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Abstract

Many studies have explored when and how
LLMs learn to use specific words, primarily
by examining their learning curves. While
these curves capture a model’s capacity to
use words correctly in context, they often
neglect the equally important skill of avoiding
incorrect usage. In this paper, we introduce
a new metric, anti-surprisal, which measures
a model’s capacity to refrain from using
words in inappropriate or unexpected contexts.
By examining both correct usage and error
avoidance, we offer a more comprehensive
perspective on the learning dynamics of LLMs.

1 Introduction

There has been considerable interest in investigat-
ingwhenandhowLLMslearn tousespecificwords,
as well as the factors influencing this learning (Liu
et al., 2021; Chang and Bergen, 2022; Xia et al.,
2023; Evanson et al., 2023). Traditionally, lexical
skill acquisition has been assessed using learning
curves, which track metrics such as accuracy, per-
plexity, or surprisal to measure a model’s ability to
predictwords in context over time or across training
iterations. These curves offer insights into the
model’s learning trajectory, shedding light on how
quickly and effectively it grasps word usage and re-
vealing subtleties in how it generalizes or struggles
with certain linguistic patterns (Chang et al., 2024).

However, we believe that this traditional ap-
proach has limitations, as it provides only a partial
view of a model’s ability to “learn”1 a word:
while existing learning curves effectively capture
whether a model can use a word in an appropriate
context, they do not account for whether the model
has also learned when not to use the word — a
dimension of learning that is equally important yet

1Despite the risk of anthropomorphism, we use the term
“learn” as is common in the literature. Though imprecise, we
believe this term effectively conveys the intuition behind our
analyses and the issues we address.

often overlooked. To address this gap, we propose
a new metric, “anti-surprisal”, which reflects a
model’s ability to refrain from using a word in
unexpected or inappropriate contexts.

The measurement of anti-surprisal is of par-
ticular importance given that, during training, a
languagemodel is solely exposed to “positive” data
— that is, correct sentences chosen for their qual-
ity (Longpreetal., 2024). However, there isnoguar-
antee that this data is sufficient for the model to de-
tect incorrect sentences: Gold (1967) even demon-
strated (mathematically) that it is impossible to infer
a formal language from positive examples alone,
though within a theoretical framework that does
not directly align with language model learning.

In this paper, we demonstrate that examining
the dual evolution of a model’s ability to use words
correctly in context while avoiding misapplication
offers deeper insights than those gained by focusing
solely on the probability of correct word usage,
thereby capturing a fuller picture of the model’s
linguistic capabilities.

2 Observing
lexical skill acquisition in LLMs

Conventional Metrics Most studies on lexical
skill acquisition in LLMs focus on the evolution
of surprisal2 for carefully selected target words in
a word bank across different training stages (i.e.,
checkpoints). Surprisal is defined as−log2p(w|c),
where w is the target word and c is the context,
typically an extract from a corpus in which the
target word is masked. A lower surprisal value
indicates a higher probability of theword appearing

2Although surprisal is a common metric, it is essentially
a monotonic transformation of probability and can be viewed
as an unnecessary abstraction. Its value lies in its historical
connection to psycholinguistics (Levy, 2008), which links
surprisal to cognitive processing effort. This convention
persists, though whether surprisal adds value beyond simple
probability remains debatable.
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in that context, suggesting themodel has effectively
“learned” the word’s usage.

Several works have shown that by identifying
the words for which surprisal decreases over time,
comparing the convergence values, and analyzing
the speed and dynamics of this convergence,
we can distinguish the words that are correctly
“learned” from those that are not. This approach
also allows the identification of factors, such as
word frequency, that influence the learning process.
A key takeaway from prior research is that studying
surprisal curves for individual words offers deeper
insights than relying on aggregate surprisal across
a test or validation set, an approach typically used
to monitor overall training progress.

Learning not to use a word We strongly believe
that this traditional focus on studying surprisal
curves has its limitations and provides only a partial
viewof amodel’s ability to “learn” aword. While it
effectively captures whether a model knows how to
use a word in the right context, it does not address
the complementary question of whether the model
has also learned when not to use it — a dimension
of word usage that is equally important but often
overlooked.

Indeed, by studying surprisal, we assess solely
whether a languagemodel recognizes, for instance,
thehighprobability that themaskedword is “choco-
late” in the sentence “I like [MASK] ice cream.”
However, nothing guarantees that this probability
is due to the model’s true “understanding” of the
context rather than potential confounding factors,
the most obvious being the frequency of the target
word in the training data. This is why we believe
it is also important to study a model’s ability to
refrain from using a target word in an inappropriate
context: continuing with the previous example,
we need to ensure that the model’s estimated
probability of “chocolate” being the hidden word
in the sentence “The sun sets [MASK] the horizon.”
decreases as training progresses.

To assess amodel’s ability to avoid using a target
word in inappropriate contexts, we introduce a
complementary metric to surprisal: anti-surprisal,
defined simply as −log2p(w|c−), where c− repre-
sents a “negative” or inappropriate context. While
surprisal is expected to decrease with training,
anti-surprisal should exhibit the opposite trend,
increasing as the model improves.

