Only
used for RC where the entity type information
was incorporated within each context sample.

• Both entity and relation type information
(entrel++): a combination of rel++ and ent++
prompts used to analyze the performance of
the LLMs when maximum auxiliary informa-
tion is provided. Used for both RC and JRE.

Prompt templates for all the above-mentioned cate-
gories can be found in the Appendix A.7.

3.3 Evaluation Strategies

The final step in the pipeline is the evaluation phase.
As discussed above, this study aims to investigate
LLMs and their performance at extracting relation-
ships when complex data characteristics are present.
Thus, the following data attributes were investi-
gated as part of this study:

• Fine-grained Datasets deal with the complex-
ity that arises when the label space contained
in a dataset is large. Larger label spaces can
lead to multiple relations having similar mean-
ings, which might confuse the models and
cause them to make incorrect predictions.

• Multiple relations & Overlapping entities deal
with the presence of multiple relation types
in a text sample. This scenario often occurs
in conjunction with the overlap of a single or
pair of entities with the relations.

• Low resource scenarios deal with the low
availability of annotated data that can help
the model learn the distribution of different re-
lation types. One example of this occurrence
could be the presence of long-tail relation-
ships in a dataset where not all classes have
good representation.

Next, existing literature has stressed the diffi-
culty of using traditional evaluation techniques
when using LLMs for RE (Wadhwa et al., 2023).
The generative nature of the LLMs can lead to
over-predictions, where the LLM output is rarely
constrained to the original label space of the dataset.

However, traditional forms of evaluation such as
precision (P), recall (R), and f1-score (F1) re-
quire exact matching between ground truth and pre-
dicted labels (Taillé et al., 2020). Thus, this study
aims to evaluate the performance of the LLMs us-
ing both traditional and modern evaluation tech-
niques. Specifically, the evaluation protocol Gen-
RES (Jiang et al., 2024) is employed as a modern
form of evaluation. GenRES aims to evaluate the
LLM predictions beyond exact matching by scoring
them on qualitative aspects based on the compre-
hensiveness of the generated text. To this end, the
following metrics were employed for this study:

• Traditional (P, R, F1): micro-averaged met-
rics used to evaluate both RC and JRE extrac-
tors.

• Topical Similarity Score (TS) to check if the
extracted prediction closely aligns with the
topic of the test samples. A higher value of
TS indicates better topical similarity between
the prediction and source text.

• Uniqueness Score (US) to analyze the diver-
sity in the triples generated for JRE. A higher
value of US indicates that the extracted triplets
contain distinct and varied relationships and
have low redundancy.

• Completeness Score (CS) to analyze how com-
pletely the extracted triples incorporate the in-
formation in the test sample. A higher value
of CS indicates that the extracted triple suc-
cessfully represents all available information.

This study concentrated on TS, US, and CS evalu-
ation metrics rather than the Factualness Score (FS)
and Granuality Score (GS) metrics from GenRES.
This decision was made with the following ratio-
nales in mind: 1) for this study, the focus has been
on the topical relevance of the extracted triples and
how comprehensively they incorporate the infor-
mation from the data distribution while not includ-
ing redundant information. This objective can be
achieved through the first three metrics. 2) While
FS and GS could provide an additional layer of eval-
uation, they rely on LLMs for evaluation, which
introduces potential instability due to their sensi-
tivity to minor changes to prompts. Given these
concerns, FS and GS metrics were not included in
this study. The methodology for metric calculations
can be found in Appendix A.4.
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3.4 Experimental Protocol

Five popular LLMs, “gpt-4o-mini”, “Meta-Llama-
3.1-8B-Instruct”, “gemma-2-9b-it 9B”, “Mistral-
Nemo-Instruct-2407” and “openchat_3.5” were se-
lected for this study. Their hyperparameter details
can be found in Appendix A.3. The LLMs were
selected to represent diverse LLM families from
the literature. Next, four datasets were chosen for
this work: TACRED (Zhang et al., 2017b), NYT10
(Riedel et al., 2010), FewRel (Han et al., 2018),
and CrossRE (Bassignana and Plank, 2022), based
on the complex data characteristics they exhibit.
Details of the dataset statistics and preprocessing
steps can be found in Appendix A.1. As is the
trend in the literature, smaller subsets of the pub-
licly available test sets were created by sampling
33% and 50% of the test samples for LLM-based
experiments on RC and JRE, respectively. The sam-
pling was done to conduct exhaustive experiments
without surpassing the budget overhead. The sam-
pling process employed three seed values - 13, 42,
100. Final experiments were conducted on these
three sub-sampled versions of the test sets.

