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Abstract
We explore the potential of pixel-based models
for transfer learning from standard languages
to dialects. These models convert text into im-
ages that are divided into patches, enabling
a continuous vocabulary representation that
proves especially useful for out-of-vocabulary
words common in dialectal data. Using Ger-
man as a case study, we compare the perfor-
mance of pixel-based models to token-based
models across various syntactic and seman-
tic tasks. Our results show that pixel-based
models outperform token-based models in part-
of-speech tagging, dependency parsing and in-
tent detection for zero-shot dialect evaluation
by up to 26 percentage points in some scenar-
ios, though not in Standard German. However,
pixel-based models fall short in topic classifica-
tion. These findings emphasize the potential of
pixel-based models for handling dialectal data,
though further research should be conducted to
assess their effectiveness in various linguistic
contexts.

1 Introduction

Despite being spoken by millions of people world-
wide, dialects and other non-standard language
forms are largely underrepresented in Natural Lan-
guage Processing (NLP) systems. Although pre-
trained language models (PLMs) achieve strong
results for languages seen during training, where
more data is available, their performance declines
with out-of-domain dialects.

One of the primary factors contributing to the
poor performance of PLMs on non-standard lan-
guage varieties is tokenization, as tokenizers fre-
quently break dialects into sub-tokens that lack
meaning. Modifying tokenization has been shown
to improve performance on non-standard data
(Aepli and Sennrich, 2022; Blaschke et al., 2023;
Srivastava and Chiang, 2023a,b).

In this context, dialectal variations can be viewed
as a form of perturbation: tokenizing dialect data of-

a. Herzlich willkommen!
Herz##lich willkommen, !

b. Härzlech wiukomme!
Hä,##rz,##le,##ch, w##iu##komme,!

Figure 1: “Welcome!” in Standard German (a) and
the Swiss German Bern dialect (b) tokenized using DB-
MDZ German BERT and rendered and split in patches
by PIXEL. Standard German is tokenized in a more
meaningful way, whereas the Bernese dialect form re-
sults in multiple non-meaningful sub-tokens due to vari-
ations in spelling.

ten produces tokens that are not meaningful. How-
ever, despite these variations, native speakers of the
standard language can still comprehend dialects up
to certain point due to linguistic and visual simi-
larities. This suggests that visual cues may help
models address the tokenization challenges posed
by dialectal variations more effectively.

To address the limitations of traditional tokeniza-
tion, visual text representations convert text into im-
ages divided into patches, offering an alternative ap-
proach. Prior studies, such as Salesky et al. (2021)
and Rust et al. (2023), have demonstrated that this
approach effectively manages diverse scripts and
languages without expanding the vocabulary, out-
performing token-based approaches in syntactic
tasks and machine translation, but not in semantic
tasks. Strategies like structured rendering address
this issue (Lotz et al., 2023).

Following this approach, we explore the use of
pixel-based models to enhance NLP performance
on dialects. Using German as a case study, we pre-
train a pixel-based model from scratch, which we
release it publicly.1 We compare its performance

1https://huggingface.co/amunozo/
pixel-base-german

https://huggingface.co/amunozo/pixel-base-german
https://huggingface.co/amunozo/pixel-base-german
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to token-based models pretrained on the same data.
Our results show that pixel-based models outper-
form token-based ones in syntactic tasks for zero-
shot dialect evaluation but not in Standard German.
In sentence-level semantic tasks, it excels in in-
tent detection but is outperformed by token-based
models in topic classification.

2 Pixel-based models

The Pixel-based Encoder of Language (Rust et al.,
2023), or PIXEL, is a model that casts language
modeling as a visual recognition task. It is com-
posed of: (1) Text Renderer: The text rendered
transforms a string of text into a RGB image,
divided into equal-sized patches of 16x16 pix-
els. (2) Encoder: Once the text is converted into
patches, the image fed to a Vision Transformer (He
et al., 2022) architecture that processes it. PIXEL
uses a 12-layer transformer with a total of 86M pa-
rameters as encoder. (3) Decoder or Task-Specific
Head: Instead of masking tokens, PIXEL masks
spans of patches, using a decoder to reconstruct the
masked patches as pretraining task. This decoder
is discarded after pretraining, being replaced by a
task-specific classification head for fine-tuning.

