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Abstract

Multi-level ~ Hierarchical = Classification
(MLHC) tackles the challenge of categorizing
items within a complex, multi-layered class
structure. However, traditional MLHC classi-
fiers often rely on a backbone model with n
independent output layers, which tend to ignore
the hierarchical relationships between classes.
This oversight can lead to inconsistent pre-
dictions that violate the underlying taxonomy.
Leveraging Large Language Models (LLMs),
we propose novel taxonomy-embedded
transitional LLM-agnostic framework for
multimodality classification. The cornerstone
of this advancement is the ability of models to
enforce consistency across hierarchical levels.
Our evaluations on the MEP-3M dataset - a
Multi-modal E-commerce Product dataset
with various hierarchical levels- demonstrated
a significant performance improvement
compared to conventional LLMs structure.

1 Introduction

The increasing complexity of real-world datasets
has led to the widespread adoption of multi-level hi-
erarchical structures, making Multi-level Hierarchi-
cal Classification (MLHC) a critical tool in modern
data analysis (Zhang et al., 2024). For instance,
large-scale e-commerce platforms like Amazon
manage extensive product catalogs through com-
plex taxonomies, which include nested categories,
subcategories, and filters (e.g., electronics — lap-
tops — 2-in-1 laptops). These taxonomies help
users efficiently navigate and refine their search
by narrowing down options based on attributes
like brand, price range, and features (Zhang et al.,
2024). In such scenarios, MLHC plays an impor-
tant role by accurately classifying items within
these hierarchies, using the taxonomy to infer rela-
tionships and ancestors among categories (Boone-
Sifuentes et al., 2022b). This ability to leverage
taxonomy-based classification not only enhances
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Figure 1: (a) An data point of an “Apple” classified
by three independent classifiers as a “Food” and “Fruit”
(correct for levels /1 and /), but incorrectly classified
as a “Pearl” at level /3. The correct classifications at
levels ¢1 and /5 could have assisted in identifying the
correct class for £3. (b) The proportion of correctly
classified data entries at each level of the taxonomy for
the sampled MEP-3M dataset (shown in dark color),
along with the proportion of data entries misclassified at
one level but correctly identified at other levels (shown
in light color). This highlights the potential advantage
of using a multi-level hierarchical classifier.

user experience but also improves data organiza-
tion, making MLHC indispensable in sectors deal-
ing with large-scale hierarchical datasets.

To illustrate and evaluate the benefits of MLHC,
we refer to Figure 1, which shows (1a) An data
entry of an apple classified by three independent
classifiers across three hierarchy levels, and (1b)
the proportion of correctly classified data enties at
each level of the taxonomy for the sampled MEP-
3M dataset (shown in dark color), as well as the
proportion of data entries that were misclassified
at one level but correctly identified at other levels
within the taxonomy (shown in light color). Sev-
eral key insights can be drawn from this analysis:
(1) First, MLHC facilitates the structure of vast
amounts of information using a hierarchical taxon-
omy, which is particularly useful for capturing the
relationships between classes via the “subclass-of”
concept. (2) Second, as demonstrated in Figure 1a,
providing the final classification layer with informa-
tion that the data belongs to higher-level categories
such as “Food” and “Fruit” could have enhanced
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its ability to correctly classify the image at {3, or
at the very least, ensure consistency by selecting a
subclass of “Fruit”. (3) Finally, the results depicted
in Figure 1b show that 4.08% of images incorrectly
classified at £; were correctly classified at either {5
or /3, 11.92% of images misclassified at {5 were
accurately classified at ¢; or /3, and 16.06% of
images incorrectly classified at 3 were correctly
classified at ¢; or ¢5. This shows and motivates the
potential benefit of an MLHC that embeds the tax-
onomy structure with a top-down or a bottom-up
classification approach.