Next, five traditional algorithms were selected
as baselines for the experiments. Algorithms for
RC include RBERT (Wu and He, 2019) and LUKE
(Yamada et al., 2020), PLM-based fine-tuned al-
gorithms, and KnowPrompt (Chen et al., 2022),
a prompt tuning-based algorithm. Similarly, for
JRE, the algorithms SPN4RE (Sui et al., 2020) and
TDEER (Li et al., 2021) were selected. The algo-
rithms were trained in a fully supervised setting
using the original training sets of the datasets. The
details of each algorithm and the experimental pro-
tocol used can be found in the Appendix A.2.

Both zero-shot and few-shot experiments were
conducted for the LLMs. For few-shot learning,
three k values were selected - 5, 10, 20. The k-shots
were retrieved using the same training set used for
the traditional algorithms. Finally, ∼2100 experi-
ments were conducted using the permutations of
4 learning strategies (zero, random, top-k, vote-k),
4 prompting strategies (open, rel++, ent++, en-
trel++), 3 k-shot values and 3 seed iterations. It
is worth mentioning that entity type information
corresponding to each entity was only present for
the TACRED dataset, making it compatible with all
prompting strategies. For NYT10, the entity types
were extracted from the relation label, making the
dataset compatible for open and entrel++ for JRE
and open and rel++ for RC. Finally, since entity

type information was not available for FewRel and
CrossRE, the datasets were only evaluated for open
(both RC and JRE) and rel++ (RC) prompt types.

Finally, for evaluation, micro-precision, recall,
and F1-score were used to analyze the performance
of both RC and JRE models. The concept of “exact-
matching” was used for the JRE models where the
whole triplet was converted to a string and matched
with its ground truth counterpart. Additionally, soft
metrics from the GenRES benchmark discussed
above were used to analyze the JRE models. Note
that for the TACRED dataset, the scores depicted
include the performance of the models on ‘NA’
class as well.

4 Results

The LLMs were evaluated with respect to differ-
ent data characteristics to gauge their performance
capabilities for RC and JRE. The traditional al-
gorithms were also employed to form a basis for
comparison. Based on the results obtained, it was
found that the LLM-based JRE models performed
extremely poorly when evaluated with the tradi-
tional metrics due to their open-ended nature. Thus,
results are discussed based on the GenRES metrics
for the joint extractors. Additionally, this work
aims to analyze the overall efficiency of the LLMs
at extracting relationships in the presence of the
complex characteristics discussed above. Thus,
this section examines the aggregate performance of
the LLMs across multiple experiment dimensions
(datasets, few-shots, seeds, learning, and prompting
strategies). The details of the datasets incorporated
in each complex category can be found in Table 1.
More in-depth and dataset-specific results can be
found in Appendix A.5.

Datasets fine-
grained1

muliple/
overlap2

NYT10 × ✓
FewRel ✓ ×
CrossRE × ✓
TACRED ✓ ✓

1 datasets with fine-grained relationships
2 datasets with multiple relations and overlap-
ping entities

Table 1: Dataset categorization for the study.
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4.1 Fine-grained Relationships
To evaluate the performance of LLMs at extract-
ing fine-grained relationships, the datasets were
divided into ‘fine" and ‘coarse" categories based
on the size of the label space. Specifically, TA-
CRED and FewRel datasets were categorized as
fine-grained with 42 and 80 relations, respectively.
On the contrary, NYT10 and CrossRE datasets
were categorized as coarse-grained, with 17 and 29
relations, respectively.

Model Type P R F1

RBERT
coarse 78.21 78.21 78.21
fine 88.86 88.86 88.86

LUKE
coarse 77.35 77.35 77.35
fine 89.65 89.65 89.65

KnowPrompt
coarse 75.87 75.87 75.87
fine 87.78 87.78 87.78

GPT
coarse 39.77 39.77 39.77
fine 9.76 9.76 9.76

Gemma
coarse 32.95 32.95 32.95
fine 16.89 16.89 16.89

Llama
coarse 25.54 25.54 25.54
fine 7.38 7.38 7.38

Mistral
coarse 37.32 37.32 37.32
fine 8.89 8.89 8.89

Openchat
coarse 18.63 18.63 18.63
fine 9.21 9.21 9.21

Table 2: Average micro-F1 of the RC models for “fine”
and “coarse” dataset categories. The highest scores in
each model-category pair have been highlighted. For
LLM-based models, scores are averaged across 5, 10,
and 20 k-shots, 4 retrieval methods, 3 seeds, and 4
prompting strategies. For PLM-based models, scores
represent five cross-validation folds.