Using a continuous vocabulary allows PIXEL to
handle multiple languages and scripts without the
need of expanding its vocabulary. Also, this makes
it robust to orthographic noise, such as typos or
non-standard spellings, as it can generalize over
orthographic variations which would break the tok-
enizations of token-based models. Finally, it avoids
the high computational cost of a large vocabulary.

However, despite comparable parameter counts,
PIXEL requires more fine-tuning steps to converge
than a token-based model for the same data (Rust
et al., 2023). Additionally, rendering text as images
significantly increases disk space usage compared
to plain text. While dynamic rendering during train-
ing or inference could alleviate storage concerns, it
increases computational overhead.

3 Experiments

3.1 Setup
We investigate how pixel-based models pretrained
on monolingual data compare to BERT (Devlin
et al., 2019) when evaluated on dialectal data. To
this end, we pretrain a pixel-based model on mono-
lingual German data from the DBMDZ corpus,2

2https://huggingface.co/datasets/stefan-it/
german-dbmdz-bert-corpus

following Rust et al. (2023).3

We choose a monolingual model as they perform
competitively with multilingual models on dialect
data (Bernier-Colborne et al., 2022; Castillo-lópez
et al., 2023), and also due to computational con-
straints. We select German as our study language
because of its wide range of dialectal variations,
which show different degrees of standardization
and are supported by available annotated data.

As a baseline, we use the cased4 and uncased5

versions of DBMDZ German BERT, pretrained
on the same data. For simplicity, we will refer
to the models as bert-cased, bert-uncased, and
pixel. We fine-tune the three PLMs on part-of-
speech (POS) tagging, dependency parsing, topic
classification, and intent detection. For POS tag-
ging, dependency parsing and topic classification,
the models are trained on Standard German and
evaluated on dialects. For intent detection, we train
on both Standard German and dialects. The results
were averaged over five runs. We followed]] the
hyperparameters and setup for pretraining and fine-
tuning from Rust et al. (2023). Detailed informa-
tion about the datasets is available in the Appendix
(Table 5).

3.2 German non-standard varieties

We evaluate our model on four non-standard lan-
guage varieties related to German. Bavarian and
Alemannic are dialect groups spoken in the South
of the German-speaking area. They are pronounced
differently than Standard German (which is ex-
pressed when the dialects are written), and their
vocabulary and grammar also show differences to
Standard German (Merkle, 1993; Christen, 2019).
Neither dialect group has any widely adopted or-
thography. For Alemannic, we focus on Swiss
German and Alsatian German. Low Saxon is a
regional language spoken in Northern Germany
and parts of the Netherlands. It is not standard-
ized and encompasses multiple dialects (Wiesinger,
1983). Finally, we include code-switched Turkish–
German data. The code-switching occurs on the
level of morphemes, words and phrases.

3We use the code from https://github.com/xplip/
pixel

4https://huggingface.co/dbmdz/
bert-base-german-cased

5https://huggingface.co/dbmdz/
bert-base-german-uncased

https://huggingface.co/datasets/stefan-it/german-dbmdz-bert-corpus
https://huggingface.co/datasets/stefan-it/german-dbmdz-bert-corpus
https://github.com/xplip/pixel
https://github.com/xplip/pixel
https://huggingface.co/dbmdz/bert-base-german-cased
https://huggingface.co/dbmdz/bert-base-german-cased
https://huggingface.co/dbmdz/bert-base-german-uncased
https://huggingface.co/dbmdz/bert-base-german-uncased
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GSD HDT
Language Model Acc. UAS LAS Acc. UAS LAS

German GSD
bert-cased 96.2 89.6 85.6 90.5 83.8 77.9
bert-uncased 96.2 89.8 85.8 90.9 84.3 78.5
pixel 95.2 86.1 81.3 91.5 82.5 76.3

German HDT
bert-cased 89.9 89.5 84.1 98.6 97.8 96.9
bert-uncased 89.8 89.3 83.9 98.5 97.8 96.9
pixel 89.6 88.5 82.6 98.5 96.9 95.8