Several methods have been proposed for MLHC
(Boone Sifuentes et al., 2024), which can be classi-
fied based on how they utilize the hierarchical struc-
ture. Specifically, we distinguish between three
primary approaches: (i) the flat classification ap-
proach, where the class hierarchy is completely
ignored. In this approach, predictions are made
solely for the bottom levels, with the assumption
that all ancestor classes are implicitly attributed
to the instance as well; (ii) the local classification
approach, which involves training a separate multi-
class classifier at each parent node in the hierarchy
to distinguish between its child nodes; and (iii) the
global classification approach (Zhang et al., 2024;
Bettouche et al., 2024; Liu et al., 2024a), where
a single classifier is responsible for handling the
entire class hierarchy. In this paper, we argue that
flat classifiers, by ignoring the hierarchical rela-
tionships between class levels, often result in in-
consistent classifications. For instance, as shown
in Figure 1a, the data entry of an apple is correctly
classified as “Food” and “Fruit”, but incorrectly
as “Pearl” at the leaf node. Furthermore, we argue
that it is impractical to train and maintain n sepa-
rate networks for local classification approaches,
which can be redundant and costly in real-world
applications. As a result, we favor global classifica-
tion approaches, which address the limitations of
flat and local methods. However, existing methods
still face several key challenges: (i) they do not
inherently embed the taxonomy structure, (ii) they
often rely on complex neural network architectures
with n independent output layers that do not inter-
act, (iii) they frequently produce predictions that
are inconsistent with the taxonomy, and (iv) they
typically operate with a fixed n, limiting flexibility
and requiring extensive hyperparameter tuning to
optimize n for different scenarios.

This paper addresses the aforementioned short-
comings by introducing a novel Taxonomy-based

Transitional Classifier (TTC) for MLHC. Specif-
ically, we propose an LLM-agnostic output layer
that can be used in conjunction with any LLM in-
tegrating taxonomy information. Our output layer
employs a top-down divide-and-conquer strategy,
attending to the taxonomy relationships at each
level of the classifier to ensure predictions remain
consistent with the hierarchical structure. Focusing
on a multimodal dataset, we evaluate the effective-
ness of our approach on the MEP-3m dataset (Liu
et al., 2023a) and use different LLMs as backbone
models. Experimental results demonstrate that
TTC improves the performance of various back-
bone LLMs compared to when they are applied as
flat classifiers.

2 Related Work

Hierarchical classification is a well-established area
of research, with a broad spectrum of approaches
developed across various domains. Below, we re-
view the most prominent approaches.

Flat Classification methods: which ignore the
hierarchical structure, typically predicting only
classes at the leaf nodes and considering that all its
ancestor classes are also implicitly assigned to that
instance. Although these methods are simple and
computationally efficient, they often fail to utilize
the inherent relationships between classes, result-
ing in suboptimal performance, particularly in com-
plex taxonomies (Silla and Freitas, 2011; Valentini,
2010). While commonly used as baselines in em-
pirical studies, their lack of hierarchical awareness
limits their effectiveness in domains where class
relationships are crucial.

Local Classifier Approaches: have been widely
adopted to address the limitations of flat classifica-
tion by training classifiers at different levels of the
hierarchy. These approaches can be further divided
into three types: Local Classifier per Node (LCN),
Local Classifier per Parent Node (LCPN), and Lo-
cal Classifier per Level (LCL). The LCN approach,
proposed by Koller and Sahami (Koller and Sa-
hami, 1997), is perhaps the most common, where a
classifier is trained for each node in the hierarchy.
However, it is prone to inconsistencies in predic-
tions across levels (Silla and Freitas, 2011; Dumais
and Chen, 2000). The LCPN approach trains classi-
fiers for each parent node to distinguish among its
children, which can reduce inconsistencies but may
still propagate errors down the hierarchy (Secker
et al., 2007). The LCL approach, though less com-
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monly used, involves training classifiers at each
level of the hierarchy, but it can suffer from the
challenge of discriminating among a large number
of classes at deeper levels (de Carvalho and Freitas,
2009; Costa et al., 2007).

Global Classifier Approaches: in contrast, treat
the entire hierarchy as a single unit during train-
ing. These approaches integrate hierarchical infor-
mation into the learning process, ensuring consis-
tency across levels but often at the cost of increased
computational complexity and reduced modularity
(Vens et al., 2008). Notable examples include the
Clus-HMC algorithm, which uses predictive clus-
tering trees to handle the hierarchical structure (Kir-
itchenko et al., 2005; Vens et al., 2008). Global clas-
sifiers are advantageous in that they avoid the error
propagation issues inherent in local approaches, but
they require significant computational resources
and are often specific to the underlying flat classi-
fier being adapted (Silla and Freitas, 2011).