Table 2 depicts the performance of traditional
and LLM-based relation classifiers. It can be ob-
served that LLMs were inefficient at tackling
fine-grained relationships compared to traditional
algorithms like RBERT and LUKE, as can be seen
by the lower performances achieved in the ‘fine“
category by the former models. Additionally, The
low recall values experienced by all LLMs indicate
that the models are prone to high false negatives.
As the label space grows, it is common to find
relationships with similar meanings. These seman-
tically similar relations can be a probable cause of
the mispredictions faced by the models. Further-
more, the performance degradation observed by the
LLMs, suggests that in large label spaces, it is dif-

Figure 2: TS, US, and CS score distribution for “fine”
and “coarse” datasets for JRE models. For LLM-based
models, scores are averaged across 5, 10, and 20 k-
shots, 4 retrieval methods, 3 seeds, and 2 prompting
strategies. For PLM-based models, scores represent
five cross-validation folds. Error bars indicate standard
deviation.

ficult to develop efficient prompts that can impart
the full knowledge of the relation distribution.

Next, Figure 2 depicts the performance of tradi-
tional and LLM-based JRE models in the TS, US,
and CS dimensions. It is apparent that the LLMs
produced triples that were topically more relevant
to the source text than the traditional models for
fine-grained relations. It can be inferred that in
the presence of a large label space, the LLMs
can better understand the distribution of the
source text. Although both categories of extractors
performed comparably at extracting unique triplets,
they were inefficient at extracting triplets that incor-
porate the complete knowledge of the source text in
the presence of fine-grained relationships, as shown
by the low CS scores in the ‘fine" category.
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Figure 3: Micro-F1 score for RC models for multiple relations (left) and overlapping entities (right). For LLM-based
models, scores are averaged across 5, 10, and 20 k-shots, 4 retrieval methods, 3 seeds, and 4 prompting strategies.
For PLM-based models, scores represent five cross-validation folds. Error bars indicate standard deviation.

4.2 Multiple Relations & Overlapping Entities

This section discusses the findings conducted at
the sample level where segregation was done based
on the number of relations and categories of en-
tity overlap associated with the test samples. The
model performances were evaluated in the result-
ing subcategories. Statistics of each category can
be found in Table 3 in the Appendix.

Figure 3 depicts the performance of the PLM
and LLM-based RC extractors. It can be observed
that, like the traditional algorithms, even LLMs are
not robust at tackling scenarios where a single
or a pair of entities are shared between multi-
ple relations. Similarly, the performances take a
hit when extracting relations from samples with
more than a single relation associated with them.
Such scenarios give rise to ambiguity in terms of
context and relational meaning. The ambiguity, in
turn, raises the possibility of multiple correct pre-
dictions, thereby confusing the extractors. Since
JRE works on the principle of extracting multiple
relation triplets from the same sample, it can be a
possible solution to this problem.

Subsequently, the LLM-based JRE extractors
were evaluated for their robustness to this issue.
It was found that the LLMs were negatively im-
pacted by this use case as the redundancy in the
triples increased and completeness decreased
when multiple relations and entity overlaps were
associated with the data. This observation is de-
picted in Figure 4, where both the traditional and
LLM-based algorithms show a gradual reduction in
US scores across the complex categories. It can be
inferred that with multiple associations, the qual-
ity of the triplets decreases, and it is more likely
to have similar and redundant triplets. No topi-
cal variation was observed with this complicated
scenario.

4.3 Low-resource Scenario

Finally, the performance of the LLMs was inves-
tigated for their capabilities at extracting relations
in low-resource settings. Since zero-shot and few-
shot experiments were conducted with the LLMs,
this study investigates the variation in performance
with respect to different shots of data.

Figure 5 depicts the average performance over
all LLMs for RC under different demonstration
retrieval strategies. Apart from a slight gain in aver-
age performance from zero to 5-shot, It can be ob-
served that the LLMs perform consistently across
the shot values. This indicates that incorporating
additional context samples does not significantly
help the LLMs infer relationships, and they are
competent at tackling RC in low-resource settings.