Bavarian
MaiBaam

bert-cased 54.6 53.0 35.6 43.1 32.6 23.2
bert-uncased 46.1 44.7 28.7 33.1 26.2 18.4
pixel 54.5 54.0 38.3 48.4 39.5 29.4

Low Saxon
LSDC

bert-cased 33.3 34.1 17.8 17.3 9.5 5.9
bert-uncased 33.6 32.7 16.8 17.4 8.6 5.3
pixel 37.2 32.9 18.1 23.9 14.1 8.2

Turkish–German
SAGT

bert-cased 56.1 42.5 32.4 54.7 38.6 31.8
bert-uncased 54.4 40.8 32.1 53.8 38.3 31.5
pixel 55.6 40.2 29.8 55.5 37.3 29.9

Swiss German
UZH

bert-cased 58.2 50.1 33.3 45.1 31.3 22.6
bert-uncased 50.6 41.9 26.6 35.5 26.7 18.4
pixel 59.2 51.5 35.8 54.9 39.6 29.7

Swiss German
NOAH’s

bert-cased 63.1 — — 54.2 — —
bert-uncased 55.3 — — 45.2 — —
pixel 63.4 — — 62.1 — —

Alsatian
BISAME

bert-cased 45.8 — — 34.1 — —
bert-uncased 49.6 — — 30.4 — —
pixel 53.3 — — 48.2 — —

Table 1: POS tagging and dependency parsing per-
formance (in %) of models trained on German GSD
and HDT and tested on different dialects.

3.3 Syntactic tasks
We cover POS tagging and dependency parsing to-
gether in this subsection, as both tasks are evaluated
using the same datasets and show similar results.

Data For both POS tagging and dependency pars-
ing, we use treebanks from Universal Dependen-
cies (UD) (Nivre et al., 2020; de Marneffe et al.,
2021) along with two non-UD datasets for Ale-
mannic: NOAH’s Corpus (Hollenstein and Aepli,
2014) and Alsatian Bisame GSW (STIH, 2020).
The models were trained on two Standard German
treebanks: GSD and HDT.

Results Table 1 shows the POS-tagging accuracy
and (un)labelled attachment scores (UAS, LAS)
of the models trained on Standard German and
evaluated on dialects.

When trained on the GSD dataset, bert-cased
performs best on Standard German treebanks and
Turkish German code-switching, while pixel out-
performs BERT on the Alemannic treebanks, Low
Saxon, and Alsatian. It also performs comparably
to BERT on Bavarian for POS tagging and outper-
forms it for dependency parsing.

When trained on HDT, pixel widens the perfor-
mance gap, outperforming BERT on most dialect
treebanks except HDT itself. Although all models
experience a decline in accuracy, UAS and LAS,

pixel demonstrates greater robustness.

In both tagging and parsing, pixel outper-
forms BERT during zero-shot evaluation on Ger-
man dialects. BERT shows contrasting results:
bert-uncased achieves the best performance on
Standard German but performs significantly worse
on dialects. Since nouns in German are capital-
ized, bert-cased likely leverages this feature to
compensate for poor tokenization when processing
dialects.

Accuracy per POS tag To gain deeper insights,
we calculate the average accuracy per POS tag for
each model trained on the Standard German tree-
banks and evaluated on dialects (Table 2).

For GSD, pixel outperforms BERT for all tags
except DET, NOUN, PROPN, ADV, and X, which is the
only tag where bert-cased outperforms pixel
when trained on HDT. While these results are dif-
ficult to fully explain, there are plausible explana-
tions for certain tags. For example, memorization
plays a role for PROPN, which favors token-based
models, and proper nouns might vary less between
languages. Furthermore, words tagged as NUM and
PUNCT exhibit visual similarities within each group,
which benefits pixel.

LAS per dependency length To help explain
why relative performance in POS tagging is better
than in dependency parsing, we measured LAS per-
formance based on dependency lengths, as in Rust
et al. (2023). Figure 2 plots LAS per dependency
length for models trained on GSD. Results on Stan-
dard German and Turkish German diverge as de-
pendency length grows. Moreover, bert-cased
and bert-uncased show similar results.

