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Abstract 

Graph collaborative filtering has made 

great progress in the recommender systems, 

but these methods often struggle with the 

data sparsity issue in real-world 

recommendation scenarios. To mitigate the 

effect of data sparsity, graph collaborative 

filtering incorporates contrastive learning 

as an auxiliary task to improve model 

performance. However, existing 

contrastive learning-based methods 

generally use a single data augmentation 

graph to construct the auxiliary contrastive 

learning task, which has problems such as 

loss of key information and low robustness. 

To address these problems, this paper 

proposes a Perturbation-driven Dual 

Auxiliary Contrastive Learning for 

Collaborative Filtering Recommendation 

(PDACL). PDACL designs structure 

perturbation and weight perturbation to 

construct two data augmentation graphs. 

The Structure Perturbation Augmentation 

(SPA) graph perturbs the topology of the 

user-item interaction graph, while the 

Weight Perturbation Augmentation (WPA) 

graph reconstructs the implicit feedback 

unweighted graph into a weighted graph 

similar to the explicit feedback. These two 

data augmentation graphs are combined 

with the user-item interaction graph to 

construct the dual auxiliary contrastive 

learning task to extract the self-supervised 

signals without losing key information and 

jointly optimize it together with the 

supervised recommendation task, to 

alleviate the data sparsity problem and 

improve the performance. Experimental 

results on multiple public datasets show 

that PDACL outperforms numerous 

benchmark models, demonstrating that the 

dual-perturbation data augmentation graph 

in PDACL can overcome the shortcomings 

of a single data augmentation graph, 

leading to superior recommendation results. 

The implementation of our work will be 

found at https://github.com/zky77/PDACL. 

1 Introduction 

With the explosive growth of online information, 

recommender systems are becoming more and 

more indispensable in production and life with 

their remarkable ability to alleviate information 

overload (Wu et al., 2022; Gao et al., 2023). The 

core idea of recommender systems is to model 

users' interests based on their historical interaction 

data and make recommendations accordingly. 

Collaborative Filtering (CF), as one of the most 

common recommendation algorithms, captures the 

user's preferences and the characteristics of the 

items to generate appropriate recommendations 

(Wu et al., 2023; Suganeshwari and Syed Ibrahim, 

2016; Berg et al., 2018). Many CF 

recommendation methods have been proposed 

(Rendle et al., 2009; He et al., 2017). In recent 

years, CF based on Graph Convolutional Neural 

Network (GCN) has become one of the most 

attractive recommendation methods due to its 

superior properties in processing graph data. Wang 

et al. (2019) applied GCN to the field of CF and 

proposed Neural Graph Collaborative Filtering 

(NGCF), which explicitly encoded the 

collaborative signals in the form of higher-order 
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connectivity by executing embedding propagation, 

resulting in a substantial improvement in the 

performance of recommendation algorithms. 

However, this method directly adopted most of the 

operations of GCN, which not only caused the 

model to be heavy and cumbersome, but also 

resulted in a degradation of the recommendation 

performance. He et al. (2020b) experimentally 

demonstrated in Simplifying and Powering Graph 

Convolution Network for Recommendation 

(LightGCN) that feature transformation and 

nonlinear activation in GCN affected the training 

of the model negatively, and designed a lightweight 

model that removed unnecessary parts to improve 

the performance and scalability of the model 

without sacrificing the recommendation 

performance. After that, many GCN-based 

recommendation algorithms have been proposed. 

Although GCN-based CF methods are effective, 

they still face the problem of sparse data. 

