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Abstract 

Clinical reports and scientific health 

information sources are usually written for 

medical experts preventing patients from 

understanding the main messages of these 

texts. Making them comprehensible for 

patients is important to enable patients to 

make informed health decisions. Metrics 

are required to assess readability and to 

evaluate text simplification methods. 

However, research has mainly focused on 

English medical texts. We collected a set of 

18 statistical, part-of-speech-based, 

syntactic, semantic and fluency metrics 

from related studies and evaluate their 

suitability to measure readability of 

German medical texts. We perform 

multiple t-tests on technical abstracts from 

English and German scientific articles and 

related simplified summaries, respectively. 

While semantic and fluency metrics can be 

successfully transferred to German medical 

texts, multiple statistical, part-of-speech-

based, and syntactic metrics behave 

differently when they are applied to 

German medical texts requiring careful 

interpretation. 

1 Introduction 

Healthcare and medicine has evolved towards a 

more patient-centered and personalized patient 

care where patients are encouraged to engage in 

health decision making. Patient engagement 

promises to enable more personalized treatment 

planning and to improve therapy outcomes while 

reducing the risk of medical errors (Alarifi et al., 

2020). Patients need a good understanding of their 

own health condition and therapeutic options to 

make informed health decisions. However, due to a 

lack of personnel, physicians often have only 

limited time for patient education. In several 

countries, patients can pre-inform about their 

examination results before their next appointment 

by accessing their clinical reports via online portals 

(Baun et al., 2020; BMG, 2024; Cho et al., 2020; 

Dercksen and de Vries, 2020), which improves 

communication between patients and physicians 

(Woods et al., 2013). The ability of patients to 

understand provided health information materials 

and leverage gained knowledge for health decision 

making is referred to as health literacy (Sørensen et 

al., 2012). However, while clinical reports and 

further scientific information sources target 

medical experts, many patients have problems 

understanding these texts (Cho et al., 2020; 

Keselman and Smith, 2012; Rogers et al., 2023). To 

make clinical reports and medical scientific texts 

comprehensible for patients, several research 

studies have investigated automatic methods for 

medical text simplification (MTS) using classical 

natural language processing (NLP) (Kloehn et al., 

2018;  Qenam et al., 2017), and deep learning (DL) 

approaches (Devaraj et al., 2021; Jeblick et al., 

2024; Lyu et al., 2023; Phatak et al., 2022).  

To develop suitable MTS methods, readability 

metrics play a crucial role, which is twofold. First, 

by measuring language characteristics of medical 

texts, readability metrics enable to identify 

language patterns causing comprehension 

problems. As such, they are required to define the 

requirements for MTS methods. Second, to 

evaluate these methods, many studies rely on 

human evaluation studies where medical experts 

and laypeople rate the readability of  simplified 

texts (Jeblick et al., 2024; Lyu et al., 2023; 

Moramarco et al., 2021). Since human evaluation 

studies are expensive and their reproducibility is 

limited, suitable automatic readability metrics are 

required to increase scalability of MTS evaluation 

and to ensure comparability of different MTS 
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methods. However, previous studies on readability 

metrics for MTS mainly focused on English 

scientific articles (Kauchak et al., 2017; Leroy et 

al., 2010; Leroy et al., 2013; Mukherjee et al., 

2019). To the best of our knowledge, there are only 

few studies considering non-English medical texts 

(Mukherjee et al., 2017) and clinical reports (Zeng-

Treitler et al., 2007).  

Our contributions are as follows: We collect a set 

of 18 statistical, grammar, semantic, and fluency 

readability metrics from related studies on 

readability metrics and MTS. To evaluate whether 

available metrics are suitable for measuring 

readability of German medical texts, we validate 

these metrics on sets of paired technical abstracts 

and corresponding simplified summaries from 

English and German scientific articles using 

multiple t-tests and compare results.  

2 Related Work 

Several studies have investigated patient 

comprehension of medical texts and identified that  

medical expert language prevents laypeople from 

understanding these texts. Alarifi et al. (2021) 

collected 659 questions about clinical online 

portals from online discussion forums. The authors 

identified that understanding their clinical reports 

is the main concern of patients as indicated by more 

than one third of all questions. Rogers et al. (2023) 

conducted a systematic literature review including 

studies about patients reporting about their 

understanding of clinical reports and conclude that 

problems with respect to language and medical 

terminology prevent patients from understanding 

the main messages. Other studies confirm medical 

terminology, abbreviations, and unclear structure 

as main difficulties in clinical report language 

(Keselman et al., 2007). Gunn et al. (2017) 

conducted a user study with laypeople rating 

comprehensibility of imaging reports. The authors 

determined a median comprehensibility of 2.5 on a 

5-point Likert scale independent of demographic 

features. Only participants with prior experience in 

reading clinical reports had significantly better 

understanding. Cho et al. (2020) compared 

comprehensibility of clinical reports written in 

expert language and corresponding simplified 

summaries and found that providing simplified 

versions improves comprehensibility. Zowalla et 

al. (2023) analyzed readability of German health-

related web pages showing that readability is low. 

To make clinical reports and other health 

information sources accessible to patients without 

increasing the workload on medical staff, 

researchers have developed automatic MTS 

methods. While former MTS methods mainly 

leveraged classical NLP methods in combination 

with terminologies and lexica (Kloehn et al., 2018; 

Qenam et al., 2017), recent approaches 

increasingly use DL models (Devaraj et al., 2021; 

Phatak et al., 2022) including large language 

models (LLMs) (Jeblick et al., 2024; Lyu et al., 

2023). To assess the readability of medical texts, to 

identify difficult language patterns, and to evaluate 

the performance of MTS methods, suitable 

readability metrics are required. Many studies rely 

on manual evaluation strategies (Jeblick et al., 

2024; Lyu et al., 2023; Moramarco et al., 2021). 