For dialects, however, pixel achieves higher
LAS across all lengths for Bavarian and Aleman-
nic, and the performance gap neither consistently
widens nor narrows. For Low Saxon, where over-
all results are lower, pixel’s performance relative
to BERT improves with increasing distance, sur-
passing BERT at distances of 3 and beyond, but
not at shorter distances. Interestingly, the pixel’s
poorer handling of long dependencies observed for
Standard German and in Rust et al. (2023) is not
observed when evaluation on dialects.

Lastly, we observe that bert-uncased performs
considerably worse than bert-cased, unlike for
Standard German.
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Src Model ADJ ADP ADV AUX CCONJ DET INTJ NOUN NUM PART PRON PROPN PUNCT SCONJ SYM VERB X

GSD
bert-cased 42.9 55.5 47.1 29.8 69.6 31.2 0.0 51.5 58.7 16.7 40.4 89.4 99.3 41.0 5.6 43.8 11.2
bert-uncased 32.5 55.1 44.1 22.9 71.2 27.6 0.0 40.9 58.2 18.4 41.1 87.2 99.3 43.5 0.3 39.6 8.0
pixel 49.3 60.8 45.2 31.7 75.9 26.5 0.0 50.7 63.9 21.8 46.5 87.1 99.8 40.4 0.0 52.8 5.1

HDT
bert-cased 39.5 31.8 21.8 19.6 51.7 17.9 14.9 49.9 59.8 13.3 33.3 52.3 97.1 29.6 0.0 29.4 66.6
bert-uncased 28.9 30.5 21.1 18.8 50.5 15.6 17.6 31.6 59.5 13.0 26.2 53.5 96.3 27.2 0.0 20.7 58.8
pixel 50.3 47.7 32.3 28.8 56.6 21.9 21.9 53.3 64.8 17.5 36.9 63.5 99.4 35.1 0.0 45.3 64.2

Table 2: Average accuracy per POS tag (in %) for models trained on GSD and HDT when evaluating on dialect
treebanks.
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Figure 2: Labelled attachment scores (in %) for dif-
ferent dependency distances for models trained on
German GSD.

3.4 Topic Classification

Data We use SwissDial (Dogan-Schönberger
et al., 2021), a parallel corpus of Standard Ger-
man and 8 Swiss German dialects, annotated with
topic labels. We trained the models on four differ-
ent datasets: all (a combination of Standard Ger-
man and the 8 Swiss German dialects), ch (only
the 8 Swiss German dialects), de (only Standard
German), and gr (the Grisons dialect, which is
the dialect that contains the most examples in the
dataset and has the largest number of them in com-
mon with the Standard German data). We evaluate
all the models on each variety.

Results The results are shown in Table 3.
BERT models outperform pixel in most setups:
bert-cased performs best when trained only on
Standard German, and bert-uncased in the rest.
Pixel only outperforms BERT in two cases: on

the Basel-Stadt dialect when trained on all, and on
the Grisons dialect when trained on de. Although

Src Model de ag be bs gr lu sg vs zh

all
bert-cased 50.5 59.4 58.1 61.0 46.1 60.4 60.6 58.8 55.1
bert-uncased 50.7 63.5 58.1 60.5 46.7 61.9 62.2 60.9 58.1
pixel 44.5 57.6 57.1 60.3 43.8 57.3 58.6 58.1 55.1

ch
bert-cased 42.2 55.6 58.6 63.9 47.8 58.6 61.4 59.6 56.9
bert-uncased 45.7 59.6 58.4 61.8 48.2 62.7 62.2 62.6 60.5
pixel 36.3 57.1 58.9 58.2 41.1 56.8 57.8 58.6 54.9

de
bert-cased 50.0 34.0 34.2 40.0 30.4 30.3 41.7 32.8 32.0
bert-uncased 52.4 22.3 19.5 25.6 34.4 21.1 29.2 26.5 25.2
pixel 45.4 30.9 30.1 36.2 35.3 28.0 33.8 32.1 30.1

gr
bert-cased 44.0 46.7 49.1 49.7 48.2 48.6 51.2 49.5 45.6
bert-uncased 47.3 50.0 51.7 50.8 49.1 44.2 52.2 50.8 45.7
pixel 41.0 42.1 48.8 44.4 43.8 44.2 48.1 41.9 37.5