Next, for JRE extractors, it can be inferred from
Figure 6 that the LLMs can achieve better topical
similarity to the source text when used for inference
in zero-shot settings. This observation highlights
the behavior of LLMs to concentrate on the input
demonstrations (when present) rather than the tar-
get text. Furthermore, the US and CS scores stay
comparable across shot values, indicating that in
the presence of low resources, adding additional
demonstrations does not significantly aid the ex-
tractors.

5 Discussion

This section investigates the possible reasons be-
hind the performance degradation experienced by
the LLM-based relation extractors. The influence
of similar relation labels was studied for ‘fine" and
‘coarse" datasets for RC. Note that the LLM pre-
dictions for RC can lie in the following categories:

‘correct", ‘incorrect - match in the label space", ‘in-
correct - no match" and ‘no prediction". To define
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Figure 4: US and CS scores for JRE models for multiple relations (left) and overlapping entities (right). For
LLM-based models, scores are averaged across 5, 10, and 20 k-shots, 4 retrieval methods, 3 seeds, and 2 prompting
strategies. For PLM-based models, scores represent five cross-validation folds. Error bars indicate standard
deviation.

Figure 5: Micro-F1 score variation with different k-shot
values for LLM-based RC models and demonstration
strategies. Scores are averaged across 3 seeds, and 4
prompting strategies. Error bars indicate standard devia-
tion.

similar relationships, the relation labels for each
dataset were clustered together using word embed-
dings and K-means clustering. The methodology
can be found in Appendix A.6. Contrary to the
hypothesis presented in the previous section, it was
found that in the ‘incorrect - a match in the label
space" category, the incorrect predictions did not
belong to the other relations in the same cluster
as the true relation. This finding suggests that the
LLMs are not confused by similar relation labels.

Consequently, on investigating the source of in-
correct predictions, it was found that most such
instances came from the ‘incorrect - no match" cat-

egory. On calculating the cosine similarity between
the “text-embedding-ada-002" based word embed-
dings of the true label and the predicted outcome,
it was found that the LLMs predicted labels similar
in meaning to the target label but did not exactly
match the relation definition in the label space as
shown in Figure 7. These false negative predictions
were more apparent in the fine-grained datasets,
resulting in poor performance.

Summarising the overall observations: First,
as discussed above, RC models suffer from large
false negative predictions, especially in the pres-
ence of large label spaces, which are common for
RE. Second, JRE models were found to have an in-
creased tendency to predict redundant triplets that
lacked uniqueness when multiple relations were
associated with a text sample. Finally, the incor-
poration of demonstrations did not significantly
impact the extractors. Based on these findings, it
can be inferred that similar to traditional extrac-
tors, LLM-base relation extractors are not robust
to complex relation extraction scenarios. Where
the traditional extractors are deterred by ambiguity
caused by similar relationships, the unbounded out-
put of the LLMs has proven to be a big obstacle to
their efficient incorporation in an RE pipeline.
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Figure 6: TS, CS and US score variations with different
k-shot values. Scores are averaged across 3 seeds, and
4 prompting strategies. Error bars indicate standard
deviation.

Figure 7: % incorrect predictions caused per model due
to false negatives. Error bars indicate standard deviation
and the dots represent outliers.

6 Conclusion

This study explores the capabilities of five state-of-
the-art LLMs to extract relationships from textual
data in the presence of complex data characteristics.
To facilitate this, both RC and JRE paradigms in
RE were investigated using a comprehensive set of
experiments with multiple LLMs, demonstration
retrieval, and prompting strategies against five tra-
ditional RE algorithms. The study raised concerns
regarding the feasibility of LLMs for RE. The low
performances combined with the LLMs’ brittleness
to the complex attributes act as a call for action to
better understand the LLM’s behavior with future
work.

7 Limitations

This feasibility study has a few potential limitations
related to the protocols used for the experiments.
First, the datasets selected for this work were con-
strained at the sentence level. The performance
of LLMs for extracting relations at the document
level, which is a more challenging use case, was not
explored in this study. Second, test-retest experi-
ments that test the stability of the LLMs predictions
were not incorporated into the study owing to the
large size of the experimentation protocol. Finally,
this work was constrained to studying the extracted
triplets’ topical consistency, uniqueness, and com-
pleteness. Future work incorporating factual and
granular metrics could help paint a more precise
picture of the JRE models.
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A Appendix

A.1 Datasets
The datasets used for this study have been dis-
cussed below, and their statistics can be found in
Tables 3.