However, results obtained this way are hardly 

reproducible, which compromises comparison of 

MTS methods. Thus, the availability of suitable 

automatic readability metrics is important. 

Previous studies mainly focused on English 

scientific texts. Leroy et al. (2013) validated term 

frequency, i.e. the frequency of occurrence of a 

term in common language, as a metric for semantic 

readability of English scientific medical texts. 

Replacing low-frequency with higher-frequency 

terms showed to significantly improve readability 

in a user study.  Mukherjee et al. (2019) found that 

lexical chain-based metrics are sufficient for 

measuring fluency in English medical scientific 

texts showing that difficult texts suffer from more 

topic changes and intersecting threads. Another 

study by Zeng-Treitler et al. (2007) investigated the 

suitability of lexical, syntactic, and semantic 

readability metrics to characterize language in 

clinical reports. The earlier work by Mukherjee et 

al. (2017) is one of the few studies considering non-

English texts. The authors validated statistical, 

grammar, and semantic metrics on Spanish medical 

scientific texts. Naderi et al. (2019) used 20 

statistical, lexical, and morphological metrics to 

predict readability of German texts finding that 

morphological metrics perform better than 

statistical and lexical metrics. Similarly, Weiss and 

Meurers (2022) used a set of 373 lexical, syntactic, 

morphological, and cohesion metrics among others 

to predict readability in German texts showing that 

these outperform traditional readability formulas. 

However, both studies do not consider medical 

texts. 
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3 Methods and Materials 

To evaluate the suitability of available 

readability metrics for German medical texts, we 

collect a set of 18 readability metrics from related 

studies on readability metrics and MTS. The 

metrics are introduced in Section 3.2. We validate 

collected readability metrics on pairs of technical 

abstracts and related simplified summaries from 

English and German scientific articles, 

respectively. Similar to Mukherjee et al. (2017), we 

perform multiple significance tests to identify those 

readability metrics suitable to differentiate between 

technical abstracts and simplified summaries and 

compare results from both languages. The datasets 

are described in Section 3.1. Analysis methods are 

presented in Section 3.3. 

3.1 Datasets 

Scientific articles are obtained from the Cochrane 

Database of Systematic Reviews 1  where review 

articles summarizing current scientific studies on 

medical topics are published. All articles contain a 

technical abstract and a plain language summary 

(PLS). Technical abstracts summarize the main 

findings of the full article using expert language. To 

make scientific information accessible to 

laypeople, a PLS is provided. PLSs have to follow 

a respective writing guide provided by the 

Cochrane Library Editorial Board and summarize 

the main findings of the full article using plain 

language (Pitcher et al., 2022). Devaraj et al. (2021) 

and Joseph et al. (2023) already created datasets to 

train MTS models from paired technical abstracts 

and PLSs from the Cochrane Database showing 

that there is a significant overlap in terms of 

content. Articles are available in English by default. 

They are translated by volunteering native 

speakers, professional translators, and Cochrane-

internal translator teams using machine translation 

in combination with human post-editing into other 

languages including German (Deppe, 2024). We 

filtered the Cochrane Database by Cochrane Topics 

“Cancer” and “Heart & circulation” and extracted 

all English and German technical articles and PLSs 

from reviews for which German translations are 

available for both, technical abstracts and PLSs. As 

a result, we obtain an English and a German dataset 

both consisting of 50 pairs of technical abstracts 

and related PLSs from 50 articles in total. 

 
1 https://cochranelibrary.com 

3.2 Readability Metrics 

We implemented 18 readability metrics in total. We 

categorize them into statistical, grammar, which 

comprise syntactic and part-of-speech- (POS)-

based metrics, semantic, and fluency metrics.  

Formally, we consider dataset 𝐷 = {𝑑𝑙}𝑙=1
𝑁  with 

𝑁  text documents. All text documents 𝑑 ∈ 𝐷  are 

preprocessed using spaCy (Honnibal et al., 2020), 

an open-source NLP programming library for 

Python, before metrics are calculated for each text. 

Preprocessing includes tokenization, POS-tagging, 

dependency parsing, sentence and syllables 

splitting. We denote the sequence of sentences in 

text document 𝑑  of length 𝐿𝑠𝑑
  by 𝑠𝑑 = (𝑠𝑖𝑑)

𝑖=1

𝐿𝑠𝑑  , 

which is obtained from sentence splitting. 

Similarly, we denote the sequence of words in text 

document 𝑑 of length 𝐿𝑤𝑑
 by 𝑤𝑑 = (𝑤𝑗𝑑)

𝑗=1

𝐿𝑤𝑑  and 

the sequence of words in sentence 𝑠𝑖𝑑  of length 

𝐿𝑤𝑠𝑖𝑑
  by 𝑤𝑠𝑖𝑑

= (𝑤𝑗𝑠𝑖𝑑
)

𝑗=1

𝐿𝑤𝑠𝑖𝑑  . These are obtained 

from tokenization. Let 𝑝𝑠𝑖𝑑
= (𝑝𝑗𝑠𝑖𝑑

)
𝑗=1

𝐿𝑤𝑠𝑖𝑑   denote 

the sequence of POS categories obtained by 

assigning each word in 𝑠𝑖𝑑  its POS category. 

