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Abstract
Recent work investigates whether LMs learn
human-like linguistic generalizations and rep-
resentations from developmentally plausible
amounts of data. Yet, the basic linguistic
units processed in these LMs are determined
by subword-based tokenization, which lim-
its their validity as models of learning at
and below the word level. In this paper,
we explore the potential of tokenization-free,
phoneme- and grapheme-based language mod-
els. We demonstrate that small models based
on the Llama architecture can achieve strong
linguistic performance on standard syntactic
and novel lexical/phonetic benchmarks when
trained with character-level vocabularies. We
further show that phoneme-based models al-
most match grapheme-based models in stan-
dard tasks and novel evaluations. Our findings
suggest a promising direction for creating more
linguistically plausible language models that
are better suited for computational studies of
language acquisition and processing.

1 Introduction

While very large language models possess human-
like linguistic skills in many domains, questions
of developmental plausibility have lead to a recent
surge in interest for small language models (see,
inter alia, Huebner et al., 2021; Warstadt et al.,
2023; Choshen et al., 2024; Wilcox et al., 2024).
Trained on more plausible amounts of data, these
models are used to understand how different lev-
els of linguistic knowledge are represented and
learned. However, existing efforts mostly mostly
test syntactic and syntacto-semantic capabilities
(e.g. BLiMP, Warstadt et al., 2020). Represen-
tations and rules at lower levels of linguistic pro-
cessing (phonology/morphology) cannot be mean-
ingfully studied with such models, because com-
mon LMs adopt the same subword tokenization
algorithms. Therefore, even developmentally ori-
ented, so-called BabyLMs only learn representa-

tions for subwords, which are somewhat arbitrary
(Uzan et al., 2024), do not (systematically) corre-
spond to plausible linguistic units or segments like
phonemes, syllables or morphemes (Beinborn and
Pinter, 2023), and pose challenges for (psycho)lin-
guistic modeling and investigations employing LMs
(Giulianelli et al., 2024).

In this paper, we train and evaluate small Llama
models (Touvron et al., 2023) on input that is not
pre-segmented into words. Instead, we treat the
individual characters in our training data as tokens.
Therefore, our models do not receive any prior in-
formation on what “meaningful” units in the input
are. We investigate whether these small models,
trained with drastically smaller and linguistically
more plausible vocabularies, still achieve compara-
ble performance on evaluations across the phonetic,
the lexical and the syntactic level. Additionally, we
compare models trained on graphemes and models
trained on phonemes1, questioning the common as-
sumption that grapheme-based models are as tabula
rasa (Hahn and Baroni, 2019) as LMs can get.

We find that our character-based LMs perform
as well on standard evaluation measures as compa-
rable subword-based models trained on the same
data. We also show that our models are able to learn
representations of lexical and phonological units
surprisingly well, outperforming subword models
on a lexical decision task. Further, we find that
phoneme-based models generally show worse per-
formance on syntactic and lexical evaluations, but
do perform on par with grapheme-based models in
rhyme prediction and even show advantages in our
speaker age prediction task. This suggests that train-
ing data for grapheme-based models comes with
more inherent structural “biases” than commonly

1The terms (i) “grapheme” and (ii) “phoneme” are used
loosely in this paper to refer to (i) individual characters in a
language’s alphabet and (ii) types of speech sounds, in accor-
dance with the G2P literature (cf. Moore and Skidmore, 2019;
Ashby et al., 2021).
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assumed, e.g. in the form of punctuation. However,
these biases are not conducive to every linguistic
task, as the speaker age prediction task shows.

2 Related work

Several approaches are being currently explored to
train language models (LMs) without relying on
subword tokenization, aiming to achieve more natu-
ralistic and linguistically plausible representations.
Notably, these include: (i) end-to-end training on
raw speech signals (Chrupała, 2022; Nguyen et al.,
2023b; Vong et al., 2024), and (ii) grapheme-level
LMs where tokens correspond to characters of the
respective language script. (i) is fully naturalistic,
but limited by data availability and a lack of eval-
uation protocols (Nikolaus et al., 2022), while (ii)
foregoes the complexities of audio processing, but
relies on orthography which is rarely a good ap-
proximation of actual pronunciation. In this paper,
we explore a third approach that bridges these two
paradigms by training on sequences of phoneme
symbols, derived from transcriptions or (in our
case) grapheme-to-phoneme (G2P) conversion.