Contrastive Learning (CL) can extract general 

features from a large amount of unlabeled data and 

alleviate the sparsity problem in recommender 

systems, and thus more and more CF 

recommendation algorithms are using CL to 

construct auxiliary tasks to help the learning of 

recommendation models. CL helps to improve the 

accuracy of the recommendation task and the 

robustness of the recommendation model by 

maximizing the similarity between different view 

representations of the same node and minimizing 

the similarity between different node 

representations (Tian et al., 2020). Methods like 

Self-supervised Graph Learning for 

Recommendation (SGL) (Wu et al., 2021) and 

Simple Yet Effective Graph Contrastive Learning 

for Recommendation (LightGCL) (Cai et al., 2023) 

performed data augmentation of graphs through 

structure perturbation to construct the auxiliary 

task. However, by randomly discarding nodes or 

edges, structure perturbation might drop important 

nodes or connections and such structure-

perturbation-based auxiliary CL might lose key 

structure information, thereby misleading 

representation learning. Yu et al. (2022) proposed 

the Simple Graph Contrastive Learning for 

Recommendation (SimGCL) and constructed the 

auxiliary CL task by adding noise to the 

embeddings in order to avoid this problem, which 

brought better recommendation results. However, 

the model was less interpretable and robust. Xia et 

al. (2022) proposed Hypergraph Contrastive 

Collaborative Filtering (HCCF), where a new self-

supervised recommendation framework was 

designed that jointly captured local and global 

collaborative relationships through a hypergraph 

cross-view CL framework. However trainable 

hypergraph structures often incurred huge training 

overheads. 

In this paper, to address the data sparsity 

problem and the problem of losing key structure 

information caused by the structure-perturbation-

based auxiliary CL, we propose a novel method 

called Perturbation-driven Dual Auxiliary 

Contrastive Learning for Collaborative Filtering 

Recommendation (PDACL). PDACL first 

constructs a Structure Perturbation Augmentation 

(SPA) graph by perturbing the topology of the 

graph to enhance the model’s robustness to 

interaction noise. To compensate for the loss of key 

structure information caused by structure 

perturbation, we propose a Weight Perturbation 

Augmentation (WPA) graph simultaneously. The 

WPA graph perturbs the user-item interaction 

graph by considering the weight from the 

perspectives of user interest and node popularity. It 

reconstructs the implicit feedback-unweighted 

graph into an explicit feedback-weighted graph. 

Instead of changing the graph topology, the WPA 

graph reconstructs the edge weights of the user-

item interaction graph by predicting the reasons for 

interactions. The WPA graph retains all pattern 

information but provides insufficient self-

supervised signals, while the SPA graph can 

compensate for the lack of self-supervision signals. 

We combine the user-item interaction graph with 

the SPA graph to construct the structure 

perturbation auxiliary contrastive learning task. 

Similarly, we combine the user-item interaction 

graph with the WPA graph to construct the weight 

perturbation auxiliary contrastive learning task. 

These two tasks form a dual auxiliary contrastive 

learning framework, which is combined with the 

recommendation task for joint training. PDACL 

strikes a balance between graph perturbation and 

graph data retention, ensures maximum 

perturbation of graph data without losing key 

information and introduces high-quality self-

supervised signals, improving the performance of 

the recommendation model. 

The main contributions of this paper are as 

follows: 

1) We introduce two types of perturbation-

driven data augmentation approaches for CL. The 
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SPA graph extracts rich self-supervised signals, 

while the WPA graph addresses the issue of losing 

key information in the SPA graph. The combination 

of these two methods enhances the model's ability 

to learn representation embeddings. 

2) We propose PDACL, which utilizes two types 

of perturbation augmentation graphs with user-

item interaction graph to construct a dual auxiliary 

contrastive learning task and jointly optimize it 

with the supervised recommendation task, leading 

to improved performance of the recommendation 

model. 

3) Extensive experiments conducted on multiple 

public datasets in recommender systems 

demonstrate that PDACL consistently outperforms 

various competitive benchmark models, including 

GCN-based and CL-based recommendation 

methods. Furthermore, the experiments validate 

the effectiveness of PDACL in alleviating the data 

sparsity problem of recommendation. 

2 Methodology 

The specific structure diagram of PDACL is shown 

in Figure 1, including the main recommendation 

task and the dual auxiliary CL task. Next, each step 

is described in detail. 

