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Abstract

This paper presents a novel approach to the
problem of stress placement in Russian text,
with a particular focus on resolving homo-
graphs. We introduce a comprehensive system
that combines morphological analysis, context-
aware neural models, and a specialized "B
fikator" to accurately place stress in Russian
words, including those with ambiguous pro-
nunciations. Our system outperforms existing
solutions, achieving a 0.96 accuracy on homo-
graphs and 0.97 accuracy on non-homograph
words.

1 Introduction

Accurate stress placement is crucial for natural-
sounding text-to-speech (TTS) systems, particu-
larly in languages with complex stress patterns such
as Russian. The challenge is further compounded
by the presence of homographs — words that are
spelled identically but have different meanings and
stress patterns. Resolving these ambiguities is es-
sential for producing intelligible and contextually
appropriate synthesized speech.

In Russian, homographs can be categorized into
several types:

1. Homographs that change meaning based on
their morphological and syntactic features
(e.g., pExu/pexl, where pEku is the nomi-
native plural form of "peka" (river), and pex!1
is the genitive singular form).

2. Homographs that can only be disam-
biguated using surrounding context (e.g., 3A-
MoK /3aMOK - castle/lock).

3. E-homographs
all/everything).

(e.g., BCe/BCé -

Each type presents unique challenges for stress
placement and requires specialized techniques for
resolution.

e . .
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Ha rope ctout 3amok. — Ha
rope CTOWT 3aMOK.

Bce getu nobsT urpbl. — Bce
JETV MOBAT Urpbl.

Figure 1: Audio alignment pipeline

Previous approaches to stress placement in Rus-
sian have often struggled with homographs, lead-
ing to misinterpretations and unnatural-sounding
output. Our work addresses this gap by develop-
ing a system that not only places stress accurately
on standard words, but also resolves homographs
based on their context. The visualization of our
system is presented in Figure 1.

The rest of this paper is organized as follows:
Section 2 provides an overview of related work.
Section 3 describes our methodology, including
data preparation, model development, and system
architecture. Section 4 presents our experimental
results and comparative analysis. Section 5 con-
cludes the paper and summarizes our key findings.
Section 6 addresses the current limitations of our
system, highlighting areas for potential improve-
ment. Section 7 discusses the ethical considerations
related to our use of audio data in this research. Sec-
tion 8 outlines potential directions for future work,
including possible adaptations of our approach to
other Slavic languages.

The main contributions of this paper are:

* A novel system for Russian stress placement
that achieves 0.96 accuracy, surpassing exist-
ing solutions.

* A comprehensive approach to homograph res-
olution, addressing each of the three types
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with specialized techniques.

* The development and analysis of improved
datasets for training stress placement models,
addressing limitations in existing corpora.

* A detailed comparative analysis of our system
against current state-of-the-art solutions.

2 Related Work

The challenge of stress placement in Russian, par-
ticularly with regard to homograph resolution, has
been the subject of several studies in recent years.
However, most existing solutions have limitations
in their ability to handle complex cases.

2.1 Rule-based Approaches

Early attempts at automated stress placement
(Yakovenko et al., 2018) and (Kalinovskiy, 2024)
in Russian relied heavily on rule-based systems
and dictionaries. While these methods worked well
for common words, they struggled with rare words,
and especially certain types of homographs, which
require contextual understanding.

These approaches showed some success with ho-
mographs that differ in morphological features, as
these could often be disambiguated based on part-
of-speech or grammatical form. However, these
systems failed when dealing with contextual homo-
graphs, where the stress difference does not corre-
late with morphological differences.

A classic example of this limitation is the word
pair "3Amok" (castle) and "3amOx" (lock). In this
case, where the correct stress placement depends
entirely on the word’s meaning in context, tradi-
tional rule-based systems were unable to make ac-
curate predictions.

This limitation highlighted the need for more ad-
vanced approaches that could incorporate semantic
and contextual information in the stress placement
process.