Graph Neural Networks (GNNs): have become
a central tool in hierarchical classification, particu-
larly for handling complex dependencies between
labels. These networks model the entire hierarchy
as a graph, where nodes represent labels and edges
represent hierarchical relationships. Recent works
have shown that GNNs are particularly effective
in capturing both horizontal and vertical dependen-
cies within the hierarchy, leading to improvements
in classification performance across multiple lev-
els such as models like Hierarchy-Aware Graph
Models (HiAGM) (Liu et al., 2023b).

Specialized loss functions: have emerged as a
robust method for ensuring consistency in hierar-
chical multi-label classification. This approach is
designed to handle the intricacies of pre-defined
class hierarchies by incorporating a max constraint
loss (MCLoss) that enforces hierarchical dependen-
cies during training. The Coherent Hierarchical
Multi-Label Classification Networks (C-HMCNN)
(Giunchiglia and Lukasiewicz, 2020) are proposed
with such MCLoss to ensure that the predictions
across the hierarchy remain coherent, meaning that
a child node can only be activated if its parent node
is also activated. This method effectively maintains
logical consistency across hierarchical levels, sig-
nificantly improving classification accuracy where
adherence to the hierarchy is critical.

Advances and Challenges: Recent advancements
in hierarchical classification have focused on inte-
grating deep learning techniques and graph-based

approaches, particularly for tasks involving multi-
level taxonomies, such as document categorization
and other NLP tasks. Despite progress, challenges
remain in scaling models to handle large, complex
hierarchies consistently (Boone-Sifuentes et al.,
2022a). The Taxonomy-based Transitional Classi-
fier (TTC) proposed in this paper addresses these
issues by embedding hierarchical information di-
rectly into the classification process and leveraging
LLMs for multi-modal data. As a model-agnostic
layer, TTC enhances flexibility and accuracy across
various backbone models, offering a more consis-
tent solution for complex hierarchies.

3 Taxonomy-based Transitional Classifier

This section formally defines the MLHC prob-
lem and introduces our proposed Taxonomy-based
Transitional Classifier, designed to enforce hierar-
chical consistency across classification levels.

3.1 Notation and problem definition

Classification: Most classification problems in the
literature focus on flat classification, where each in-
stance is assigned to a single class from a finite set
of independent, non-hierarchical classes. Formally,
given a dataset D = {(x(I) y(1)), (x?) ¢,

-, (x(™), 4™} with m instances, where each
x() € X C R” is an n-dimensional input fea-
ture vector of the instance i and y() € ) =
{y1,y2, - ,yr} represents its class, a classifi-
cation algorithm must learn a mapping function
f : X' = Y, which assigns to each feature vector
x() its correct class y(*).

Multimodal classification: It extends the flat clas-
sification paradigm by incorporating multiple data
modalities, such as text, images, or audio, into
the classification process. Formally, given a mul-
timodal dataset D = {((xgi),xg), e ,xl(f)), y@) |
i=1,2,---,m}, where Xg-z) € X; € R"™ repre-
sents the feature vector of modality j for instance
1, and y(i) € Y represents the class, a multimodal
classification algorithm learns a mapping function
[ (X x Xy x -+ xX,) = Y. This function
assigns the correct class label y(*) by leveraging in-
formation from all available modalities to improve
prediction accuracy and robustness.

Hierarchical classification: In contrast to flat clas-
sification in which classes are considered unrelated,
in a hierarchical classification problem classes are
organized in a taxonomy. The taxonomy is often
organized as a tree, where classes have a single
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parent each, or a directed acyclic graph (DAG),
where classes can have multiple parents. Given a
set of classes ), Wu et al. (Wu et al., 2005) de-
fined a taxonomy as a pair (), <), where < is the
“subclass-of " relationship with the following prop-
erties (Wu et al., 2005; Silla and Freitas, 2011): (i)
asymmetry (Vy;,y; € V,ify; < y; theny; A v:),
(ii) anti-reflexivity (Vy; € YV, y; 4 vi), and (iii)
transitivity (Yy;, v, yx € V,y; < y;j and y; < yi
implies y; < yx).