2.1 Graph Collaborative Filtering Backbone 

This section describes the main task of PDACL, 

which constructs the original user-item interaction 

graph based on the interaction data be-tween users 

and items, and generates the representation 

embeddings of users and items by applying 

propagation and prediction function on the 

interaction graph. Specifically, the representation 

embeddings of user u and item i are generated by 

random initialization. Consistent with most GCN-

based CF methods, nonlinear activation and feature 

transformation are discarded in the information 

update to simplify GCN. The specific update 

process can be expressed as follows: 
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where 
uN  and 

iN  denote the set of neighbors of 

user u and item i, respectively. (0)

ue  is a learnable 

initialized representation embedding, and after k 

times of information propagation, the k-th order 

neighborhood information of u is aggregated and 

encoded as ( )k

ue . Meanwhile, ( )k

ie  can be obtained 

in a similar way. 

After the propagation through K layers, the 

average function is adopted as the combination 

function to combine the representation 

embeddings of all layers. 
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The preference of user u for item i is predicted 

by inner product: 

,

Tˆ
u i u iy = e e                             (4) 

To obtain the information directly from 

interactions, this paper employs the BPR loss, 
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Figure 1: The overall framework of PDACL. 
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which is a supervised recommendation ranking 

loss function. The formula of the BPR loss 

function is as follows: 

( ), ,

( , , )

ˆ ˆlogBPR u i u j

u i j O

y y


= − −         (5) 

where ( )   is the sigmoid function, 

{( , , ) | ( , ) , ( , ) }O u i j u i R u j R
+ −

=     denotes the 

pairwise training data, R+   denotes the positive 

sample set and R−  denotes the negative sample set. 

2.2 Structure Perturbation Augmentation 

Graph 

User-item interaction graph usually contains rich 

collaborative filtering signals, with first-hop 

neighbors being historical interacting items of 

users (or interacting users of items), which tend to 

encompass rich feature information as they are the 

most direct interactions. Multi-hop neighbors 

represent higher-order paths between users and 

items, often reflecting potential features of users or 

items. Therefore, mining the inherent patterns in 

the graph structure aids in the representation 

learning of user nodes and item nodes. This 

subsection introduces three different operations for 

SPA graph S: Node Dropout, Edge Dropout, and 

Random Walk. Any one of these methods can be 

arbitrarily chosen to construct the SPA graph S. 

Node Dropout (ND). For the user-item 

interaction graph G, a node in the graph and an 

edge connected to that node are dropout with 

probability  , and the remaining nodes and edges 

form an augmentation graph. The specific formula 

is as follows: 

( )1 ,NDS M=                       (6) 

where 
1 {0,1}M    denotes the mask vector 

applied to the set of nodes   to generate the 

augmentation graph,   denotes the set of all 

nodes, and  denotes the set of all edges. The node 

dropout augmentation graph is expected to 

identify influential nodes from different 

augmentation views, and make representation 

learning less sensitive to structure changes. 

Edge Dropout (ED). For the user-item 

interaction graph G, edges in the graph are 

discarded with probability   , and all the nodes 

and remaining edges in the graph form the 

augmentation graph. The specific formula is as 

follows: 

( )2,ED MS =                      (7) 

where 
2 {0,1}M    denotes the mask vector 

applied to the set of edges   to generate the 

augmentation graph. Not all edges between nodes 

in the user-item interaction graph contribute to the 

learning of node representations, and edge dropout 

can help the model capture useful patterns of the 

local structure of a node. 

Random Walk (RW). Random walk considers 

assigning different augmentation graphs to 

different layers. Selecting edges to discard (with 

different ratios or random seeds) at each layer can 

be formulated by using mask vectors for the 

construction of the random walk augmentation 

graph. The specific formula is as follows: 

( )2, k

RW MS =                       (8) 

where 
2 {0,1}kM    denotes the mask vector 

applied to the edge set  on the k-th layer of GCN 

to generate the augmentation graph. 