Table 3: Topic classification accuracy (in %) for mod-
els trained in the four training setups and evaluated on
various targets in the SwissDial dataset. Key: de: Stan-
dard German, ag: Aargau, be: Bern, bs: Basel-Stadt,
gr: Grisons, lu: Lucerne, sg: St. Gallen, vs: Valais,
zh: Zurich, ch: all Swiss dialects.

two improvements are not enough to draw conclu-
sions, we observe that in both cases, the models
have been trained on at least some Standard Ger-
man data and evaluated on Swiss German dialects.

Transfer learning from Standard German to
Swiss dialects is competitive with BERT, but the op-
posite is not true: BERT models trained on dialect
data and tested on Standard German outperform
pixel, likely due to more efficient tokenization.

3.5 Intent Detection

Data We use xSID 0.5 (van der Goot et al., 2021;
Aepli et al., 2023; Winkler et al., 2024), a cross-
lingual slot and intent detection dataset. We use
the machine-translated German training set, the
(human-translated) German test set (de) in addi-
tion to one Swiss German (gsw) and two Bavarian
(de_ba, de_st) test sets. We additionally use the
translated and naturalistic Bavarian intent classifi-
cation test sets introduced by Winkler et al. (2024)
(MAS:de-ba, nat:de-ba).

Results Table 4 shows the accuracies on the test
sets. Pixel outperforms BERT for every dialect
except MAS:de-ba. The differences are substantial
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Model de M:ba nat:ba de-ba de-st gsw
bert-cased 98.2 20.0 65.4 78.6 79.8 62.4
bert-uncased 99.2 26.2 65.4 74.8 76.2 57.6
pixel 97.0 23.3 76.2 79.2 88.6 83.8

Table 4: Intent classification accuracy (in %) for mod-
els trained on Standard German and evaluated on Ger-
man dialects.

for Swiss German, and notable but more modest for
the Bavarian dialects. These results show promis-
ing signs of pixel for certain semantic tasks when
evaluating on dialects.

3.6 Discussion
Pixel-based models has been show to underperform
in sequence classification tasks (Rust et al., 2023).
This can be attributed to the uniform rendering of
text into 16×16 pixel patches. Unlike token classi-
fication, where words consistently map to similar
patches, sequence classification introduces variabil-
ity due to sentence progression, leading to slight
variations in representation for the same word. Lotz
et al. (2023) explored patch multiplicity reduction
strategies, like pairing two characters per patch or
using monospace fonts.

In our experiments, results in topic classification
match this trend. However, pixel-based models
outperform token-based ones in intent detection.
This disparity may arise due to the dataset com-
plexity, as topic classification on Standard German
(∼50% accuracy) is inherently more challenging
than intent detection (∼100% accuracy).

4 Conclusion

We presented a study on the use of pixel-based pre-
trained language models for zero-shot dialect eval-
uation, using German as a case study. Pixel-based
models achieved higher scores than both cased and
uncased token-based models when trained on Stan-
dard German and evaluated on German dialects for
POS tagging, dependency parsing, and intent de-
tection. However, they lagged behind token-based
models in topic classification and for all tasks when
evaluated on Standard German.

Pixel-based models showed promising results,
particularly in intent detection, highlighting their
potential in handling linguistic diversity. While
their performance in topic classification indicates
areas for further refinement and study, these models
offer a novel approach to addressing dialectal NLP
tasks. The current limitations in the availability of

dialectal datasets present challenges for conducting
a comprehensive evaluation, but we argue that pixel
models have the potential to expand their utility
across a broader range of NLP tasks, providing
robust and adaptable language processing solutions,
especially in low-resource contexts.