NYT10 (Riedel et al., 2010): A popular RE
dataset created by aligning relations from the Free-
base knowledge base with the New York Times
(NYT) corpus. This study uses the preprocessed
version of the dataset by Takanobu et al. (2019).
The dataset exhibits complex issues such as mul-
tiple relations, overlapping entities, and long-tail
distribution.
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Dataset #rels #test seed norm seo epo n1 n2 n3 n4 n5

CrossRE 17

3026 13 130 2339 557 76 171 251 328 2200
3026 100 131 2308 587 84 169 233 364 2176
3026 42 146 2282 598 86 187 235 337 2181

NYT10 29

1934 13 990 228 716 982 391 184 304 73
1934 100 964 214 756 957 389 193 328 67
1934 42 1008 219 707 998 377 189 302 68

TACRED 42

5118 13 1134 3004 980 1117 776 626 506 2093
5118 100 1086 3081 951 1075 824 604 530 2085
5118 42 1112 3035 971 1103 757 629 517 2112

FewRel 80

2412 13 2394 18 0 2391 21 0 0 0
2412 100 2380 31 1 2379 33 0 0 0
2412 42 2395 16 1 2391 21 0 0 0

Table 3: Test Data Statistics depicting the number of samples in each category as per the JRE paradigm. #rels:
number of relations; #test: number of test samples; norm: normal samples (without overlapping entities); seo: single
entity overlap; epo: entity pair overlap; n1: one relation per sample; n2: two relations per sample; n3: three relations
per sample; n4: four relations per sample; n5: five or more relations per sample.

relations, overlapping entities, and long-tail distri-
bution.

FewRel (Han et al., 2018): A large-scale few-
shot learning dataset with a balanced relation dis-
tribution. The preprocessed version of the dataset
by Zhang et al. (2019) was used where the prede-
fined train and validation sets were mixed, and one
hundred instances from each class were sampled
for the training set and 200 for the validation and
test set. The resulting dataset had 27,328 samples
with 80 relation classes. The dataset exhibits fine-
grained relationships.

CrossRE (Bassignana and Plank, 2022): A
multi-domain RE dataset that contains data from
six domains. For this study, data from all domains
was combined to create the train and test set. The
dataset exhibits complex characteristics such as
multiple relations, overlapping entities, and long-
tail distribution.

Most datasets mentioned above were originally
released for the RC task with entity mentions an-
notated with each text sample. To make them com-
patible with the JRE setting, this work grouped
common text samples together and created triplets
using the existing entity and relation annotations.
Figures 8 and 9 show an example of a text sample
under the RC and JRE settings.

A.2 Traditional Algorithms

The following five PLM-based traditional algo-
rithms were employed as baselines for this study:

Figure 8: Relation Classification: the same sentence acts
as two text samples depending on the target entities.

Figure 9: Joint Relation Extraction: a text sample with
multiple relations.

RBERT: uses a BERT (Devlin, 2018) encoder to
extract contextual representations of the text sam-
ple. The information about the position of entities
is added using special tokens.

LUKE: uses a pre-trained RoBERTa (Liu, 2019)
encoder, which is made to learn the representation
of entities as separate tokens along with the text
sample.

KnowPrompt: incorporates information about
the label space by adding answer words in input
prompts. The representation of these words is opti-
mized using a RoBERTa encoder.

SPN4RE: uses a bidirectional decoder to extract
entity relation triplets. The algorithm introduces
a bipartite loss function to circumvent the ordered
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extraction of triplets.
TDEER: uses a decomportion-based framework

where first, all entity tokens are extracted using a
binary classifier. This stage is followed by relation
extraction using a multi-label classifier.

These algorithms were trained on the selected
datasets using a fully supervised protocol. Five-
fold cross-validation was performed during train-
ing. The trained models were tested on the three
seed subsets of test data. The hyperparameters
from the original implementations of the algo-
rithms were used.