2.3 Weight Perturbation Augmentation 

Graph 

SPA graph can provide rich self-supervised signal, 

but it may lead to the loss of crucial information. 

Therefore, this paper proposes WPA graph as a 

supplement. The reasons for users and items to 

generate interactions are often multi-intentional. 

Hence, in this paper, we aim to predict the reasons 

for user-item interactions from the perspectives of 

nodes' popularity and interest. This approach 

reconstructs the unweighted graph of implicit 

feedback into a weighted graph that closely 

resembles the explicit feedback for data 

augmentation. The WPA graph W in this paper can 

be constructed by choosing either popularity 

weight perturbation or interest weight perturbation. 

Popularity Weight Perturbation (Pop). In 

recommender systems, popular items often have a 

higher probability of being clicked, which forms 

the basic premise of popularity-based 

recommendations. Therefore, this paper 

reconstructs the edge weights in the user-item 

interaction graph to assign greater weight to 

popular items, the specific formula is as follows: 

( )
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where 
( )pop u,iw   denotes the edge weight between 

node u and node i in the WPA graph and ( )pop i  

denotes the popularity of node i. 
vN  denote the set 

of neighbors of node v. 

Interest Weight Perturbation (Int). The 

interest is another crucial factor influencing user-

item interactions. Among the items that one user 

interacts with, most items exhibit a commonality 

that mirrors the user's interest, while noisy items 

show less similarity to other items. Therefore, this 

paper calculates the similarity between 

neighboring nodes of the target node to determine 

the importance of these neighbors to the target node. 

Subsequently, it constructs an interest-weight-

perturbation augmentation graph. The specific 

formula is as follows: 

,

( , )

,

u

u u

i j
j N

k N j N

int u i

k j
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
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
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                 (11) 

where 
( , )int u i

w  indicates the level of user u’s interest 

in item i, 
,i js   is the degree of similarity between 

item i and item j. 

2.4 Contrastive Learning and Multi-task 

Training 

In this paper, we use edge dropout to construct the 

SPA graph S, and use popularity weight 

perturbation to construct the WPA graph W. 

Combined with the user-item interaction graph G 

to build the PDACL framework. Stacking GCN on 

G, S, and W respectively, we obtain three sets of 

user representation embeddings G

ue  , S

ue   and W

ue  , 

and three sets of item representation embeddings 
G

ie  , S

ie   and W

ie  , respectively. Based on these 

representation embeddings, pattern information in 

graph data can be effectively captured in a self-

supervised manner. Specifically, PDACL considers 

the representation embeddings of the same node as 

positive sample pairs, and those of different nodes 

as negative sample pairs. It works towards 

minimizing the difference between positive sample 

pairs while maximizing the difference between 

negative sample pairs by using a contrastive loss 

function based on Noise Contrastive Estimation, 

called InfoNCE (He et al., 2020a). The structure 

perturbation contrastive loss function is as follows: 
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where    is the temperature coefficient of the 

Softmax function and cos( )   is the cosine 

similarity function. 

The weight perturbation contrastive loss 

function can be obtained similarly as follows: 
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      (13) 

In summary, the overall loss of PDACL is 

composed of BPR  , S   and W  . The specific 

formula is as follows: 

1 2 3 2SBPR W  = + + +            (14) 

where 1  , 2  , 3   are hyperparameters used to 

control the weights of the two proposed contrastive 

loss functions and the regularization term, 

respectively.    denotes the set of GCN model 

parameters. 