In this paper, we consider only free taxonomies,

which are organized with a hierarchy structure of
n levels /;, suchthat ¢; C Y, 61 Uly---U¥l, =,
Vyj € l,y; < (), and Vyj S €¢+1,E|!yk € U s.t.
y; < yi for ¢ > 1 (see Figure 1a for a three-level
taxonomy). Finally, we encode the relationship be-
tween two successive levels ¢; and 4;41 in a taxon-
omy using an |¢;| x |¢;1| matrix M-f+1] where
the binary value Mggiﬂ’yefﬂ € {0(y; A w), 1(y; <
yk)}, with y; € £; and Yj; € Ei—‘rl-
Problem definition: The multimodal multi-level
hierarchical classification problem addressed in this
paper is defined as the task of learning a mapping
function f : (X; x X x -+ x X,,) = Y, which
assigns to each instance-represented by a combina-
tion of feature vectors from p different modalities—
a prediction vector y(!) = {ylea] yle2] ... ylnl}
Here, yl! € ¢; represents the class assigned by the
function f at each hierarchical level ¢;, ensuring
accurate predictions across all taxonomy levels.

3.2 TTC Model Description

As mentioned earlier, our proposed TTC addresses
the limitations of existing methods, which often
result in inconsistent predictions, by enforcing con-
sistency throughout the prediction process. Lever-
aging the detailed taxonomic information at each
hierarchical level, the TTC layer guides its predic-
tions by restricting them to labels that are appro-
priate for the corresponding level in the hierarchy.
This approach avoids inconsistent classifications
that span unrelated categories. By integrating the
hierarchical structure directly, the TTC layer pro-
motes consistency and aims to enhance the logical
soundness of predictions in a multimodal context,
potentially achieving better overall accuracy than
conventional LLMs.

Figure 2 illustrates the architecture of the pro-
posed TTC layer, an LLM-agnostic component de-
signed to leverage the taxonomy and ensure that
predictions adhere to the hierarchical structure of
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Figure 2: Architecture diagram of the taxonomy-
based transitional classifier. The transitional matrix
Mntnia] multiplies the output from the correspond-
ing classifier to obtain an attention score, which is then
applied to the output of the next-level classifier. This
ensures that the information from the upper level and
subclass predictions is integrated into the output, in-
creasing the likelihood of maintaining consistency.

the data. Several independent classifiers are used
to predict the categories on different levels in the
same way as local approaches. However, to main-
tain consistency, the relation information of upper
levels is incorporated into the next level in the same
way as attention is. The output probabilities from
the upper level are multiplied by a transition ma-
trix, where each entry represents the relationship
between classes at successive levels in the taxon-
omy (i.e., 1 if the class in the column is a “sub-
class of” the class in the row, and 0 otherwise).
The product can be considered as the attention
score that incorporates the hierarchical informa-
tion as well as the relation between classes and can
be applied to the output probability for the next
level. The prediction of the classifiers can be for-
mulated as zl%] = Wil . a + b[&], where a is the
joint output latent feature of backbone multimodal
LLMs, and W4l plé] are learnable parameters that
trained on the trainset regarding each ¢; of the hi-
erarchies. The prediction of the first classifier is
obtained by applying a temperature-scaled softmax
normalization, as §*) = softmax(zl)). For each
subsequent level, we compute an attention score
to incorporate relational information into the pre-
dictions, ensuring consistency across levels (i.e.,
gllit1l < g6y, This is achieved by injecting hier-
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archical relations as follows:
mli+1] — 5,[&-] « Mliti1] 1)