2.2 Machine Learning Approaches

While more recent work has leveraged machine
learning techniques, such as the systems developed
by (Ponomareva et al., 2017) and (Kalinovskiy,
2024) that could resolve a limited number of ho-
mographs. The limitations of this earlier machine
learning-based solution highlight the need for more
advanced and comprehensive methods to address
the challenge of stress placement and homograph
resolution in Russian text-to-speech systems.

3 Methodology and Evolution of
RUAccent

Our approach to Russian stress placement and ho-
mograph resolution evolved through several itera-
tions, each building upon the lessons learned from
the previous version. Here, we detail the progres-
sion of RUAccent! and our data collection and
preparation methods.

3.1 RUAccent Version 1: Initial Data Sources

For our initial version, we utilized Common Crawl
(Abadji et al., 2022), a large web corpus, as the
primary data source. This process involved:

1. Filtering Common Crawl data for Russian-
language content using Fasttext language de-
tector (Joulin et al., 2016)

2. Extracting texts with existing stress markings
using regular expressions.

However, we found that the data obtained from
Common Crawl (Abadji et al., 2022) was often of
very low quality, low variance and low homographs
coverage.

3.2 RUAccent Version 2: RNC Data

In our second iteration of RUAccent, we primarily
relied on the Common Crawl (Abadji et al., 2022)
extractions for training data. However, we encoun-
tered significant limitations:

* Limited representation of certain types of ho-
mographs

* Imbalance between prose and poetry samples
(see Figure 2)

To address these issues, we:

1. Filtered and cleaned the RNC (Savchuk et al.,
2019) data:

* Removed all non-Russian sentences

 Filtered out sentences shorter than 2
words

* Removed exact duplicate sentences

2. Augmented the dataset with additional prose
samples from Common Crawl (Abadji et al.,
2022), which underwent the same cleaning
procedure

"https://github.com/Den4ikAI/ruaccent
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Figure 2: Composition of texts in the Russian National
Corpus

3.3 RUAccent Version 3: Synthetic Data
Generation

To address the limitations of both the RNC
(Savchuk et al., 2019) and Common Crawl (Abadji
et al., 2022) datasets, we have implemented syn-
thetic data generation techniques in our third itera-
tion:

1. Utilized the previous RUAccent model to gen-
erate initial stress placements

2. Employed RuPosTagger (Koziev, 2020) mor-
phological analyzer to generate stress place-
ments in morphological homographs

This approach allowed us to generate a large
volume of diverse data, particularly for underrepre-
sented homographs and challenging cases.

3.4 RUAccent Version 4: Incorporating Audio
Data

In our latest iteration, we significantly expanded
our dataset by incorporating audio data. We col-
lected 108,000 hours of diverse audio content, in-
cluding podcasts, audiobooks, YouTube videos,
and radio records. This wide range of audio sources
ensured a rich and varied dataset for training our
models.

Our audio annotation process followed this algo-
rithm:

1. Audio Input: We fed the audio into WhisperX
(Bain et al., 2023) to obtain a textual transcrip-
tion with word-level timestamps

2. Homograph Identification: We extracted the
timestamps of words identified as homographs

3. Stress Classification: These homograph in-
stances were then passed to our classifier,
which predicted the correct stress variant

3.5 Audio-Based Stress Annotation

To process audio data, we developed an audio-
text alignment system comprising a text encoder
and an audio encoder. The text encoder, based
on RoFormer (Su et al., 2023), was designed to
support stress marking, while the audio encoder
utilized a wav2vec (Baevski et al., 2020) model
pre-trained on ASR tasks with stress information.
We employed the Common Voice (Ardila et al.,
2020) dataset for fine-tuning, augmenting it with
stress markings generated by our RUAccent-turbo2
model.

The text encoder was trained on 200 GB of stress-
marked text using AMLM (Autoregressive Masked
Language Modeling) and NSP (Next Sentence Pre-
diction) tasks, similar to the Canine (Clark et al.,
2022) model.