Datasets Douban Amazon-book Yelp Gowalla 

Metrics Recall NDCG Recall NDCG Recall NDCG Recall NDCG 

BPRMF 0.0873 0.0923 0.1052 0.0710 0.0907 0.0730 0.1825 0.1237 

NCF 0.0793 0.0954 0.0667 0.0441 0.0727 0.0612 0.1707 0.1165 

NGCF 0.0975 0.0999 0.1071 0.0724 0.0950 0.0758 0.1885 0.1271 

LRGCCF 0.0883 0.0955 0.1076 0.0719 0.0923 0.0741 0.1853 0.1248 

LightGCN 0.0942 0.0995 0.1140 0.0770 0.0961 0.0779 0.1975 0.1358 

SGL 0.0925 0.1064 0.1266 0.0865 0.0923 0.0757 0.2080 0.1441 

SimGCL 0.0973 0.1087 0.1152 0.0837 0.0912 0.0762 0.2139 0.1486 

PDACL 0.0986 0.1141 0.1342 0.0933 0.1041 0.0865 0.2206 0.1551 

Table 1: Performance comparison of different recommendation models. 
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3 Experiments  

3.1 Experimental Settings 

Datasets and Evaluation. We use four publicly 

available and commonly used datasets, including: 

Douban (Zhao et al., 2016), Amazon-Book (He et 

al., 2020b), Yelp2018 (Yu et al., 2021) and Gowalla 

(Ference et al., 2013) to conduct our experiments. 

Recall@20 and NDCG@20 are chosen as the 

evaluation metrics as they are popular in the 

evaluation of CF models. Recall@K measures the 

proportion of the items that the user really clicks 

within the top K positions to the items in the entire 

click set. NDCG differentiates the contributions of 

the accurately recommended items based on their 

ranking positions. 

 Baselines. For performance comparison, we 

select various state-of-the-art baselines including 

MF-based method (BPRMF (Rendle et al., 2009)), 

neural network based method (NCF (He et al., 

2017)), GCN-based methods (NGCF (Wang et al., 

2019), LRGCCF (Chen et al., 2020) and LightGCN 

(He et al., 2020b)), and CL-based methods (SGL 

(Wu et al., 2021) and SimGCL (Yu et al., 2022)). 

We closely follow these CL-based CF studies and 

split data in the same way as them. 

Implementation Details. PDACL is 

implemented by Pytorch. In all experiments, we 

adopt Gaussian distribution with 0 mean and 0.05 

standard deviation to initialize representation 

embeddings, and the size of the representation 

embeddings is set to 32. The Adam optimizer is 

adopted, and the learning rate is set to 0.001. The 

length of the recommendation list is set to 20. All 

experimental results are obtained by averaging 5 

experiments. 

3.2 Overall Performance 

This section compares our PDACL with other 

benchmark methods, and Table 1 presents the 

results of the comparison experiments of all 

methods on four datasets. Based on the data in 

Table 1, we can draw the following conclusions: 

1) GCN-based models such as NGCF, LRGCCF 

and LightGCN achieve better performance 

compared to BPRMF and NCF, thanks to the 

ability of GCN to capture higher-order 

collaborative information. Compared with the 

methods without CL, SGL and SimGCL achieve 

better recommendation performance, 

demonstrating that the auxiliary CL task can 

 
(a) Recall@20 on Amazon-Book 

 
(b) NDCG@20 on Amazon-Book 

 
(c) Recall@20 on Gowalla 

 
(d) NDCG@20 on Gowalla 

Figure 2: PDACL with different augmentation 

graph. 
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improve the performance of recommendation 

models. 

2) SGL, which only uses structure perturbation, 

suffers from the phenomenon of losing key node 

information, leads to poor node representations and 

thus performs worse. Although being effective, 

SimGCL exhibits less stable performance and is 

even inferior to SGL on some datasets. Overall, 

compared with the benchmark models, PDACL 

achieves the best recommendation performance on 

all datasets. This is because PDACL mitigates the 

impact of sparse interaction data on supervised 

learning task in recommendation scenarios by 

using SPA graph and WPA graph for CL, and can 

effectively generate representation embeddings 

and achieve better recommendation results. 

3.3 PDACL with Different Augmentation 

Graph 

To analyze the impact of different augmentation 

graph on the performance of PDACL, five variant 

models of PDACL are constructed in this section. 