Similar to Kauchak et al. (2017), we obtain the 

dependency parse trees for each sentence from the 

dependency parser. We denote the dependency 

parse tree of sentence 𝑠𝑖𝑑  by 𝑇𝑠𝑖𝑑
= (𝑉𝑠𝑖𝑑

, 𝐸𝑠𝑖𝑑
) , 

which is a directed rooted tree. We label the tree 

nodes 𝑉𝑠𝑖𝑑
 with the POS categories of the words in 

sentence 𝑠𝑖𝑑 , so 𝑉𝑠𝑖𝑑
= {𝑝𝑗𝑠𝑖𝑑

}
𝑗=0

𝐿𝑤𝑠𝑖𝑑   with 𝑝0𝑠𝑖𝑑
 

being the root node. There is a directed edge 

(𝑝𝑗𝑠𝑖𝑑
, 𝑝𝑘𝑠𝑖𝑑

) ∈ 𝐸𝑠𝑖𝑑
  if word 𝑤𝑘𝑠𝑖𝑑

  syntactically 

depends on word 𝑤𝑗𝑠𝑖𝑑
  as indicated by the 

dependency parser. Let depth(𝑝𝑗𝑠𝑖𝑑
, 𝑇𝑠𝑖𝑑

)  denote 

the number of steps from 𝑝0𝑠𝑖𝑑
 to 𝑝𝑗𝑠𝑖𝑑

. Based on 

that, the 𝑛𝑡ℎ -level dependency parse tree 𝑇≤𝑛,𝑠𝑖𝑑
 

denotes the parse tree containing only nodes 𝑝𝑗𝑠𝑖𝑑
 

with depth(𝑝𝑗𝑠𝑖𝑑
, 𝑇𝑠𝑖𝑑

) ≤ 𝑛 (Kauchak et al. 2017). 

We finally denote the sequence of syllables in text 

document 𝑑  of length 𝐿𝑏𝑑
  by 𝑏𝑑 = (𝑏𝑙𝑑)

𝑙=1

𝐿𝑏𝑑  

resulting from syllables splitting. 

 

Statistical metrics provide surface-level 

statistics over a given text such as paragraph, 

sentence, and word lengths. Here, we included 

three statistical metrics: (1) Average sentence 
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length (ASL) is measured by the average number 

of words per sentence (Equation 1):  

 ASL𝑑 =  
𝐿𝑤𝑑

𝐿𝑠𝑑

  (1) 

This is motivated by Mukherjee et al. (2017), who 

have already proven that average sentence length is 

a suitable metric to measure lexical complexity in 

Spanish texts. (2) Average word length (AWL) is 

estimated by the average number of syllables per 

word (Equation 2): 

 AWL𝑑 =  
𝐿𝑏𝑑

𝐿𝑤𝑑

  (2) 

We further consider (3) Flesch-Kincaid Grade 

Level (FKGL) (Kincaid et al., 1975), which is a 

readability formula estimating the US-American 

grade level required to understand a text. FKGL 

considers both, average word and sentence lengths, 

as shown in Equation 3: 

 FKGL𝑑 = 0.39 ASL𝑑 + 11.8 AWL𝑑 − 15.59
  (3) 

FKGL has been applied by several MTS studies to 

evaluate readability (Basu et al., 2023; Phatak et al., 

2022; Yang et al., 2023). 

 

POS-based metrics measure grammatical 

complexity of texts by calculating the frequency 

distribution of POS categories, i.e. the proportion 

of words assigned to a certain set of POS categories 

to the total number of words in the text (Mukherjee 

et al. 2017). Let 𝑇𝑆 denote this set of target POS 

categories and 𝑤𝑇𝑆,𝑑 = (𝑤𝑗𝑑|𝑝𝑗𝑑 ∈ 𝑇𝑆)
𝑗=1

𝐿𝑤𝑑   the 

list of words which is assigned a POS from 𝑇𝑆 of 

length 𝐿𝑤𝑇𝑆,𝑑
 . Then, the POS proportion 

(POSPRP) is calculated according to Equation 4: 

 POSPRP𝑇𝑆,𝑑 =  
𝐿𝑤𝑇𝑆,𝑑

𝐿𝑤𝑑

  (4) 

Mukherjee et al. (2017) identified that difficult 

Spanish medical texts exhibit significantly more 

nouns, negations, and adjectives, while simple texts 

use more numbers. Leroy et al. (2010) found that 

function words are indicative for readability of 

English texts. Based on that, we decided to include 

(4) noun ratio, (5) adjective ratio, (6) function 

word ratio, (7) negation ratio and (8) numbers 

ratio in our study. Hereby, we consider 

determiners, auxiliaries, adpositions, modals, and 

pronouns as function words. We calculate these 

metrics based on Equation 4 with metric-specific 

sets of target POS categories. We provide an 

overview of the applied target POS categories for 

each metric, respectively, in Appendix B.  

Syntactic metrics aim to measure complexity of 

language by assessing complexity of sentence 

structures and word compositions. We 

implemented four syntactic metrics in total. (9) 

Average edit distance and (10) grammar 

frequency measure variability of sentence 

structures as proposed by Mukherjee et al. (2017). 

For English medical texts, Kauchak et al. (2017) 

have already shown that sentence structure has an 

effect on text understanding. Similar to Mukherjee 

et al. (2017), we obtain the average edit distance by 

calculating the edit distances of the sentence 

structures of all adjacent sentence pairs of a text 

and average them. Therefore, we represent the 

sentence structure of sentence 𝑠𝑖𝑑 by its associated 

sequence of POS categories 𝑝𝑠𝑖𝑑
. The average edit 

distance (AED) is obtained according to Equation 

5, where dist(𝑝𝑠𝑖𝑑
, 𝑝𝑠𝑖+1𝑑

) denotes the Levenshtein 

distance. 