A.3 LLM Hyperparameters
Open-source models, including “Meta-Llama-
3.1-8B-Instruct”, “gemma-2-9b-it 9B”, “Mistral-
Nemo-Instruct-2407”, and “openchat_3.5”, were
utilized via the Hugging Face library2. The
max_new_tokens parameter was set to 300 to-
kens for JRE and 128 tokens for RC, while all
other hyperparameters were left at their default set-
tings. Similarly, for OpenAI’s “gpt-4o-mini”, the
max_tokens parameter was configured to 300 for
JRE and 128 for RC, with a temperature of 0 and
top_p set to 1.

A.4 GenRES Methodology
For calculating the GenRES metrics, the method-
ology followed by Jiang et al. (2024) was used.
LDA-based topic models were calculated for TS
calculation using the test datasets. Number of top-
ics for all datasets was set to 150. For CS and US
calculations, OpenAI’s “text-embedding-ada-002"
embeddings were incorporated.

A.5 Results
Tables 6 and 7 depict the dataset level scores for the
JRE models used in this study. Similarly, Tables
4 and 5 details similar scores for RC models. The
reported scores have been averaged across the k-
shots used for this study owing to the observation
that significant performance gain was not observed
with the models on using greater shots of data.

2https://huggingface.co/

https://huggingface.co/
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Datasets Models Demo P R F1

FewRel

GPT

voteK 41.61 41.61 41.61
topK 25.91 25.91 25.91
random 27.9 27.9 27.9
zero 16.54 16.54 16.54

Gemma

voteK 41.79 41.79 41.79
topK 32.75 32.75 32.75
random 30.09 30.09 30.09
zero 17.22 17.22 17.22

Llama

voteK 34.84 34.84 34.84
topK 23.46 23.46 23.46
random 25.06 25.06 25.06
zero 15.84 15.84 15.84

Mistral

voteK 33.73 33.73 33.73
topK 23.68 23.68 23.68
random 25.07 25.07 25.07
zero 11.92 11.92 11.92

OpenChat

voteK 38.93 38.93 38.93
topK 24.81 24.81 24.81
random 25.57 25.57 25.57
zero 14.68 14.68 14.68

Continued on next page
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Table 4 Continued from previous page

Datasets Models Demo P R F1

NYT10

GPT

voteK 50.23 50.23 50.23
topK 39.87 39.87 39.87
random 41.05 41.05 41.05
zero 25.35 25.35 25.35

Gemma

voteK 47.34 47.34 47.34
topK 38.53 38.53 38.53
random 39.65 39.65 39.65
zero 21.39 21.39 21.39

Llama

voteK 47.35 47.35 47.35
topK 36.96 36.96 36.96
random 38.91 38.91 38.91
zero 21.46 21.46 21.46

Mistral

voteK 46.65 46.65 46.65
topK 33.49 33.49 33.49
random 36.55 36.55 36.55
zero 23.1 23.1 23.1

OpenChat

voteK 46.54 46.54 46.54
topK 33.09 33.09 33.09
random 37.3 37.3 37.3
zero 20.32 20.32 20.32

CrossRE

GPT

voteK 30.97 30.97 30.97
topK 17.89 17.89 17.89
random 24.05 24.05 24.05
zero 9.79 9.79 9.79

Gemma

voteK 32.65 32.65 32.65
topK 16.78 16.78 16.78
random 23.05 23.05 23.05
zero 11.19 11.19 11.19

Llama

voteK 16.14 16.14 16.14
topK 9.12 9.12 9.12
random 12.9 12.9 12.9
zero 5.13 5.13 5.13

OpenChat

voteK 26.17 26.17 26.17
topK 10.76 10.76 10.76
random 18.42 18.42 18.42
zero 5.09 5.09 5.09

Continued on next page
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Table 4 Continued from previous page

Datasets Models Demo P R F1

TACRED

GPT

voteK 9.1 9.1 9.1
topK 5.71 5.71 5.71
random 7.35 7.35 7.35
zero 5.42 5.42 5.42

Gemma

voteK 9.79 9.79 9.79
topK 5.6 5.6 5.6
random 8.03 8.03 8.03
zero 5.79 5.79 5.79

Llama

voteK 7.38 7.38 7.38
topK 2.11 2.11 2.11
random 5.56 5.56 5.56
zero 4.63 4.63 4.63

Mistral

voteK 7.97 7.97 7.97
topK 5.57 5.57 5.57
random 6.92 6.92 6.92
zero 6.26 6.26 6.26