where M-4i+1] is our |¢;| x |¢;41| transitional
matrix which encodes the relationship between
two successive levels ¢; and ;1 in a taxonomy
(i.e., the binary value MYyl € {0 (ify; A
Yk), 1 (if Y; < yk)}, with y, € ¢; and Y; € lit1).
Referring to the example illustrated in Figure 1a,
consider the /5 labels, which include Jewel and
Fruit, and the /3 labels, comprising K gold, Pearl,
Apple, and Pear. The corresponding transition ma-
trix Me26] js:

enty) _ (1100
M (0011

in which the first row corresponds to the ¢5 class
Jewel, where a value of 1 indicates that the /5 class
(e.g., K gold or Pearl) is a subclass of Jewel, and
a value of 0 indicates no such relationship. Sim-
ilarly, the second row refers to the ¢y class Fruit,
where the values reflect whether the /3 classes are
subclasses of Fruit. In this manner, the hierarchi-
cal structure of the taxonomy is fully encapsulated
within the transition matrix.

Each attention score is applied using an element-
wise product on the probability output of each clas-
sifier from a lower level as:

gl = softmax_(z+) omlé+1ly  (2)

Attention scores and classifications in Equa-
tions 1 and 2, respectively, are processed sequen-
tially for all hierarchical levels. The loss function
is also adjusted as follows:

— Z 3 e il e
] 14¢=1

where L(e, ) denotes the cross-entropy func-
tion and !4 are a set of importance factors that
can be tuned to changing the weight of losses for
different ¢;.

Continuing with the example provided earlier,
given the fransition matrix M%) and assum-
ing the probability output from the /2 classi-
fier is y?l = {0.9,0.1}, the attention scores
are calculated as: ml%l = yVﬂ C Mt —
{0.9,0.9,0.1,0.1}. Assuming the output from /3
is zI%] = {—0.2,0.5,1.3,0.3}, applying the atten-
tion scores m!‘3] and a softmax function to nor-
malize the result gives the prediction probability
output: §13] = {0.182,0.342,0.249, 0.225}.

Data counts for classes at level 2

rrrrr Meat Beverages Dry Goods
class name at level 2

Data counts for classes at level 3
5000

o
w0 II

g H ie i

subsub class name at level 3

Figure 3: The distribution of data across all classes at
62 and 63

Compared to a flat classifier for £3 which would
have applied directly softmax to 2] TTC’s predic-
tion produces more consistency with upper-level
prediction. Additionally, from a taxonomic per-
spective, tree-like hierarchical classification lever-
ages general-to-specific relationships, where gen-
eral categories have better data separability. This
indicates that they possess wider margins in their
decision boundaries, making it easier for classifiers
to distinguish them. As a result, general classes
at higher levels contribute to higher classification
accuracy at the top (Cortes, 1995). By enforcing
the consistency across hierarchical levels, the LLM
is further guided to make more accurate predic-
tions at deeper, more specific levels with greater
granularity.

4 Experiments and Results

This section evaluates the performance of a TTC in
MLHC tasks using the MEP-3 dataset, a large-scale
multimodal e-commerce product dataset containing
over 3 million entries. Due to computational con-
straints and a significant portion of entries lacking
third-level hierarchical labels, we focused on the
third-largest food subset, chosen for its diversity in
product types. To maintain consistency in the ex-
periments, we excluded entries that do not include
third-level hierarchies. As a result, the final dataset
used for these experiments consisted of 177,195
data points. Figure 3 illustrates the distribution of
data across all classes at both hierarchies.

4.1 Experimental Details

Experimental Setting: The preprocessing steps
were as follows: Textual Data: Product descrip-
tions were tokenized using Byte Pair Encoding
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Table 1: Hyperparameters used in the experiments.