 AED𝑑 =  
1

𝐿𝑠𝑑
−1

∑
dist(𝑝𝑠𝑖𝑑

,𝑝𝑠𝑖+1𝑑
)

max(𝐿𝑤𝑠𝑖𝑑
,𝐿𝑤𝑠𝑖+1𝑑

)

𝐿𝑠𝑑
−1

𝑖=1
  (5) 

To ensure comparability, we normalize 

Levenshtein distances with respect to the sentence 

lengths. Grammar frequency is obtained from the 

proportion of different sentence structures to the 

total number of sentences in a text (Mukherjee et 

al. 2017). Different from average edit distance, we 

obtain the sentence structures from the third-level 

dependency parse tree of each sentence as 

proposed by Kauchak et al. (2017). Let 𝑇≤3,𝑑 =

{𝑇≤3,𝑠𝑖𝑑
}

𝑖=1

𝐿𝑠𝑑   denote the set of unique parse trees 

obtained for text document 𝑑. Grammar frequency 

(GF) is calculated according to Equation 6: 

 GF𝑑 =  
|𝑇≤3,𝑑|

𝐿𝑠𝑑

  (6) 

We further consider (11) maximum dependency 

tree depth (MDTD) as proposed by Menta and 

Garcia-Serrano (2022) to measure sentence 

structure complexity. We calculate the maximum 

depths of the dependency parse trees for all 

sentences of a text and average them (Equation 7): 

 MDTD𝑑 =  
1

𝐿𝑠𝑑

∑ max((depth(𝑝𝑗𝑠𝑖𝑑
, 𝑇𝑠𝑖𝑑

))
𝑗=1

𝐿𝑤𝑠𝑖𝑑 )
𝐿𝑠𝑑
𝑖=1

 

 (7)  

We further consider (12) noun phrase complexity 

(Leroy et al. 2010) which denotes the number of 

words of a multi-word phrase with a noun as its 

base. Leroy et al. (2010) showed that using 
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complex noun phrases is characteristic of difficult 

English medical texts. Let 𝑛𝑑 = (𝑛𝑙𝑑)𝑙=1

𝐿𝑛𝑑   denote 

the list of noun phrases in text document 𝑑. Every 

noun phrase 𝑛𝑙𝑑  is a list of words 𝑤𝑛𝑙𝑑
=

(𝑤𝑗𝑛𝑙𝑑
)

𝑗=1

𝐿𝑤𝑛𝑙𝑑  of length 𝐿𝑤𝑛𝑙𝑑
 . The average noun 

phrase complexity (ANPC) is calculated according 

to Equation 8: 

 ANPC𝑑 =  
1

𝐿𝑛𝑑

∑ 𝐿𝑤𝑛𝑙𝑑

𝐿𝑛𝑑
𝑙=1  (8) 

Semantic metrics are used to measure how 

difficult it is for readers to understand the meaning 

of terms in a text. A prominent semantic readability 

metric constitutes (13) average term frequency 

(ATF). Based on the assumption that simple words 

are more frequently used in common language than 

difficult words, term frequency has been 

successfully used as an estimate for semantic 

readability for English medical texts by Leroy et al. 

(2013). We calculate the term frequency tf(𝑤𝑗𝑑) 

for each word of a text document using the Python 

library wordfreq (Speer, 2022) and average 

obtained frequencies (Equation 9):  

 ATF𝑑 =  
1

𝐿𝑤𝑑

∑ tf(𝑤𝑗𝑑)
𝐿𝑤𝑑
𝑗=1

  (9) 

Another approach for measuring semantic 

readability is proposed by Menta and Garcia-

Serrano (2022) called (14) Language Model Fill-

Mask (LMFM). LMFM leverages a masked 

language model (MLM) to predict words, which 

are randomly masked out of the input text. By 

ranking all words of the MLM vocabulary 

according to their prediction probabilities, the 

semantic readability of the original word is 

estimated by its position in this ranking. We mask 

and predict words sentence-wise using a masking 

ratio of 15%. Let 𝑉𝑂MLM denote the set of tokens 

in the MLM’s vocabulary. Let 𝑚𝑑 = (𝑚𝑙𝑑)𝑙=1

𝐿𝑚𝑑  

denote the list of masked words in text document 

𝑑. Let rank(𝑚𝑙𝑑) denote the ranking of word 𝑚𝑙𝑑 

when sorting the output probabilities of the MLM 

for all tokens in 𝑉𝑂MLM in descending order. The 

obtained ranking positions are normalized with 

respect to the MLM’s vocabulary size. The average 

LMFM score for text document 𝑑  is calculated 

according to Equation 10: 

 
2 https://huggingface.co/dbmdz/bert-
base-german-uncased 

 LMFM𝑑 =  
1

𝐿𝑚𝑑

∑
rank(𝑚𝑙𝑑)

|𝑉𝑂MLM|

𝐿𝑚𝑑
𝑙=1

  (10) 

As MLMs, we use Bidirectional Encoder 

Representations from Transformers (BERT) 

(Devlin et al., 2019) for English and German 

BERT2 for German texts, respectively. 

 

Fluency metrics measure coherence of text. 