For training the final classifier, we leveraged
various Text-to-Speech (TTS) synthesizers capa-
ble of stress control, such as Silero (Team, 2021)
and vosk-tts (Shmyrev and Team, 2023). This ap-
proach provided diverse audio samples for training.
We applied contrastive learning to align representa-
tions from both text and audio modalities. During
this process, all layers of the text encoder were un-
frozen, while only the last two layers of the audio
encoder were trainable.

This audio-based approach enabled us to cross-
verify stress placement in spoken language and
identify stress based on phonetic cues in audio data.
Through iterative improvement of our data collec-
tion and preparation methods, we created a com-
prehensive, diverse, and high-quality dataset for
training and testing our homograph resolution mod-
els.

3.6 System Architecture

Our system is comprised of three main compo-
nents, each designed to handle specific aspects of
the stress placement task:

1. Homograph Resolver
2. Word stress placer

3. "E-fikator"
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3.6.1 Homograph Resolver

For homographs that require broader contextual un-
derstanding, we developed a series of transformer-
based models:

* Ruaccent-big: Trained on RNC (Savchuk
et al., 2019) corpus

* Ruaccent-turbo: A more compact model
trained on a significantly larger volume of data

¢ Ruaccent-turbo2: A finetuned Ruaccent-turbo
model on extended corpus

* Ruaccent-turbo3: Trained using Audio Align-
ments

Ruaccent-big is ruBERT? (Zmitrovich et al.,
2023) model, finetuned on RNC (Savchuk et al.,
2019) corpus. Ruaccent-turbo, trained on 200 GB
of text data annotated using various pipelines. De-
spite having only 80 million parameters, Ruaccent-
turbo outperforms our previous best model,
Ruaccent-big. Table 3 shows the comparison of the
models on the top 200 homographs, with Ruaccent-
turbo3 achieving the highest accuracy. Also, we
evaluated proprietary solutions.

3.6.2 Homograph Resolver Training Process

Throughout the process, we continuously evaluated
and refined our models to improve performance
on real-world texts. This included further refine-
ment of our pipeline for stress placement in regu-
lar words, incorporating neural network-based ap-
proaches for enhanced accuracy.

The architecture of our model consists of a trans-
former encoder with a linear layer on the head.

For the training of our models, we used the fol-
lowing hyperparameters: a learning rate of 2e-5, 2
training epochs, a batch size of 256 and a constant
learning rate scheduler.

The training process was conducted on two RTX
4090 GPUs over a period of two weeks.

3.6.3 "E-fikator"

To handle the case of "E-homographs”, we devel-
oped a specialized model. This model is based
on ruDistillBert? (Kolesnikova et al., 2022). We
trained it using texts from Wikipedia.

https://huggingface.co/ai-forever/
Rubert-base

*https://huggingface.co/DeepPavlov/
distilrubert-tiny-cased-conversational-5k

Model Accuracy
BERT (APE) 0.951
BERT (ALiBi) 0.964
BERT (RoPE) 0.972

Table 1: Comparison of positional embeddings for word
stress placement

The model was trained in a Named Entity Recog-
nition (NER) style, where the "YO" label indicated
that a word should be "E-ficated" (i.e., the letter
"e" should be replaced with "€"). This approach al-
lowed the model to learn contextual cues for proper
"[-fication" of words.

3.6.4 Comparison of Positional Embeddings
for Word Stress Placement

In the development of our RUAccent system, we re-
quired a model for accurate stress placement in reg-
ular words. During our experiments, we observed
that the choice of positional embeddings had a sig-
nificant impact on the model’s performance in this
task.

We compared three types of positional embed-
dings:

1. Absolute Positional Embeddings (APE)
(Vaswani et al., 2023), as used in the classical
BERT architecture (Devlin et al., 2019).

2. Attention with Linear Biases (ALiBi1) (Press
et al., 2022), an alternative positional embed-
ding method.

3. Rotary Position Embeddings (RoPE) (Su et al.,
2023), as used in the RoFormer (Su et al.,
2023) architecture.

The results of our experiments are presented in
Table 1:

The RoFormer (Su et al., 2023) model, which
utilizes RoPE, achieved the highest accuracy of
0.972, outperforming both the classical BERT with
APE (0.951) and BERT with ALiBi embeddings
(0.964).