As we will show in Section 4, analyzing the joint
evolution of surprisal and anti-surprisal during

training provides a more accurate understanding of
lexical skill acquisition in LLMs than focusing on
surprisal alone.

3 Experimental Setup

Model For all our experiments, we employed
intermediate checkpoints from the MultiBERTs
model by Sellam et al. (2022), which offers 25
independent reproductions of BERT training, each
using the original BERT hyperparameters. For our
analysis, we selected the first of five MultiBERTs
models with saved intermediate checkpoints
(labeled “seed 0”). This model includes 28 check-
points, covering every 20,000 steps up to 200,000,
and every 100,000 steps up to 2 million.

Word Bank Construction Following the
methodology outlined by Chang and Bergen
(2022),we constructed awordbankof 9,080unique
words drawn from the test portion of the English
WikiText-103corpus.3 Thiswordbankcontains the
wordsweuse tomonitor themodel’s lexical acquisi-
tion. Appendix A.1 details the preprocessing steps
applied during the construction of this word bank.

Appropriate Context Selection To ensure
longer context windows, we first split the testing
subset of the WikiText corpus into sentence pairs.
For each word in our word bank, we then selected
the first 512 pairs containing that word, creating
a set of examples to evaluate the model’s ability
to predict target words in appropriate contexts.
In each example, we randomly masked one oc-
currence of the target word and used a model
checkpoint to estimate the probability that the
masked word was the target.

Inappropriate Context Generation In our
experiments, we also evaluate themodel’s ability to
avoid using target words in inappropriate contexts.
To construct a dataset of inappropriate contexts,
we used the same set of examples described earlier
but masked a different word in each sentence. This
approach ensures an equal number of appropriate
and inappropriate contexts for each target word,
allowing for a direct comparison of surprisal and
anti-surprisal values.

Measuring Lexical Skill Acquisition For each
example in our dataset, we estimate the probability
p(w|c) using a language model checkpoint and

3The test portion of the English WikiText-103 corpus has
not been used to train the MultiBERTmodels.



6638

0.0 0.5 1.0 1.5 2.0
Steps 1e6

5

10

15

20

M
ea

n 
Su

rp
ris

al

Figure 1: Corpus-level surprisal (green) and anti-
surprisal (red) curves.

calculate the corresponding surprisal (or anti-
surprisal). We average these values across all
instances of w at each of the 29 distinct training
steps, resulting in two learning curves per word:
one for surprisal and one for anti-surprisal. These
curves enable us to visualize how the model’s
“understanding” of each word evolves over time.

To enable quantitative analysis, we model the
learningcurve for each targetwordbyfitting a linear
model that maps time steps to average surprisal (or
anti-surprisal) values using LinearRegression
from the scikit-learn library (Pedregosa et al.,
2011). The linear model is chosen over more
complex functions (e.g., exponential) to capture
the “general trend” of the curve, even if the fit to
the data is imperfect: the slope of the fitted model
indeed provides a simpleway to determinewhether
the modeled value is increasing or decreasing over
time.4

4 Results

Corpus-Level Analysis We begin with a control
experiment: Figure 1 shows the evolution of sur-
prisal and anti-surprisal aggregated at the corpus
level. As expected, surprisal decreases smoothly as
learning progresses, while anti-surprisal increases.
This indicates that, on average, the probability
of using words in appropriate contexts rises over
the course of training, while the probability of
inappropriate word use declines. Thus, it can be
inferred that even without exposure to negative
(nonsensical) sentences, the language model can
effectively identify and avoid them.

Word-Level Analysis On the other hand, analyz-
ing learning curves for individual words, as advo-

4Code and data are available at
https://github.com/NazaninShafiabadi/antisurprisal.
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Figure 2: Word-level surprisal (green) and anti-surprisal
(red) curves showing the 4 different trends, with dashed
lines representing the fitted linear regression models.

cated by Xia et al. (2023), reveals that the model
has highly variable learning dynamics from one
word to the next. Figure 2 illustrates this by show-
ing four carefully selectedwords, eachwith distinct
learning trajectories representing all possible com-
binations of increasing or decreasing surprisal and
anti-surprisal curves. The plots highlight the com-
plexity of lexical learning, showing caseswhere the
model’s confidence in word usage either improves,
declines or fluctuates in unison or opposition. They
also confirmChang et al. (2024)’s observation that,
at certain stages of learning, a language model
may “forget” previously acquired word knowledge,
as word-level performance is often non-monotonic
contrary to what is observed at the corpus-level.

To quantify the prevalence of each trend across
the word bank, we categorized all words based
on the observed behavior of their surprisal and
anti-surprisal curves. Specifically, linear models
were fitted to these curves, and the slope of each
modelwas used to determinewhether the curvewas
increasing or decreasing. A cross-tab summarizing
these trends is presented in Table 1, showing how
often both curves move in the same direction, as
well as cases where one curve increases while the
other decreases.