Laban et al. (2021) propose to use (15) language 

model (LM) perplexity to measure fluency. LM 

perplexity leverages a generative LM optimized to 

predict the next token given all previous tokens of 

a tokenized text. We calculate LM perplexity 

separately for all sentences in a text and average 

obtained perplexities over the sentences. Let 

ℒLM, CE(𝑠𝑖𝑑) denote the cross entropy (CE) loss of 

an LM on sentence 𝑠𝑖𝑑 , where the expected 

prediction for each token in sentence 𝑠𝑖𝑑  is its 

subsequent token. The average LM perplexity 

(APPL) is calculated according to Equation 11: 

 APPL𝑑 =  
∑ 𝑒ℒLM,CE(𝑠𝑖𝑑)𝐿𝑠𝑑

𝑖=1

𝐿𝑠𝑑

  (11) 

As LMs, we use Generative Pre-trained 

Transformer (GPT)-2 (Radford et al., 2019) and 

German GPT-2 (Schweter, 2020) for English and 

German texts, respectively. Mukherjee et al. (2019) 

propose to use lexical chain-based metrics to 

measure fluency. The authors denote a lexical chain 

as a part of a text dealing with a specific topic, 

where a lexical chain is formed by the sequence of 

all occurrences of a specific noun in a text. The 

authors showed that difficult English medical texts 

have significantly shorter chains, i.e. topics change 

more frequently, and more intersecting chains. 

Similar to Mukherjee et al. (2019) we calculate (16) 

average chain length as the average number of 

nouns forming a lexical chain. Let 𝑐𝑑 = {𝑐𝑙𝑑}𝑙=1

𝐿𝑐𝑑  

denote the set of lexical chains in text document 𝑑 

where each chain 𝑐𝑙𝑑 ∈ 𝑐𝑑  is a sequence of 

identical nouns  𝑤𝑐𝑙𝑑
= (𝑤𝑗𝑐𝑙𝑑

)
𝑗=1

𝐿𝑤𝑐𝑙𝑑   of length 

𝐿𝑤𝑐𝑙𝑑
. The average chain length ACL is calculated 

according to Equation 12:  

 ACL𝑑 =  
1

𝐿𝑤𝑑

(
∑ 𝐿𝑤𝑐𝑙𝑑

𝐿𝑐𝑑
𝑙=1

𝐿𝑐𝑑

) (12) 

We further calculate (17) the number of cross 

chains as the total number of chains in a text 
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crossing or partly overlapping each other. Similar 

to Mukherjee et al. (2019), both metrics are 

normalized with respect to the text length 𝐿𝑤𝑑
 . 

Lastly, we use (18) next sentence prediction 

(NSP) score to estimate coherence. NSP score uses 

BERT-based MLMs, which have been pre-trained 

on NSP task (Devlin et al., 2019) to predict for all 

adjacent sentence pairs in a text whether they are 

adjacent sentences. Let 𝑃NSP(next|𝑠𝑖𝑑 , 𝑠𝑖+1𝑑) 

denote the predicted probability of an MLM that 

sentence 𝑠𝑖+1𝑑 directly follows sentence 𝑠𝑖𝑑 in text 

document 𝑑  and 𝑃NSP(not next|𝑠𝑖𝑑 , 𝑠𝑖+1𝑑)  the 

probability that 𝑠𝑖+1𝑑  does not follow 𝑠𝑖𝑑 . The 

average NSP score (ANSP) results from the 

proportion of pairs of adjacent sentences in text 𝑑 

for which adjacency is confirmed by the MLM as 

shown in Equations 13 and 14: 

 ANSP𝑑 =  
1

𝐿𝑠𝑑
−1

∑ nsp(𝑠𝑖𝑑 , 𝑠𝑖+1𝑑)
𝐿𝑠𝑑

−1

𝑖=1
 

  (13) 

nsp(𝑠𝑖𝑑 , 𝑠𝑖+1𝑑) = {
1, 𝑃(next|𝑠𝑖𝑑 , 𝑠𝑖+1𝑑) >  

𝑃(not next|𝑠𝑖𝑑 , 𝑠𝑖+1𝑑)
0, otherwise

  (14) 

We use BERT (Devlin et al., 2019) and German 

BERT as MLMs for English and German texts, 

respectively. 

3.3 Analysis Methods 

We calculate the readability metrics from Section 

3.2 for technical abstracts and PLSs from the 

extracted English and German datasets from 

Section 3.1. We perform paired sample t-tests 

between technical abstracts and corresponding 

PLSs for all readability metrics, to identify which 

metrics are suitable to measure readability of 

medical texts. We apply Bonferroni correction with 

a significance level of 0.05 to accommodate for 

error accumulation due to multiple testing resulting 

in a corrected significance level of 0.003 (rounded 

to three decimals places) for 18 metrics. Paired 

sample t-tests are performed separately for English 

and German datasets.  

4 Results 

4.1 English Medical Texts 

T-test results for English medical texts (Table 1) 

reveal that two third of the readability metrics differ 

significantly between technical abstracts and PLSs. 

In terms of statistical metrics, technical abstracts 

have significantly longer sentences with more than 

four words more on average compared to their 

simplified counterparts. Similarly, FKGL is 

significantly higher in technical abstracts compared 

to PLSs. However, we do not observe a significant 

difference in word lengths as measured by the 

number of syllables per word, which implies that 

the decrease in FKGL results from the reduction of 

sentence lengths.  

 

POS-based metrics show that technical 

abstracts use significantly more nouns and numbers 

than PLSs. In contrast, PLSs use significantly more 

function words and negations than technical 

abstracts. Only for the proportion of adjectives, we 

do not observe significant differences. Syntactic 

metrics including average edit distance and 

grammar frequency do not indicate significant 

differences in terms of sentence structure 

variability between English technical abstracts and 

PLSs. However, depths of  dependency parse trees 

from sentences in PLSs are significantly lower 

compared to those from sentences in technical 

abstracts implying that sentence structure 

complexity is reduced in PLSs which might also be 

caused by the reduction of sentence lengths. Noun 

phrases in technical abstracts are longer than in 

PLSs, which is also significant. 