We attribute the superior performance of RoPE
to several factors:

1. Shift invariance: RoPE encode the relative po-
sition of tokens, allowing the model to recog-
nize stress patterns regardless of their absolute
position in the word.
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2. Expressiveness: RoPE use sine and cosine
functions to rotate embeddings based on posi-
tion, providing rich signals about the word’s
syllabic structure.

These properties make RoPE particularly well-
suited for capturing the relative positions of syl-
lables and their stress patterns within words. By
leveraging RoPE in our RUAccent system, we were
able to achieve state-of-the-art performance on the
word stress placement task.

Our findings highlight the importance of select-
ing the appropriate positional embedding mecha-
nism based on the specific task at hand. While
APE and ALiBi embeddings have proven effective
in various NLP tasks, RoPE demonstrably outper-
form them in the context of word stress placement.
This insight guided our choice to use RoFormer (Su
et al., 2023) with RoPE as the foundation for the
word stress placement component of RUAccent.

4 Results and Evaluation

To comprehensively evaluate our system, we mea-
sured its performance across various components
using a diverse and high-quality test set. This evalu-
ation provided a multifaceted view of our system’s
capabilities, focusing on general stress placement
accuracy as well as performance on homographs.
For our test set, we selected samples from audio
annotations with a confidence score above 0.99,
ensuring a high level of reliability in our evaluation
data. The size of our test corpus was substantial,
comprising 2 million sentences. This extensive
dataset allowed us to conduct a thorough assess-
ment of our system’s performance across a wide
range of linguistic contexts.

4.1 Comparison of Stress Placers on
non-homograph words

We compared our system with other stress placers
on non-homograph words to evaluate the overall
accuracy. Table 2 presents the results of this com-
parison.

Our RUAccent* system outperformed Silero’
(Team, 2021), StressRNN® (Ponomareva et al.,
2017), and RUSS Deberta’ (Gusev, 2023), demon-
strating its superior accuracy in stress placement.

*nttps://github.com/Den4ikAI/ruaccent
Shttps://github.com/snakers4/
silero-models
*https://github.com/dbklim/StressRNN
"https://github.com/IlyaGusev/russ

Stress Placer Accuracy
Russtress 0.673
Ru Word Stress Deberta 0.931
Silero 0.952
RUAccent 0.972

Table 2: Accuracy comparison of stress placers on non-
homograph words

Model Accuracy
StressRNN 0.0584
ruaccent-big 0.8886
ruaccent-tiny 0.9063
ruaccent-turbo 0.9089
ruaccent-turbo2 0.9118
sber-proprietary 0.9191
ruaccent-tiny2 0.9580
ruaccent-turbo3 | 0.9637

Table 3: Comparison of models

4.2 Homograph Resolver Accuracy

Table 3 presents the accuracy of our models com-
pared to existing solutions.

Our final model, Ruaccent-turbo3, achieved the
highest accuracy of 0.9638, outperforming existing
solutions and our previous best model.

4.3 Qualitative Analysis

To demonstrate the practical effectiveness of RU-
Accent in handling various types of homographs,
we present several examples below:

1. Contextual homographs: Ou yBuen 3AMoOK
ua rope. / Ou yBugen 3amOK Ha asepu. (He saw
a castle on the hill. / He saw a lock on the door.)

RUAccent correctly identified the stress place-
ment based on the context, distinguishing between
"castle" and "lock".

2. Morphological homographs: Besible ctEnbI
okpyKasu ropox. / Okoso crenbl craporo mo-
Ma Jiexkas MajieHbKuit koreHok. (The white walls
surrounded the city. / A little kitten lay by the wall
of the old house.)

The system accurately placed stress on different
syllables based on the grammatical case (nomina-
tive plural vs. genitive singular).