Among them, the edge dropout structure 

perturbation (S-ED), the node dropout structure 

perturbation (S-ND) and the random walk structure 

perturbation (S-RW) are the PDACL variant 

models that use only a single structure perturbation 

to construct auxiliary CL task, and the interest 

weight perturbation (W-Int) and the popularity 

weight perturbation (W-Pop) are the PDACL 

variant models that use only a single weight 

perturbation to construct auxiliary CL task. The 

corresponding comparison results are illustrated in 

Figure 2. Observing Figure 2, the following 

conclusions can be drawn: 

1) Compared to LightGCN without CL, five 

variant models of PDACL lead to a substantial 

improvement in recommendation performance, 

which demonstrates the effectiveness of CL. 

2) S-ED achieves better performance compared 

to the other two structure perturbation operations. 

The main reason is analyzed as follows: S-ED can 

better preserve the collaborative pattern 

information in the graph structure during the data 

augmentation; whereas S-ND and S-RW introduce 

too strong perturbations that may cause more 

critical information to be lost. 

3) W-Pop and W-Int are more stable and better 

than S-ED due to the fact that they do not change 

the topology of the original graph, and thus do not 

lose the effective graph information. The 

performance of W-Pop and W-Int on different 

 
(a) Recall@20 on Amazon-Book 

 
(b) NDCG@20 on Amazon-Book 

 
(c) Recall@20 on Gowalla 

 
(d) NDCG@20 on Gowalla 

Figure 3: Impact of different sparsity levels. 
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datasets has its own advantages and disadvantages, 

which may be attributed to the varying user 

purchase intentions across datasets. For example, 

the Amazon-Book is a shopping dataset where the 

user interactions are more influenced by popularity, 

while the Gowalla is a social network dataset where 

the user interactions are more influenced by 

interest. Therefore, performance may vary slightly 

across different datasets. 

4) Compared with various variants, PDACL 

demonstrates the optimal recommendation 

performance. This highlights that the combination 

of structure perturbation and weight perturbation 

can overcome their respective shortcomings by 

complementing each other and effectively enhance 

the accuracy of the recommendations. 

3.4 Impact of Data Sparsity Levels 

To further validate that PDACL can alleviate the 

sparsity of interaction data, we group users based 

on the number of interactions they have had, and 

the smaller the number, the higher the sparsity level 

of the data. We compare the recommendation 

performance of PDACL, SGL and LightGCN 

across different sparsity levels, and plot the 

performance improvement line of PDACL 

compared to SGL. The experimental results are 

shown in Figure 3. 

It can be observed from the experimental results 

that the performance of SGL and PDACL on all 

groups is significantly better than LightGCN 

without CL. This observation effectively 

demonstrates that CL can alleviate the data sparsity 

problem in recommender systems. Furthermore, 

PDACL is able to achieve the best recommender 

performance across all groups of data with different 

degrees of sparsity, and it achieves a substantial 

performance improvement over both LightGCN 

and SGL. The most significant performance 

improvement of PDACL is observed in the 

Amazon-Book dataset at 35–40, and the smallest 

improvement is noted in the Gowalla dataset at 50–

60, while the differences in the other groups are not 

very significant. These results indicate that PDACL 

improves the recommendation performance of 

sparse items more significantly than popular items, 

which to some extent suggests that PDACL is more 

effective in alleviating the problem of data sparsity 

in recommender systems. 

3.5 Visualizing the Distribution of 

Representations 

To visually demonstrate the impact of CL, t-SNE 

(Maaten and Hinton, 2008) is employed to 

visualize the distribution of user representation 

embeddings derived from LightGCN, SGL and 

PDACL, as illustrated in Figure 4. 

From Figure 4, it can be observed that the 

representation embeddings generated by 

LightGCN show a clear tendency of aggregation 

when they are mapped to a two-dimensional space. 