 

Semantic metrics including term frequency and 

LMFM show that PLSs use terms which occur 

more frequently in common language and which 

are easier to predict by BERT MLM than technical 

abstracts. This difference is significant as indicated 

by both metrics. These findings are in line with 

previous studies on English medical texts (Leroy et 

al., 2013) and suggest that PLSs are easier to 

understand on the semantic level than their 

technical counterparts. 

 

Fluency metrics show that there is no 

significant difference between technical abstracts 

and PLSs in terms of fluency at sentence level as 

indicated by LM perplexity. Considering fluency at 

full text level, lexical chain metrics show that 

technical abstracts have shorter lexical chains and 

more intersecting chains as measured by average 

lexical chain length and average number of cross 

chains, respectively. Both metrics differ 

significantly between technical abstracts and PLSs. 

This is in line with the findings of Mukherjee et al. 

(2019) suggesting that topics in technical abstracts 
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are discussed more briefly and thus change more 

frequently, while at the same time, the higher 

number of intersecting chains indicates that 

language complexity additionally arises from the 

fact that multiple threads are parallelly discussed 

and brought into context. No significant differences 

are observed for NSP score. 

4.2 German Medical Texts 

While we observed significant differences for two 

third of the metrics (twelve out of 18) in English 

texts, in German texts significant differences are 

observed even for 13 out of the 18 metrics 

according to our t-test results (Table 2). Statistical 

metrics indicate that sentences in German PLSs 

tend to be longer than sentences in technical 

abstracts. This is indicated by the average number 

of  words per sentence, which is about one word 

higher on average in PLSs compared to technical 

abstracts. However, this is not significant but in 

contrast to English texts where we identified that 

simplification is related to a significant reduction of 

sentence lengths. Unlike in English texts, we 

observe significant differences between technical 

abstracts and PLSs in word lengths as measured by 

the number of syllables per word. Word lengths are 

significantly increased in PLSs. As a result of the 

increased word and sentence lengths in PLSs, 

FKGL is significantly higher in PLSs than in 

technical abstracts, which is contrary to the 

definition of FKGL and its interpretation for 

English texts. 

 

POS-based metrics show that German 

technical abstracts use more nouns and numbers 

than PLSs, while PLSs use more function words. 

These differences are significant as indicated by 

noun, numbers, and function word ratios. We made 

the same observations also for English texts. 

Moreover, German technical abstracts have a 

significantly higher proportion of adjectives than 

their simplified counterparts. This is different from 

English texts where adjective ratio did not 

constitute a suitable metric to capture different 

grammatical characteristics of technical abstracts 

and PLSs. We make the opposite observation for 

the proportion of negations. While in English 

medical texts negation ratio is significantly higher 

in PLSs than in technical abstracts, the proportion 

of negations does not differ significantly between 

Metric Type Metric Name Technical 

Abstract 

Mean 

Plain 

Language 

Summary 

(PLS) Mean 

p-value 

Statistical Words per sentence 25.713 21.332 0.000 

Syllables per word 1.574 1.588 0.409 

FKGL 13.007 11.472 0.000 

POS-based Noun ratio 0.398 0.330 0.000 

Adjective ratio 0.092 0.010 0.034 

Function word ratio 0.222 0.282 0.000 

Numbers ratio 0.091 0.027 0.000 

Negations ratio 0.003 0.005 0.000 

Syntactic Grammar frequency 0.988 0.991 0.489 

Average edit distance 0.743 0.747 0.503 

Dependency tree depth 7.874 7.467 0.000 

Noun phrase complexity 1.958 1.865 0.000 

Semantic Term frequency 0.006 0.007 0.000 

LMFM 0.281 0.185 0.000 

Fluency LM perplexity 79.601 66.731 0.004 

Average lexical chain length 0.006 0.011 0.000 

Average number of cross chains 1.043 0.502 0.000 

NSP score   0.992 0.972 0.008 

Table 1:  Means and p-values (p) obtained from paired sample t-tests for English technical abstracts and 

related plain language summaries (PLSs). Significant differences are highlighted in bold given a significance 

level of p < 0.003 after Bonferroni correction. 
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technical abstracts and PLSs in German medical 

texts. Syntactic metrics reveal that variability of 

sentence structures is significantly higher in 

German PLSs compared to German technical 

abstracts as indicated by grammar frequency, 

which is in contrast to English medical texts, where 

sentence structure variability does not seem to be 

an indicator of readability. However, no significant 

differences are observed for average edit distance. 

Unlike in English texts, where simplification is 

associated with a reduction of syntactic 

dependencies, dependency tree depth is even 

significantly higher in PLSs compared to technical 

abstracts in German medical texts. The length of 

composed noun phrases is significantly increased 

in German technical abstracts. This is similar to 

English medical texts. 

 

Semantic metrics show that German PLSs use 

terms which are used more frequently in common 

language and which can be more easily predicted 

by German BERT MLM. These findings suggest 

that simplified PLSs are easier to understand on the 

semantic level than technical abstracts. The same 

observations were made for English medical texts. 

Fluency metrics reveal no significant 

differences in terms of fluency at sentence level as 

indicated by LM perplexity. This is similar to 

English medical texts. Interestingly, LM perplexity 

on German texts is significantly higher compared 

to English texts indicating that the German LM is 

more uncertain in predicting the German texts than 

the corresponding English LM in predicting the 

English texts. This might be caused by the different 

properties of the underlying LMs arising from the 

composition of pre-training texts and their 

vocabularies. Significant differences for German 

texts are observed at full text level as indicated by 

average lexical chain length and average number of 

cross chains. As for English texts, lexical chains are 

significantly shorter in technical abstracts, while 

the number of intersecting chains is significantly 

higher in technical abstracts compared to PLSs. 