Hyperparameter Value
Learning Rate (Fine-Tuning) le-5
Learning Rate (TTC Training) le-4
Batch Size 32
Number of Epochs (3 tolerance on train acc)
LoRA Rank 8
LoRA alpha 16
LoRA dropout 0.1
Weight Decay 0.01
Dropout Rate 0.1
Optimizer AdamW

(BPE) or Wordpiece tokenization, which are com-
monly used methods for handling both Chinese and
multilingual text. Stop words were also removed to
reduce noise, improving the model’s focus on rele-
vant content. Image Data: The majority of images
in the dataset were already 220 x 220 pixels, but
a minority were smaller, with sizes like 64 x 50,
75 x 75, 60 x 60, and 54 x 54. To ensure unifor-
mity across the dataset, all images were resized
to 220x220 pixels. This resizing helped maintain
consistent input dimensions for the model. Addi-
tionally, pixel values were normalized to fall within
a common range to improve model stability and
convergence during training. Hierarchical Labels:
The dataset’s hierarchical structure consists of three
levels: 1 top-level class, 4 second-level sub-classes,
and 40 third-level sub-sub-classes. Labels were
encoded to ensure that each product was accurately
categorized across the relevant levels of hierarchy.

An 80/20 split was applied to this food sub-
set, with 80% of the data (141,756 inputs) used
for training. We split the whole process into two
stages to speed up the training procedure: Fine-tune
LLMs: We applied Low-Rank Adaptation (LoRA)
(Hu et al., 2021) to the LLMs and fine-tuned them
on the training set to improve the models’ repre-
sentation capabilities. Since bottom-level labels
offer greater granularity, the model learned finer
distinctions between similar classes within broader
categories. To achieve this, we sampled 1,000 data
entries from each ¢5 label (40,000 in total). This
balanced sampling provided sufficient data for the
model to learn detailed and specific features for
each class, which is essential for fine-grained clas-
sification. By ensuring that each /5 class had an
equal number of samples, we avoided overrepresen-
tation of certain classes, leading to more stable and
reliable performance across all categories. We uti-
lized the Parameter-Efficient Fine-Tuning (PEFT)

library (Mangrulkar et al., 2022) to efficiently ap-
ply LoRA to the candidate backbone LLMs. Train
TTC: Aligned with the hierarchical levels of the
dataset we used, the TTC also consists of 2 levels
of classifiers to predict both levels of categories. Af-
ter fine-tuning, the backbone models are integrated
with TTC with frozen parameters to train the classi-
fier further on the training set. 20% (35,439 inputs)
of the subset is used for testing. The input of the
dataset, which contains (v, t), where v refers to
the representation from the image and ¢ refers to
the textual representation, is fed into the backbone
Multimodal LLMs to generate a joint implicit fea-
ture x for the taxonomy-based transitional classifier
to make predictions on each level of hierarchy.

Backbone Multimodal LLMs: For backbone
models, we have adopted different LLMs includ-
ing: LLAVA-1.5 (13B) (Liu et al., 2024b), Visual-
Bert (Li et al., 2019), mPLUG-OwI (7B) (Ye et al.,
2023), OpenFlamingo(9B) (Awadalla et al., 2023),
Fuyu(8B) (Bavishi et al., 2023), InstructBLIP(7B)
(Dai et al., 2024), MiniGPT-4 (Zhu et al., 2023),
and Llama (7B) (Touvron et al., 2023). Notably,
for Llama, we manually integrated ResNet as the
visual encoder to enable multimodal functionality.
ResNet extracts visual features from images, which
are then projected to align with Llama’s embedding
dimensions and fused with textual inputs. This in-
tegration allows Llama to process and generate
responses based on both visual and textual infor-
mation. Each model is assessed with and without
the proposed method, denoted by (TTC). The hy-
perparameters for the experiments are set as Table
1.

Evaluation Metrics: For evaluating the MLHC
task, we have adopted the Hierarchical F1-Score
(HF1- score) (Kosmopoulos et al., 2015), which
assesses model performance in predicting classes
across different hierarchy levels. Similar to the
F1-score, the HF1-Score is defined as:

2 - (H-Precision - H-Recall)

HF1- Score = —
H-Precision + H-Recall

where H-Recall and H-Precision are analogous
to Recall and Precision but evaluate the propor-
tion of correctly predicted classes among all ac-
tual/predicted classes. In addition to the HF1-Score,
we also use consistency and Exact Match as evalu-
ation metrics. Consistency ensures that predicted
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Figure 4: Spider diagram for all LLM backbones regarding 5 different metrics.

Table 2: Performance of Multimodal Large Language Models with and without TTC on the newest MEP-3 dataset.