This aggregation phenomenon implies that many 

 
(a) LightGCN (Amazon-Book)                 (b) SGL (Amazon-Book)                    (c) PDACL (Amazon-Book) 

 
(d) LightGCN (Gowalla)                          (e) SGL (Gowalla)                             (f) PDACL (Gowalla) 

Figure 4: Visualization of user embeddings on Amazon-Book and Gowalla. 
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embeddings are very similar to each other, thus 

making it difficult for nodes to be distinguished 

from each other. The embeddings of SGL and 

PDACL have a relatively more uniform 

distribution, and accordingly obtain a better 

recommendation performance. It can be found that 

a more uniform representation embeddings 

distribution enable the model to have a stronger 

ability to model different user preferences or item 

characteristics. Optimizing the CL loss can be seen 

as an implicit way of debiasing, since a more 

uniform distribution of representations preserves 

the intrinsic properties of the nodes and improves 

the generalization ability. 

4 Conclusion 

In this paper, we propose Perturbation-driven Dual 

Auxiliary Contrastive Learning for Collaborative 

Filtering Recommendation (PDACL). PDACL 

perturbs the user-item interaction graph to 

construct a Structure Perturbation Augmentation 

(SPA) graph and a Weight Perturbation 

Augmentation (WPA) graph. The SPA graph 

extracts rich self-supervised signals, while the 

WPA graph addresses the issue of losing key 

information in the SPA graph. The two data 

augmentation graphs are combined with the user-

item interaction graph to construct the dual 

auxiliary contrastive learning task to extract the 

self-supervised signals and jointly optimize it with 

the supervised recommendation task, to alleviate 

the data sparsity problem and improve the 

performance. Experimental results show that the 

proposed PDACL can achieve better 

recommendation performance on public datasets 

compared to several advanced benchmark models. 

Limitations of the Work 

The most appropriate temperature coefficient of 

PDACL tends to be different for different datasets, 

and usually temperature coefficients in the range of 

(0.2,1) yield good recommended performance. 
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A Additional Experiment 

The experimental results are shown in Figure 5. 

This experiment investigates the effect of 

 
(a) Recall on Amazon-Book 

 
(b) NDCG on Amazon-Book 

 
(c) Recall on Gowalla 

 
(d) NDCG on Gowalla 

Figure 5: Experimental results for different 

temperature coefficients. 
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temperature coefficient    on the performance of 

the PDACL model in the contrastive learning task. 

Specifically, the comparison experiments are 

conducted on the two datasets, Amazon-Book and 

Gowalla, with the temperature coefficient   set to 

{0.1,0.2,0.5,0.8,1.0,2.0,3.0}, and the changes in the 

performance of the PDACL model are recorded. 

Observing the experimental results in Figure 5, 

the temperature coefficient    as a key parameter 

for contrastive learning can drastically affect the 

performance of the PDACL model. Too large   

will result in poor performance, the same as too 

small  . The purpose of contrastive learning is to 

keep similar samples closer together in the feature 

space and keep dissimilar samples away from each 

other, so that the feature distribution can be made 

more uniform in the space. The temperature 

coefficient determines how much attention the 

contrastive loss pays to difficult negative samples. 

The larger the temperature coefficient, the more it 

tends to treat all samples equally and not pay too 

much attention to more difficult negative samples. 

The smaller the temperature coefficient, the more it 

pays attention to difficult negative samples that 

have a very large similarity to that sample, giving 

the difficult negative samples a larger gradient to 

separate from the positive samples. 

The temperature parameter needs to be moderate, 

too large and too small are not good, which is 

consistent with experimental results from previous 

contrastive learning work. On the Amazon-Book 

dataset, the best Recall and NDCG are achieved 

with a temperature coefficient of 0.5. However, on 

the Gowalla dataset Recall and NDCG are best 

with the temperature coefficients of 0.2 and 0.5, 

respectively. The most appropriate temperature 

coefficient tends to be different for different 

datasets, and usually temperature coefficients in the 

range of (0.2,1) yield good recommended 

performance. 

 