Coherence of adjacent sentences in German PLSs 

is slightly higher in PLSs than in technical abstracts 

as measured by NSP score. However, as in English 

texts, NSP does not differ significantly. 

Metric Type Metric Name Technical 

Abstract 

Mean 

Plain 

Language 

Summary 

(PLS) Mean 

p-value 

Statistical Words per sentence 15.899 16.898 0.048 

Syllables per word 2.107 2.197 0.001 

FKGL 15.472 16.924 0.000 

POS-based Noun ratio 0.353 0.302 0.000 

Adjective ratio 0.091 0.077 0.000 

Function word ratio 0.273 0.326 0.000 

Numbers ratio 0.078 0.023 0.000 

Negations ratio 0.003 0.004 0.047 

Syntactic Grammar frequency 0.885 0.965 0.000 

Average edit distance 0.759 0.761 0.721 

Dependency tree depth 6.127 6.663 0.000 

Noun phrase complexity 1.925 1.804 0.000 

Semantic Term frequency 0.004 0.005 0.000 

LMFM 0.379 0.269 0.000 

Fluency LM perplexity 277.119 196.558 0.211 

Average lexical chain length 0.006 0.010 0.000 

Average number of cross chains 0.750 0.395 0.000 

NSP score 0.855 0.875 0.075 

Table 2:  Means and p-values (p) obtained from paired sample t-tests for German technical abstracts and 

related plain language summaries (PLSs). Significant differences are highlighted in bold given a significance 

level of p < 0.003 after Bonferroni correction. 



6057

 
 

5 Discussion 

Our study results show that two third out of 18 

readability metrics sufficiently capture statistical, 

POS-based, syntactical, semantic, and fluency-

related characteristics of English medical texts 

differentiating technical abstracts from PLSs. 

Similarly, 13 out of 18 readability metrics revealed 

significant differences between technical abstracts 

and PLSs for German medical texts. Our results 

show that semantic and fluency metrics can be 

directly transferred from English to German 

medical texts and can be interpreted in the same 

way. Contrastively, statistical, POS-based, and 

syntactic metrics behave differently on German 

texts compared to English texts and thus require 

careful interpretation. We assume that language-

specific characteristics are the reason. 

Comparing English with German medical texts, 

we recognize that sentences in German technical 

abstracts have about ten words less than sentences 

in English technical abstracts. Also after 

simplification, sentences in German texts are still 

more than four words shorter on average. 

Mukherjee et al., 2017 report on similar sentence 

lengths in technical Spanish medical texts  as we 

observed for English technical abstracts. This 

indicates that sentences in German technical 

abstracts are characteristically short compared to 

other languages. As a result, there might be less 

potential to improve readability by reducing 

sentence lengths. Additionally, it is common in 

German technical texts to apply nominalization. 

During nominalization, verbs are transformed into 

nouns forming new noun phrases together with 

additional determiners and adjectives. Thus, 

nominalization results in an increase of noun 

phrases as indicated by higher noun ratios and noun 

phrase complexities and might also lead to an 

increase in the proportion of adjectives we have 

observed in German technical abstracts but not in 

English technical abstracts. Another variant is to 

combine nominalized nouns with prepositions, 

which can often replace whole subordinate clauses. 

This might result in shorter sentences as indicated 

by the average number of words per sentence and 

might reduce depths of syntactic dependencies as 

indicated by dependency tree depths.  

Interestingly, we observed a high variability in 

terms of sentence structures in English technical 

abstracts, which remained nearly constant after 

simplification. Contrastively, in German technical 

abstracts, variability of sentence structures is lower 

compared to English technical abstracts. However, 

sentence structure variability significantly 

increased after simplification in German medical 

texts. On the one hand, this is surprising since 

English follows the subject-verb-object sentence 

structuring scheme while German has no fixed 

sentence structuring scheme and is thus more 

flexible in this regard. On the other hand,  the lower 

sentence structure variability in German technical 

abstracts might be also related to the shorter and 

more compact sentences resulting from 

nominalizations which might reduce flexibility of 

how sentences can be structured. We provide 

examples of nominalizations found in German 

medical texts in Appendix A. 

6 Conclusions 

Research in MTS has mainly focused on English 

medical texts. To evaluate the suitability of 

available readability metrics to indicate readability 

of German medical texts, we evaluated 18 

statistical, POS-based, syntactic, semantic and 

fluency metrics from related studies using paired 

sample t-tests on paired texts consisting of 

technical abstracts and related simplified 

summaries from English and German scientific 

articles, respectively. We found that semantic and 

fluency metrics suitable for indicating readability 

of English medical texts can be successfully 

applied to German medical texts. However, 

statistical metrics including sentence and word 

length-based metrics, POS-based metrics including 

the proportions of adjectives and negations, and 

syntactic metrics measuring complexity of 

syntactic dependencies and variability of sentence 

structures seem to be aligned with language-

specific characteristics. We found that they behave 

differently and have to be interpreted carefully 

when they are applied to German medical texts. 

Further research is required to investigate 

language-specific characteristics of German 

medical texts and how these influence readability. 

Our results emphasize the need to further advance 

MTS research to other languages. 