Food Subset HF1-Score Exact Match Consistency Accuracy@/> Accuracy@/s
LLAVA-1.5 (13B) 0.8356 0.5367 0.6305 0.8324 0.6853
LLAVA-1.5 (13B) + TTC 0.8003 0.5021 0.7268 0.8067 0.7601
VisualBert 0.7472 0.4251 0.6405 0.7423 0.6804
VisualBert + TTC 0.7663 0.4923 0.6263 0.7562 0.6554
mPLUG-Owl (7B) 0.8396 0.3881 0.4538 0.8229 0.5404
mPLUG-Owl (7B) + TTC 0.8475 0.6218 0.7096 0.8373 0.7203
OpenFlamingo (9B) 0.8102 0.5457 0.4903 0.8071 0.6102
OpenFlamingo (9B) + TTC 0.8273 0.5541 0.8485 0.8218 0.8404
Fuyu (8B) 0.7815 0.4510 0.6409 0.7728 0.6803
Fuyu (8B) + TTC 0.7591 0.4988 0.6471 0.7526 0.6902
InstructBLIP (7B) 0.7888 0.5710 0.6549 0.7874 0.7101
InstructBLIP (7B) + TTC 0.8140 0.5137 0.7622 0.8021 0.7554
MiniGPT-4 0.8649 0.4458 0.4952 0.8615 0.6253
MiniGPT-4 + TTC 0.8652 0.5677 0.7309 0.8573 0.7453
Llama (7B) 0.8979 0.5926 0.5510 0.8921 0.7004
Llama (7B) + TTC 0.9016 0.6024 0.8033 0.8964 0.7903

labels adhere to hierarchical structures, meaning
predictions across all levels remain within the same
hierarchy. Exact Match is a stricter criterion requir-
ing that predictions not only stay within hierarchy
but also exactly match true labels at all levels.

4.2 Experimental Results

We present the results of applying the proposed
taxonomy-based transitional classifier (TTC) to
various large multimodal LLMs for a comparative
analysis. Figure 4 provides an overall compari-
son of the different LLMs with and without the
integration of the model-agnostic TTC layer (see
Table 2 for details, and refer to Appendix A for
further information). Across the board, integrat-
ing the hierarchical layer shows a clear improve-

ment in performance for most models, confirming
the efficacy of the TTC approach. In particular,
while HF1-Score remains relatively high across
models—indicating a strong ability to capture hi-
erarchical relationships—there is a slight decrease
in this metric for some models when TTC is in-
troduced. This suggests that TTC’s emphasis on
enforcing consistency between layers can result in
a trade-off with general performance. However,
the hierarchical layer consistently leads to improve-
ments in Consistency, Exact Match, and Accu-
racy at /3, highlighting its strength in producing
more coherent and fine-grained predictions. These
enhancements underline the effectiveness of TTC
in addressing complex hierarchical classification
tasks, ensuring predictions align better with struc-
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Figure 5: Group bar chart for detailed results for all LLM backbones on all 5 metrics.
0.85 OpenFlamingo (gBﬂH)

tured taxonomy.

For detailed comparison, Figure 5 further high-
lights the impact of TTC by illustrating how it sig-
nificantly boosts key metrics such as Consistency
and Exact Match across models. For example,
while applying TTC to LLAVA-1.5 (13B) resulted
in a slight reduction in HF1-Score (from 0.8356 to
0.8003), it led to a substantial improvement in Con-
sistency, increasing from 0.6305 to 0.7268, indicat-
ing more coherent predictions aligned with the hi-
erarchical structure. Similarly, mPLUG-Owl (7B)
saw a remarkable improvement in Exact Match
(from 0.3881 to 0.6218) and Consistency (from
0.4538 to 0.7096), demonstrating TTC’s ability
to enhance alignment with taxonomical classifi-
cations. OpenFlamingo (9B), which experienced
improvements across all metrics, particularly in
Consistency (from 0.4903 to 0.8485) and /3 Ac-
curacy (from 0.6102 to 0.8404), further reinforces
the effectiveness of TTC in producing more pre-
cise and reliable predictions. These results col-
lectively showcase TTC’s capacity to significantly
improve LLMs’ ability to handle hierarchical classi-
fication tasks, leading to more accurate and consis-
tent model outputs, especially for tasks that require
deeper, fine-grained distinctions.