The data reveals that the vast majority of words
fall into the category of decreasing surprisal and
increasing anti-surprisal, which is the expected
behavior during training: this indicates that the
model is becoming more confident in using these
words correctly and avoiding incorrect contexts.

https://github.com/NazaninShafiabadi/antisurprisal
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surprisal

anti-surprisal Increasing Decreasing

Increasing 2.7% 91.5%
Decreasing 0.4% 5.4%

Table 1: Proportion of words in each surprisal and
anti-surprisal trend category.

surprisal

anti-surprisal Increasing Decreasing

Increasing 99% 78%

Decreasing 100% 100%

Table 2: Proportion of infrequent words in each sur-
prisal and anti-surprisal trend category.

However, a notable minority (8.5% of the words in
our word bank) exhibit different trends, underscor-
ing the complexity of lexical acquisition beyond
what corpus-level or surprisal-focused analyses
might suggest. Most importantly, it demonstrates
that word acquisition is not uniform: even in mod-
els with strong performance on downstream tasks,
certain items remain poorly “captured” by the
model. This behavior likely reflects lexical items
that are inherently ambiguous or underrepresented
in the training data, leading to slower or more
erratic learning patterns.

Word frequency in the training corpus is likely
a significant factor influencing these trends. To
test this hypothesis, we examined the proportion of
infrequent words (frequency ≤ 10 in the test set5)
within each category, as well as their distribution
across categories. The results show that nearly
all (99–100%) words not correctly learned by the
model (i.e., with increasing surprisal or decreasing
anti-surprisal) are infrequent (Table 2). However,
a significant majority of these infrequent words
(89%) are still learned correctly (Figure 3). This
suggests that while the model struggles primarily
with infrequent words, frequency is not the sole
determinant of lexical acquisition. The fact that
most infrequent words are learned correctly high-
lights the likely influence of other factors, such as
contextual diversity, on the model’s generalization.

5Despite our best efforts, we were unable to access Multi-
BERT’s training data: the Book Corpus is no longer available.
We hypothesized that a word’s frequency in the test set could
serve as an approximation of its frequency in the training set.

↓ S & ↓ A
(7%)

↓ S & ↑ A
(89%) ↑ S & ↓ A (1%)

↑ S & ↑ A (3%)

Figure 3: Distribution of infrequent words across sur-
prisal (S) and anti-surprisal (A) trend categories. ↑ and
↓ indicate increasinganddecreasing trends respectively.
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Figure 4: Distribution of token counts across different
surprisal and anti-surprisal correlation values.

The remaining 11% may reflect challenges related
to ambiguity, limited context, or difficulty in
learning specific lexical items.

Surprisal and Anti-Surprisal Correlation In
our final experiment, we aimed to determine the
extent of the relationship between variations in
surprisal and anti-surprisal curves. Specifically, we
explored whether the model’s improved ability to
predict the correct usage of a word also strengthens
its ability to identify when not to use it, or if these
two skills develop independently. To investigate
this, we calculated the Pearson correlation between
surprisal and anti-surprisal values for each word
during training.

Figure 4 shows the distribution of correlation
values for all words in our word bank. It appears
that most words exhibit a “moderate” to “strong
negative” correlation between surprisal and anti-
surprisal, reinforcing the observation that in most
cases, surprisal and anti-surprisal are strongly
linked and, as already observed, their curves
move in opposite directions. However, a minority
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of words present weak or positive correlations,
suggesting that for certain items, the ability to avoid
inappropriate contexts may not align directly with
improvements in predicting correct usage. These
findings highlight the non-uniformnature of lexical
acquisition, echoing earlier observations about the
variability in word-level learning dynamics.

5 Discussion and Conclusion

We show that combining surprisal and anti-
surprisal metrics offers a richer understanding of
lexical skill acquisition in LLMs. This dual-metric
approach reveals the non-uniform nature of word
learning, where certain lexical items exhibit dis-
tinct learning trajectories, highlighting the need for
comprehensive evaluation methods beyond simple
probability metrics. By leveraging both positive
and negative examples, we gain a more holistic
view of the model’s linguistic capabilities, paving
the way for more refined training and evaluation
strategies in future research.

6 Limitations

While anti-surprisal offers valuable insights into a
model’s ability to avoid inappropriate contexts, its
interpretation is heavily dependent on the construc-
tion of negative examples. Relying on artificially
generated inappropriate contextsmay fail to capture
the complexity of real-world linguistic scenarios,
where contextual appropriateness often depends on
subtler factors like pragmatics, domain knowledge,
or the polysemous nature of words. Moreover, our
study is limited to English, which restricts the gen-
eralizability of our findings across languages with
different syntactic and morphological features.
Future work should focus on developing more
sophisticated methods for generating negative con-
texts and expanding the evaluation of anti-surprisal
across a wider range of languages and domains.
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A Appendix

A.1 Word Bank Preprocessing
The word bank was built by first removing tokens
from the WikiText corpus containing non-ASCII
or non-alphabetic characters. Next, we excluded
tokens identified as proper nouns by SpaCy (Hon-
nibal and Montani, 2018), as they provide limited
insight into general lexical abilities. Additionally,
we filtered out words treated as multiple tokens by
themodel, ensuring a final list of 9,080words. This
final step avoided the need for aggregating sub-
token representations and simplified our analysis.
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