OpenChat

voteK 9.55 9.55 9.55
topK 4.05 4.05 4.05
random 7.4 7.4 7.4
zero 5.35 5.35 5.35

Table 4: Traditional metrics for RC LLM-based models across 0, 5, 10, and 20 few-shot, 4 prompting and 3 seed
strategies.
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Dataset Model P R F1

FewRel

RBERT 89.31 89.31 89.31
LUKE 90.55 90.55 90.55
KnowPrompt 88.38 88.38 88.38

NYT10

RBERT 81.36 81.36 81.36
LUKE 80.41 80.41 80.41
KnowPrompt 76.9 76.9 76.9

CrossRE

RBERT 75.06 75.06 75.06
LUKE 74.29 74.29 74.29
KnowPrompt 74.84 74.84 74.84

TACRED

RBERT 88.42 88.42 88.42
LUKE 88.74 88.74 88.74
KnowPrompt 87.17 87.17 87.17

Table 5: Traditional metrics for RC PLM-based models across five cross-validation folds.
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Datasets Models Demo P R F1 TS CS US

FewRel

GPT

voteK 5.74 9.15 6.62 26.58 60.11 72.43
topK 1.19 2.2 1.44 31.56 56.53 69.79
random 1.76 3.3 2.14 29.16 57.16 72.91
zero 0.25 0.66 0.35 49.6 62.68 68.15

Gemma

voteK 3.92 5.81 4.42 12.5 33.79 36.75
topK 2.03 3.57 2.42 25.03 57.67 63.28
random 2.77 4.68 3.25 22.58 56.07 63.07
zero 0.2 0.44 0.26 42.99 60.29 60.33

Llama

voteK 3.9 7.4 4.68 24.82 66.95 63.28
topK 0.93 2.13 1.19 27.73 58.6 62.89
random 1.29 2.98 1.66 27.59 65.1 61.49
zero 0.09 0.3 0.12 47.94 62.02 53.79

Mistral

voteK 2.58 3.86 2.92 12.85 29.43 69.58
topK 0.41 0.75 0.49 12.14 21.65 63.76
random 1.68 2.82 1.97 23.07 46.79 72.64
zero 0.16 0.54 0.24 42.25 59.43 61.52

OpenChat

voteK 7.39 10.82 8.14 25.42 62.55 79.54
topK 1.97 3.71 2.35 30.49 57.44 75.42
random 2.6 4.43 2.99 28.23 57.23 78.88
zero 0.33 1.24 0.5 57.81 64.06 66.51

Continued on next page
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Table 6 Continued from previous page

Datasets Models Demo P R F1 TS CS US

NYT10

GPT

voteK 25.44 30.46 25.54 16.05 86.95 73.97
topK 16.47 19.41 16.33 18.04 80.57 72
random 14.32 17.19 14.27 16.78 82.51 73.72
zero 5.17 8.13 5.78 32.37 65.07 73

Gemma

voteK 28.42 34.45 28.72 14.54 88.06 65.76
topK 18.82 23.01 19.06 15.64 83.82 63.08
random 11.57 14.22 11.68 12.51 65.89 72.85
zero 4.81 9.16 5.83 27.6 65.48 64.31

Llama

voteK 22.99 32.31 23.68 14.58 86.15 59.1
topK 7.57 11.48 7.98 10.39 46.69 73.4
random 11.23 16.95 11.63 10.63 61.5 42.68
zero 1.28 3.67 1.58 35.06 60.5 60.68

Mistral

voteK 22.69 24.6 21.89 14.63 72.99 78.38
topK 1.26 1.5 1.24 3.06 7.73 96.79
random 13.25 14.64 12.72 15.43 66.6 75.7
zero 3.1 7.93 3.84 32.72 53.22 68.76

OpenChat

voteK 22.3 27.43 22.23 14.69 82.76 72.35
topK 12.61 15.92 12.44 15.84 77.35 68.82
random 11.36 13.77 11 14.56 71.78 76.95
zero 2.21 7.32 2.97 35.86 61.38 65.57

CrossRE

GPT

voteK 16.45 15.52 15.26 33.22 66.03 57.66
topK 4.53 4.74 4.28 38.68 60.65 60.53
random 6.68 6.62 6.28 38.25 59.28 59.16
zero 0.08 0.14 0.09 48.42 53.7 60.69

Gemma

voteK 22.07 19.31 19.67 22.21 69.63 47.21
topK 0.93 0.98 0.91 9.72 18 85.32
random 10.73 9.86 9.76 25.36 64.53 48.95
zero 0.02 0.09 0.04 44.66 52.02 52.98