Character-level LMs: Subword-less or
character-level LMs have so far mostly been used
in pre-training for downstream tasks: Canine
(Clark et al., 2022) employs a character-level
encoder architecture while Xue et al. (2022) adapt
a T5 encoder-decoder architecture to work on the
Byte-level. Both models show that pre-training
on characters can provide useful inductive biases
and lead to models that are more robust to noise
than subword models. Similarly, the Charformer
architecture (Tay et al., 2022) performs on par
with comparable subword-based models despite
reduced computational cost. These findings are
also corroborated by Cao (2023), who provide an
overview of extensive experiments and ablations
with character-based encoders. The most similar
approach to ours (i.e. most linguistically oriented)
is the one by Hahn and Baroni (2019), who train
character-level RNNs as tabula rasa learners and
find that they learn morphological, syntactic and
lexical properties of language from unsegmented
input. For current, state-of-the-art Transformer
LMs (e.g. Llama, GPT, etc.), only few results on
this specific training regimen exist (Goriely et al.,
2024; Bunzeck et al., 2024).

Phoneme-based LMs: Research on phoneme-
based LMs is also fairly limited. Phoneme-

BERT (Sundararaman et al., 2021), trained on
joint grapheme and phoneme representations, has
been shown to provide useful inductive biases
for further fine-tuning on downstream tasks from
speech technology. Similar results are reported for
Mixed-Phoneme BERT (Zhang et al., 2022) and
XPhoneBERT (Nguyen et al., 2023a) on text-to-
speech tasks, and for BORT (Gale et al., 2023)
on clinical tasks that rely on phonetic and seman-
tic information. Like the character-based mod-
els reviewed above, these phoneme-based models
are united by being encoder models that are only
used as pre-training for downstream tasks and not
for linguistic investigations. Futhermore, none of
these models operate on a (naïve) character-level.
From a linguistic viewpoint, Nguyen et al. (2022)
showed that grapheme-based LSTMs are superior
to phoneme-based LSTMs on lexical, syntactic and
semantic tasks, both Goriely et al. (2024) and Bun-
zeck et al. (2024) showed the same for autoregres-
sive Transformer models (GPT-2 and Llama, respec-
tively) in the context of the 2024 BabyLM challenge
(Choshen et al., 2024).

Phonetic/phonological benchmarks: Similarly
to the lack of phoneme-based LMs, benchmarks on
phonetics/phonology are rare to non-existent. Su-
varna et al. (2024) propose three different tasks
for their phonology benchmark – grapheme-to-
phoneme conversion (G2P), syllable counting and
rhyme generation. By relying solely on prompting
strategies to explicitly test the generative capabili-
ties of LLMs, their results fail to provide insight into
the underlying representations these models have
learned (Hu and Levy, 2023). Lavechin et al. (2023)
provide a speech-synthesized version of a lexical
decision task and a syntactic minimal pair task. In
absence of more targeted phonetic evaluations, we
first employ the BabyLM evaluation protocol. Fur-
thermore, we expand it with a lexical decision task
(similar to Lavechin et al., 2023, but with compa-
rable data on the grapheme and phoneme level),
and add two more phonological/phonetic tasks –
rhyme prediction and age prediction from sequence
embeddings.

3 Methodology
3.1 Data and pre-training
All our models2 are trained on the same 100M-
token BabyLM 2024 data set (see Choshen et al.,

2Details such as model hyperparameters and Huggingface
links can be found in Appendix A.1.
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2024 for composition and included corpora), which
we preprocess in different ways for each model.
For the phoneme models, we convert the cleaned
data from graphemes to phonemes with Gi2Pi (Pine
et al., 2022)3. As Gi2Pi fails to correctly convert
contractions, we add transcription rules for such
forms manually. For both data sets (grapheme and
phoneme), we train one model on the raw data set
and one model on the data set without white spaces.
Through this, we aim to remove another structural
property of written language (visible word bound-
aries), which does not correspond well to any prop-
erty of spoken language. All models are compara-
tively “small” (approx. 15M parameters).

We implement character-level language model-
ing by modifying the tokenizers to only include
the set of unique characters in the respective pre-
training corpus. For the grapheme-based models,
this adds up to a vocabulary size of approx. 360.
For the phoneme models, the vocabulary size is ap-
prox. 260 (including “noise” like emojis and other
irrelevant characters). As an ablation, we also eval-
uate the BabyLM 2024 baseline model BabyLlama
(Timiryasov and Tastet, 2023), which uses regular
subword tokenization (vocab. size of 16.000) and
has almost four times more parameters (58M) than
our models.