3. E-homographs: Bee ymum gomoit. / Beé
ObL10 TOTOBO K Tpa3auuky. (Everyone went home.
/ Everything was ready for the celebration.)

RUAccent correctly differentiated between
(all/everyone) and "" (everything), applying the

"nn
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appropriate stress and letter choice.

4. Rare contextual homographs: ereit nyxno
sblkymnars nepes caom. / He BoikymATs podur.
(The children need to be bathed before bed. / Don’t
buy out the ROFL.)

This example showcases RUAccent’s ability to
handle extremely rare and complex cases. The sys-
tem correctly identified the stress in "" (to bathe)
and distinguished it from the highly unusual phrase
" " (to buy out the ROFL), demonstrating its ro-
bustness in dealing with modern internet slang and
unexpected contexts.

These examples illustrate RUAccent’s capabil-
ity to handle a wide range of homograph types,
from common contextual differences to more nu-
anced semantic distinctions. This demonstrates the
system’s robustness and practical applicability in
real-world scenarios.

5 Conclusion

In this paper, we presented an approach to Rus-
sian stress placement with a focus on homograph
resolution. Our system, combining morphological
analysis and context-aware neural models, achieves
state-of-the-art performance with 0.96 accuracy on
homographs and 0.97 accuracy on non-homograph
words.

6 Limitations

Despite the significant advancements introduced by
RUAccent, several limitations still persist, which
leave room for future improvements:

1. Difficulty with Low-Resource Homographs:
Certain homographs, particularly those that
appear infrequently in training data or belong
to niche lexical categories, may still pose prob-
lems for accurate stress placement.

2. Ambiguity in Complex Sentences: In sen-
tences with highly complex syntactic struc-
tures, the system’s performance may degrade
due to challenges in correctly interpreting
long-range dependencies. As a result, it may
incorrectly resolve stress patterns in contexts
where multiple interpretations are plausible.

3. Inconsistent Stress in Multiple Occur-
rences: The model may struggle when en-
countering multiple instances of the same
word with different meanings and stress pat-
terns within a single text. For example, in the

Russian sentence "Ha rope croutr 3AMOK,
Ha neepu Koroporo BucuT 3aMOK" (There
is a castle on the hill, with a lock hanging on
its door), the word "samok" appears twice
with different stress patterns and meanings.
Such cases can be challenging for the model
to consistently and accurately resolve.

Addressing these limitations in future iterations
of the system will further enhance its robustness.

7 Ethical Considerations

All audio data used in our study was obtained from
the following sources:

* Audiobooks in the public domain,
¢ Podcasts licensed under Creative Commons,

* YouTube videos licensed under Creative Com-
mons, used in compliance with the specified
licensing terms,

¢ Public radio broadcasts.

We ensured that all data usage complies with appli-
cable licensing and fair use policies.

8 Future Work

Future work will focus on further refining the sys-
tem’s performance on rare and domain-specific
cases, as well as exploring integration with broader
natural language processing applications. We be-
lieve that the methodologies and insights presented
in this paper will contribute significantly to the on-
going development of accurate and context-aware
text processing systems for Russian and potentially
other languages with complex stress patterns.

8.1 Adaptation to Other Slavic Languages

The principles and architecture of RUAccent have
potential applications beyond Russian. We propose
extending our system to other Slavic languages, par-
ticularly those with similar stress placement chal-
lenges:

e Ukrainian: Like Russian, Ukrainian has mo-
bile stress patterns and homographs. Adapting
RUACccent to Ukrainian could involve retrain-
ing on Ukrainian corpora and adjusting for
language-specific features.

* Belarusian: With its own set of stress rules
and homographs, Belarusian presents an inter-
esting challenge for adaptation.
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Adapting RUAccent to these languages would
involve:

1. Collecting word with stress markings corpora.

2. Collection of homograph dictionaries, collec-
tion of data for morphological analyzers and
collection of texts with accents.

3. Collecting texts for pretraining homograph
resolution module.

4. Developing language-specific homograph res-
olution strategies
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