Llama

voteK 17.46 18.89 17.26 23.74 72.82 48.41
topK 5.53 7.13 5.82 26.5 66.8 49.97
random 8.86 10.68 9.1 26.68 68.15 50.56
zero 0.08 0.11 0.09 50.79 53.76 51.4

Mistral

voteK 14.53 13.72 13.46 28.64 62.31 52.47
topK 3.23 3.75 3.19 33.56 58.25 54.33
random 0.48 0.5 0.46 7.6 12.1 11.64
zero 0.03 0.11 0.05 45.41 51.26 54.3

OpenChat

voteK 18.61 17.44 17.16 28.39 69.54 54.17
topK 4.62 4.88 4.43 35.04 61.95 57.84
random 7.2 7.46 6.86 32.69 63.83 55.4
zero 0.14 0.19 0.16 52.37 57.19 60.01

TACRED

GPT

voteK 3.26 4.06 3.18 19.12 59.21 65.89
topK 1.67 2.21 1.67 25.97 52.24 66.07
random 2.6 3.13 2.5 19.56 53.92 69.56
zero 1.57 2.13 1.61 33.03 33.96 79.95

Continued on next page
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Table 6 Continued from previous page

Datasets Models Demo P R F1 TS CS US

Gemma

voteK 1.97 2.24 1.82 15.94 63.89 58.08
topK 0.7 0.92 0.7 21.42 61.72 52.31
random 1.47 1.68 1.37 16.42 62.32 59.05
zero 1.26 1.8 1.3 26.35 38.91 71.84

Llama

voteK 1.4 2.24 1.45 11.79 46.51 63.65
topK 0.27 0.44 0.28 22.35 64.72 44.87
random 1.3 2.04 1.33 16.47 64.36 44.98
zero 0.23 0.65 0.27 34.55 42.14 61.01

Mistral

voteK 3.21 3.53 2.91 15.85 46.7 70.6
topK 0.74 1.22 0.79 29.6 41.9 71.5
random 2.24 2.44 2.01 16.43 42.62 71.16
zero 0.97 1.85 1.08 34.85 37.14 74.24

OpenChat

voteK 2.1 3.15 2.12 19.37 65.69 43.07
topK 0.29 0.64 0.34 28.01 65.86 29.56
random 1.23 1.93 1.26 19.96 61.97 44.09
zero 0.38 0.94 0.46 41.49 41.14 72

Table 6: Traditional and GenRES metrics for JRE LLM-based models across 0, 5, 10, and 20 few-shot, 4 prompting
and 3 seed strategies.
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Dataset Model P R F1 TS CS US

FewRel
SPN4RE 35.42 39.76 36.81 16.25 65.06 89.02
TDEER 3.87 4.04 3.92 7.27 51.36 94.48

NYT10
SPN4RE 74.88 68.67 70.22 10.99 92.85 82.54
TDEER 29.22 24.37 26 5.53 88.29 82.81

CrossRE
SPN4RE 35.35 30.86 31.44 13.5 74.25 60.12
TDEER 5.07 5.12 4.83 2.58 60.6 48.77

TACRED
SPN4RE 26.38 28.15 24.45 11.12 55.29 68.57
TDEER 18.43 16.88 15.99 5.39 36.9 82.02

Table 7: Traditional and GenRES metrics for JRE PLM-based models across five cross-validation folds.

Figure 10: Prompt RC: open

A.6 Clustering Methodology
To investigate the influence of similar relation la-
bels on the extraction process, the label space was
clustered using word embeddings of the label ver-
balizations. The word embeddings were calculated
using the “text-embedding-ada-002" embeddings,
and K-means was used for clustering. Four sets
of clustering experiments were conducted for each
dataset. The K values were set to (3, 4, 5, 6) for
NYT10, TACRED, and CrossRE and (9, 10, 11,
12) for FewRel. The values were chosen through
manual optimization.

A.7 RC and JRE Prompt Templates
The prompts used for RC are shown in Figures 10,
11, 13, and 12. Similarly, Figures 14 and 15 were
used for JRE.

Figure 11: Prompt RC: rel++

Figure 12: Prompt RC: entrel++
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Figure 13: Prompt RC: ent++

Figure 14: Prompt JRE: open++

Figure 15: Prompt JRE: entrel++
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