3.2 Evaluation
Table 1 gives a short overview of our evaluation
approaches and the data used. We share our newly
created data on Huggingface (see Appendix A.3 for
details).

Example (graphemic) Example (phonetic)

BLiMP (Minimal pairs)
Aaron breaks the glass. ɛɹʌn bɹeɪks ðʌ ɡlæs

Aaron appeared the glass. ɛɹʌn ʌpɪɹd ðʌ ɡlæs

Lexical decision task (Minimal pairs)
drunk. drʌŋk

blunk. frʌŋk

Rhyme prediction (Probing)
The sky was clear, but full of cheer. ðʌ skaɪ wɑz klɪɹ bʌt fʊl ʌv tʃɪɹ

The door opened with a creak. ðʌ dɔɹ oʊpʌnd wɪð ʌ kɹik

Age prediction (Probing)
rock , rock , rock . waːwaːwaː

hold my juice Mommy . hod mai ʤus mami

open the door . opən ðə dɔr

Table 1: Examples of all evaluation paradigms

BLiMP: For general evaluation we use BLiMP
(Warstadt et al., 2020) and supplementary BLiMP

3See Appendix A.2 for an evaluation of transcription qual-
ity, and Appendix A.3 for links to our data.

data from the BabyLM challenge. BLiMP is a
widely adopted minimal pair dataset for English,
which features over 70 linguistic paradigms (sets
of specific instantiations of linguistic phenomena).
The phenomena are mostly taken from syntax, but
also include morphosyntax, semantics, and some
dialogue phenomena. We compute perplexities (Je-
linek et al., 1977) for grammatical and ungrammat-
ical sentences and report preference scores for the
grammatical utterances. For our phoneme-based
models, we create Phoneme-BLiMP using the same
G2P procedure as for our training data and evaluate
the models on this data set instead.

Lexical decision task: Since BLiMP hardly in-
cludes any tasks at/below the word level, we use
a lexical decision – a common testing paradigm
in psycholinguistics, see (Perea et al., 2005; Yap
et al., 2015) – to assess lexical capabilities. In-
spired by Le Godais et al. (2017), we use wuggy
(Keuleers and Brysbaert, 2010) to generate nonce
words from 1,000 English high-frequency words.
wuggy generates nonce words that contain plausi-
ble character/phoneme sequences while trying to
preserve bigram frequencies inside the words as
accurately as possible. That being the case, the con-
crete stimuli should not constitute a confounding
factor. Grapheme and phoneme nonce words were
generated separately to avoid creating orthographic
nonce words that on a sound level correspond to
existing words. Here, we also compute perplexity
scores for all stimuli and compare whether models
prefer the existing word or the nonce word.

Rhyme prediction: As rhyming is an important
property of phonology (e.g. in acquisition, see
Goswami, 2001), we employ a probing approach
(Belinkov, 2022) to assess if LMs do encode rhymes.
We create a small (200 sentences) data set with
in-context learning (Dong et al., 2024) through
ChatGPT-4o. From this dataset, we create sentence
embeddings with our models. From these embed-
dings, we train a linear regression classifier and
report accuracy scores after ten-fold cross valida-
tion.

Age prediction: Finally, we use the same prob-
ing approach for the prediction of child age from
utterances. This is an interesting task because the
phonological properties of child language and chil-
drens’ usable phone inventories change drastically
across the first years of development (Saxton, 2017).
We take an age-balanced sample of 1.000 child ut-
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Evaluation Grapheme model Grapheme model, no whitesp. Phoneme model Phoneme model, no whitesp. BabyLlama

BLiMP 71.69% 68.88% 66.90% 64.88% 73.10%
BLiMP supplement 52.30% 56.28% 55.42% 54.13% 60.60%
Lexical decision task 99.00% 99.10% 68.20% 63.80% 69.00%
Rhyme prediction 88.50% 91.50% 85.00% 78.49% 92.50%
Age prediction 60.50% 58.90% 61.10% 57.80% 60.90%

Table 2: Evaluation results: for BLiMP and the lexical decision task, the scores correspond to the percentage of
correct choices in a minimal pair setting; for rhyme and age prediction the scores report classification accuracy.

terances from the Providence (Demuth et al., 2006)
and ComptonPater (Compton and Streeter, 1977;
Pater, 1997) corpora, which contain parallel, hand-
crafted phonetic transcriptions for the orthographic
data. As the following age groups mark important
developmental milestones, we use the utterance em-
beddings to categorize speaker age as below 1 (pro-
duction of first utterances, Schneider et al., 2015),
1–3 (rapid vocabulary spurt), and over 3 (stabilizing
vocabulary, cf. Frank et al., 2017, 2021). We report
accuracy scores after ten-fold cross validation.