This work highlights the potential of pixel-
based models in tackling the challenges posed by
non-standard language varieties. With sufficient
computational resources and data, multilingual
pixel-based models could prove valuable for low-
resource languages by bypassing tokenization and
vocabulary limitations. However, the resource con-
straints commonly associated with low-resource
language research (Ahia et al., 2021) may hinder
their practical adoption. While the model’s success
with German dialects is encouraging, its general-
izability to other languages and dialects remains
uncertain.

Limitations

This study is constrained by several factors. Due to
the high computational cost of pretraining language
models, we focused on a single language, German,
which limited our ability to explore other languages
with different morphological or syntactic structures,
or multilingual approaches. The scarcity of anno-
tated data for dialectal varieties further restricted
the scope of our experiments, excluding potential
tasks and languages. While we included multiple
dialects, the data imbalance and annotations quality
may have introduced biases.

While our results show promise for German di-
alects, the generalization of these findings to other
languages and language families remains uncertain
and requires further investigation.
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Train Dev Test

Dataset Varieties Sent Word Sent Word Sent Word Task Licence

Token-level tasks

UD German HDT 2.10 German 153.0k 2799.1k 18.4k 324.8k 18.5k 331.7k P, D BY-SA 4.0
(Borges Völker et al., 2019) (annotations)

UD German GSD 2.10 German 13.8k 263.8k 799 12.5k 977 16.5k P, D BY-SA 4.0
(McDonald et al., 2013)

UD Swiss German UZH 2.10 Swiss German — — — — 100 1.4k P, D BY-SA 4.0
(Aepli and Clematide, 2018)

UD Low Saxon LSDC 2.10 Low Saxon — — — — 83 2.5k P, D BY-SA 4.0
(Siewert and Rueter, 2024)

UD Turkish German SAGT 2.10 Code-switched —* —* —* —* 805 13.9k P, D BY-SA 4.0
(Çetinoğlu and Çöltekin, 2022) Turkish–German

UD Bavarian MaiBaam 2.14 Bavarian — — — — 1.1k 15.0k P, D BY-SA 4.0
(Blaschke et al., 2024)

NOAH’s corpus Swiss German — — — — 7.3k 113.6k P BY 4.0
(Hollenstein and Aepli, 2014) (annotations)

Alsatian Bisame GSW Alsatian — — — — 382 8.2k P BY-NC-SA 3.0
(STIH, 2020)

Sentence-level tasks

SwissDial German, 2.5k–4.1k sents per variety, split 80:10:10 T BY-NC 4.0
(Dogan-Schönberger et al., 2021) 8×Swiss German

xSID 0.5 German, 2×Bavarian, — —* 4×500 I BY 4.0
(van der Goot et al., 2021; Swiss German
Aepli et al., 2023; Winkler et al., 2024)

NaLiBaSID MAS:de-ba Bavarian — — 2.0k I not specified
(Winkler et al., 2024)

NaLiBaSID nat:de-ba Bavarian — — 315 I not specified
(Winkler et al., 2024)

Table 5: Training and evaluation datasets used in our experiments. P = part-of-speech tagging, D = dependency
parsing, T = topic classification, I = intent classification. *The original dataset comes with training and/or develop-
ment splits, but we do not use them.

https://github.com/UniversalDependencies/UD_German-HDT/blob/master/LICENSE.txt
https://github.com/UniversalDependencies/UD_German-GSD/blob/master/LICENSE.txt
https://github.com/UniversalDependencies/UD_Swiss_German-UZH/blob/master/LICENSE.txt
https://github.com/UniversalDependencies/UD_Swiss_German-UZH/blob/master/LICENSE.txt
https://github.com/UniversalDependencies/UD_Turkish_German-SAGT/blob/master/LICENSE.txt
https://github.com/UniversalDependencies/UD_Bavarian-MaiBaam/blob/master/LICENSE.txt
https://github.com/noe-eva/NOAH-Corpus/blob/master/LICENSE
https://creativecommons.org/licenses/by-nc-sa/3.0/fr/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://github.com/mainlp/xsid/blob/main/LICENSE

	Introduction
	Pixel-based models
	Experiments
	Setup
	German non-standard varieties
	Syntactic tasks
	Topic Classification
	Intent Detection
	Discussion

	Conclusion
	Datasets