7 Limitations 

We emphasize two limitations of our study. First, 

the datasets included in our study are limited in 

size, which might affect expressiveness of our 

results. The datasets originate from a single source 

and the PLSs follow a simplification guide 
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provided by the Cochrane editorial team, which 

could induce bias. Although the simplification 

guide is created by experts, the PLSs are written by 

the article authors themselves not by language 

professionals. We also admit that readability of 

medical texts might depend on the concrete topic 

covered. Here, we focused on texts related to 

cardiovascular diseases and cancer. However, 

medical texts discussing other topics might reveal 

different results. The non-English texts are 

translated by volunteering native speakers, 

professional translators, and Cochrane-internal 

translator teams using machine translation in 

combination with human post-editing. However, 

they are not written by the original authors, which 

might also induce bias. Second, our study focuses 

on evaluating readability metrics which enable to 

differentiate and characterize difficult and 

simplified medical texts. Although the PLSs, are 

intended to communicate evidences from medical 

studies to laypeople in a comprehensible way, our 

results do not allow to draw conclusions of how the 

readability of these texts is actually perceived by 

laypeople. This will be part of future work. 
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A Example Simplifications of German 

Medical Texts 

We extracted original sentences from German 

technical abstracts and related simplified sentences 

from the corresponding PLSs to exemplarily show 

the particularities of German language which affect 

readability. Examples are shown in Table 3. 

B Metric Implementation Details 

Text preprocessing is performed using the open-

source NLP library spaCy (Honnibal et al., 2020) 

and Spacy Syllables (Valbjorn, 2023) with the 

programming language Python. We use spaCy 

version 3.6.1 and Spacy Syllables version 3.0.2. For 

preprocessing the English dataset, we use the 

spaCy NLP pipeline en_core_web_lg in version 

 
3 https://spacy.io/models/en 

3.6.0. For preprocessing the German dataset, we 

use the spaCy NLP pipeline de_core_news_lg in 

version 3.6.0. 

The POS-based readability metrics are 

calculated according to Equation 4. However, the 

set of target POS categories is adapted with respect 

to the respective metric. The set of applied target 

POS categories for each metric is shown in Table 

4. The pipeline-specific label schemes are 

documented in the spaCy documentation for the 

English3  and German4  pipelines. For calculating 

noun phrase complexity, noun phrases are obtained 

from the spaCy “noun_chunks” property. 

To calculate Levenshtein distances, which is 

required to calculate average edit distance, the 

Python package edit-distance in version 1.0.6 

(Lambert, 2023) is used. To calculate term 

frequency, we use the Python library wordfreq in 

4 https://spacy.io/models/de 

Technical Abstract Plain Language Summary (PLS)  

Beurteilung der Wirksamkeit von Interventionen […] 

(noun phrase with base noun „Beurteilung“ and „der 

Wirksamkeit von Interventionen“ as genitive object) 

 

Assessing the effectiveness of interventions […] 

 

Wir wollten herausfinden, ob eine Behandlung wirkt 

[…] (subordinate clause resolving „Beurteilung der 

Wirksamkeit von Interventionen“)  

 

We wanted to find out whether a treatment works […] 

Allerdings können aus der derzeitigen Evidenz 

keine Schlussfolgerungen bezüglich eines optimalen 

systolischen Blutdruckziels (noun phrase with base 

noun „Blutdruckziel“ functioning as a n adverbial 

clause) […] gezogen werden. 

 

However, from the current evidence no conclusions 

can be drawn regarding an optimal systolic blood 

pressure […] 

 

Außerdem gibt es nicht genug Evidenz um 

festzustellen, welches Blutdruckziel […] das beste ist. 

(subordinate clause resolving: „bezüglich eines 

optimalen systolischen Blutdruckziels“) 

 

 

Furthermore, there is not enough evidence to 

determine which blood pressure target is best. 

Das primäre Ziel war, die Wirksamkeit von […] 

Interventionen zur Behandlung von Patienten mit 

Schlaganfall und Angststörungen oder ‐symptomen 

zu untersuchen. (noun phrases with base nouns 

„Wirksamkeit“ and „Behandlung“) 

 

 

 

The primary aim was to investigate the effectiveness 

of [...] interventions for the treatment of patients with 

stroke and anxiety disorders or symptoms. 

 

Ziel war herauszufinden, ob es Behandlungen gibt, 

die Angstsymptome reduzieren und […] die 

Lebensqualität […] verbessern können. (subordinate 

clauses resolving: „die Wirksamkeit von 

Interventionen zur Behandlung von Patienten mit 

Schlaganfall und Angststörungen oder -symptomen 

zu untersuchen“) 

 

The aim was to find out whether there are treatments 

that can reduce anxiety symptoms and [...] improve 

quality of life [...] 

Table 3: Example sentences from German technical abstracts and related sentences from corresponding 

simplified PLSs showing particularities of German language, which affect readability. We underlined 

corresponding sentence sections in technical abstracts and PLSs and added annotations to clarify the 

sentence structure. 
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version 3.1.1. We obtain all LMs used to calculate 

LMFM, LM perplexity, and NSP score from the 

Hugging Face Hub5. We calculate metrics locally 

using the Transformers (Wolf et al., 2020) library 

in version 4.28.1. 

 
5 https://huggingface.co/models 

Metric Target POS Categories 

English German 

Noun Ratio NOUN, PROPN  

(Universal POS tags) 

NOUN, PROPN  

(Universal POS tags) 

Adjective Ratio ADJ 

(Universal POS tags) 

ADJ 

(Universal POS tags) 

Function Word Ratio AUX, DET, ADP 

(Universal POS tags) 

 

MD, WDT, WP, WP$, WRB 

(Pipeline-specific POS tags) 

AUX, DET, ADP 

(Universal POS tags) 

 

VMFIN, VMINF, VMPP, PWS, 

PWAT, PWAV 

(Pipeline-specific POS tags) 

Numbers Ratio NUM 

(Universal POS tags) 

NUM 

(Universal POS tags) 

Negations Ratio neg 

(Pipeline-specific dependency labels) 

ng 

(Pipeline-specific dependency labels) 

Table 4: Sets of target part-of-speech (POS) categories and dependency labels used for calculating POS-

based readability metrics.  