4 Results

The results of all evaluations are shown in Table 2.

BLiMP: The grapheme model achieves a BLiMP
score of over 70% and performs similarly to the
subword-based BabyLlama. The other models per-
form 3–7% worse, with a decrease for phoneme
models and for non-whitespace models. Inter-
estingly, the phoneme models drastically outper-
form the grapheme models on a few phenomena,
e.g. sentential_subject_island_filtered
(see full BLiMP scores in Appendix B). On the sup-
plementary phenomena, the subword-based model
achieves the best score, whereas our models only
perform slightly above chance.

Lexical decision task: Grapheme models achieve
almost perfect performance on the lexical decision
task – in fact, the model trained without word-
separating white space beats its counterpart by a
tiny margin. While the phoneme models achieve
worse scores (63–68%), they still perform above
chance and in the same range as the subword-
based BabyLlama, which fares much worse than
its character-based equivalent (despite featuring a
much higher number of parameters).

Rhyme prediction: For the rhyme prediction
task, both the grapheme and phoneme models per-
form well above the chance baseline. Again, the
grapheme models surpass the phoneme models
moderately and achieve scores in the same range

as BabyLlama. While the deletion of whitespace
has a detrimental effect for the phoneme model, it
improves the score for the grapheme model. This
might indicate that our grapheme model trained
without white space characters is pushed towards
learning more precise representations at the lexi-
cal/phonological level.

Age prediction: The age prediction task
shows roughly equivalent results between
grapheme/phoneme models and BabyLlama. All
models achieve scores around approx. 60% and
therefore perform well above the chance baseline
(here: 33%). In fact, this is the only task where the
phoneme model beats its grapheme counterpart by
a tiny margin (0.6%) and features the overall best
performance of all evaluated models.

In sum, the following trends are identifiable: (i)
The most striking result is that the subword-based
BabyLlama does not generally perform better on
linguistic benchmarks than character-based models.
While it performs best on the syntactic evaluation,
it struggles with lexical decision. On the phonetic
prediction tasks, it performs similarly to character-
based models. (ii) Grapheme models are generally
superior to phoneme models, but the differences
are less pronounced or barely noticeable for the
more phonetically inclined rhyme and age predic-
tion tasks. (iii) The deletion of white spaces has a
negative effect on syntactic evaluations, but moder-
ately improves the grapheme models on the BLiMP
supplement and the rhyme prediction task. For the
phoneme models, the removal of whitespace has a
consistently detrimental effect.

5 Discussion

Several conclusions follow from our current, prelim-
inary results: (i) Our character-level LMs perform
as well as (larger) subword-based LMs on syntactic
tests and embedding-based prediction tasks. On a
lexical decision task, they even surpass them. While
Clark et al. (2022) report how naïve character-based
Canine models perform worse on linguistic tasks,
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our results put these findings into question and align
more with recent findings that character representa-
tions do not harm performance tremendously (Xue
et al., 2022; Kodner et al., 2023; Goriely et al., 2024;
Bunzeck et al., 2024). When combined with state-
of-the-art architectures like Llama, character-based
models work extremely well and excel in tasks that
sub-word models are not suited to (like lexical de-
cision). (ii) Phoneme LMs are also able to capture
linguistic phenomena, but they generally perform
worse than grapheme models. However, they sur-
pass grapheme models on certain, specific tasks.
This aligns with Kodner et al. (2023), who argue
the phoneme models should be the default for cog-
nitive investigations with LMs. (iii) Models trained
without white space show moderate improvements
at lexical/phonological tasks, which might indicate
that grapheme models trained without white space
characters actually develop more precise and gran-
ular latent representations at the lexical and phono-
logical levels. By excluding explicit word bound-
aries, these models are likely forced to infer word-
level and subword-level structures from the data
itself, potentially leading to a deeper encoding of
phonological and lexical patterns.