Overall, the hierarchical classification method
generally enhances the consistency of predictions
and, in many cases, improves the exact match met-
ric. These results highlight the potential of our
method to improve the performance of multimodal
large language models in MLHC tasks. Figure
6 further supports this by demonstrating a strong
positive correlation between Consistency and /3
Accuracy, indicating that models which align their
predictions with the taxonomy tend to perform bet-
ter on detailed classification tasks. This correlation
suggests that the TTC layer is not only effective
for hierarchical classification but can also be ex-
tended to traditional classification tasks. By con-
structing labels from the bottom up and applying
the TTC layer in a top-down manner, the divide-
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Figure 6: Relationship Between Consistency and {3 Ac-
curacy for Various Models with and without the TTC
Layer. Orange (flat classifier), Blue (hierarchical classi-
fier).

and-conquer approach has the potential to enhance
performance in a wide range of classification prob-
lems.

5 Conclusion

In conclusion, the proposed taxonomy-based tran-
sitional classifier (TTC) demonstrates significant
potential in enhancing the performance of large
multimodal language models, particularly in hier-
archical classification tasks. Across all evaluated
models, the TTC layer led to notable improvements
in key metrics such as Consistency, Exact Match,
and /3 Accuracy, as seen in both the grouped bar
chart and the Consistency vs /3 Accuracy diagram.
While some trade-offs, such as slight reductions
in HF1-Score, were observed, these were offset
by the substantial gains in consistency and fine-
grained accuracy, underscoring the efficacy of TTC
in aligning model predictions with the underlying
hierarchical structure. The strong positive correla-
tion between Consistency and ¢3 Accuracy further
suggests that TTC can be extended beyond hierar-
chical tasks to traditional classification problems,
where it could serve as a top-down, divide-and-
conquer approach to boost performance. Overall,
these results emphasize the versatility and effec-
tiveness of TTC in improving both hierarchical and
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standard classification tasks, making it a promising
addition to model-agnostic strategies for enhancing
multimodal LLMs.

Limitations

Though TTC-aided LLMs demonstrated signifi-
cantly better performance across various metrics
compared to traditional LLMs, and can be applied
to many classification tasks, they rely on an in-
herent hierarchical structure in the data and re-
quire manual annotation to create multiple levels
of classes. For large-scale datasets with deep hi-
erarchies, this manual annotation incurs high la-
bor costs, and calculating the transition matrix be-
comes increasingly complex. Additionally, the
current approach only considers top-down transi-
tions, ignoring bottom-up information that could
enhance prediction consistency across levels. This
restricts the model’s ability to capture interdepen-
dencies between lower and higher-level predictions.
Moreover, the sequential nature of the TTC design
limits its parallelizability, as predictions for dif-
ferent levels must be processed one after another.
This sequential processing increases computational
costs and reduces efficiency, particularly for large
datasets, making the method less suited for real-
time applications where speed is crucial.
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Appendices

A The supplementary results for
experiments

The Figure 7 heatmap illustrates the performance
improvements of hierarchical (TTC) models over
non-hierarchical models across five key metrics:
HF1-Score, Exact Match, Consistency, {5 Ac-
curacy, and /3 Accuracy. Positive differences,
shown in red, indicate performance improve-
ments, while blue represents declines. Notably,
OpenFlamingo (9B) exhibits the largest improve-
ment in Consistency (+0.36), while mPLUG-Owl
(7B) shows substantial gains in both Consistency
(+0.26) and /5 Accuracy (+0.18). Although some
models, such as LLAVA-1.5 (13B) and Instruct-
BLIP (7B), demonstrate slight decreases in HF1-
Score and Exact Match, they still benefit from
improved Consistency. Overall, the heatmap re-
veals that hierarchical classification consistently
enhances Consistency and /3 Accuracy, making it
particularly effective for fine-grained classification
tasks.
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Figure 7: The heatmap of improvements that models
with TTC have over models without TTC.
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