The systematic superiority of grapheme- over
phoneme-based models calls the commonly as-
sumed tabula rasa-ness of grapheme-based models
(Hahn and Baroni, 2019) into question. Explain-
ing these effects requires further research and we
believe the following directions to be worth explor-
ing: (i) grapheme-based models may pick up all
kinds of inductive biases introduced by orthography
(for example, punctuation marks transport informa-
tion about word and clause boundaries, whereas the
grapheme <ght> signals a syllable boundary, which
is not the case for the corresponding /t/-sound in
phonetic transcriptions), (ii) phoneme-based mod-
els may suffer from errors introduced through too
rigid G2P. G2P tools are commonly based on pro-
nunciation dictionaries, which include broad tran-
scriptions (e.g. /"tu/ for ‘two’). They transcribe to
“canonical forms” of pronunciation, while in reality
pronunciation depends on the phonological and sit-
uative context, individual/social factors, etc., and is
much more varied. Phoneme models could benefit
from more fine-grained representations, particularly
for phonological tasks requiring subtle distinctions
in pronunciation. However, training on phonetically
plausible data requires manually checked transcrip-
tions, which are rare and often limited in size (e.g.,
the PhonBank section of CHILDES (MacWhinney,

2000)). Currently, G2P-converted data lacks the
advantages of grapheme data and the variability of
real-world phonetic data, making it less effective
for learning.

6 Conclusion

This paper has demonstrated (as a proof-of-concept)
that character-based grapheme and phoneme mod-
els can capture linguistic structures effectively and
offer valuable insights into linguistic learning that
are difficult to derive from subword-based mod-
els. Notably, these models show advantages on
specific tasks, such as lexical decision, where their
performance quite drastically exceeds that of their
subword-based counterparts. This finding under-
scores that subword tokenization – which is the de-
facto standard in current language modeling prac-
tices, but is not grounded in meaningful linguistic
assumptions – obfuscates basic dimensions of lan-
guage learning in LMs that happen at and below
the word level.

The observed weaker performance of phoneme
models on other tasks remains an intriguing issue.
Future work should investigate whether and how
these models develop representations of higher lin-
guistic units, such as syllables or morphemes, and
how their latent vector spaces differ from those of
subword-based models. Moreover, our results sug-
gest that character-based tokenization may compel
models to encode more precise lexical or phono-
logical patterns, a hypothesis that warrants further
exploration with directed experiments. Finally, it is
important to emphasize that the primary aim of this
study is not to maximize performance on real-world
applications or downstream tasks, but to systemat-
ically examine how representation and tokeniza-
tion choices influence linguistic generalization in
small-scale LMs. As such, this work aligns with
the BabyLM tradition of exploring the emergence
of linguistic knowledge in constrained settings, pro-
viding a foundation for future research into the cog-
nitive and representational properties of (possibly
larger) LMs.

Limitations

Our study is constrained by three factors: (i) The
choice of data and G2P tool, which enforces a spe-
cific type of transcription, could also influence how
the linguistic system is formed in our LMs. More
information and (naturalistic) variation could possi-
bly lead to different (dis)advantages across bench-
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marks. (ii) Our choice of architecture. We use an
autoregressive decoder, as these models are cur-
rently the state-of-the-art for language modeling,
but it remains open as to whether encoder-only or
encoder-decoder models learn similar representa-
tions. (iii) The availability of benchmarks. As
subword-based models do not feature representa-
tions for phonetic/phonological units, probing and
evaluation approaches have so far not focused on
these linguistic levels. More diverse benchmarking
options are needed to fully evaluate shortcomings
and advantages of character-level and/or phoneme
models. All of these factors deserve further re-
search and consideration.

Ethical considerations

We acknowledge that the “standardization” of pro-
nunciation that our G2P tool enforces is rather ex-
clusionary towards variation. While orthographic
conventions convey comparably little information
about the variety of (standard) English, as in cate-
gorise vs categorize, pronunciation conveys social
and individual information about the speaker’s iden-
tity and linguistic background. The systematic G2P
conversion of text data does not include such vari-
ability. As such, the approach implemented here is
impacted by non-inclusivity, as it is biased towards
a standard variety and ignores, e.g., sociolinguis-
tic variation (Schubert et al., 2024). Corpora of
transcribed spontaneous speech would provide a
more diverse representation of a language, since
they may include regional, social and individual
variation (Schweitzer et al., 2015).

If our models were used in an applied setting,
they definitely need more of such variation as in-
put. Speech technology, e.g. voice assistants, pro-
duce (and recognize) almost only standard, i.e. non-
dialectal/accented speech. Most people around the
world use situation-specific non-standard varieties
and speaking styles in everyday communication.
Furthermore, most of the world’s population is
bilingual (Wei, 2005). Code-switching between
languages inside one utterance is an integral part or
their everyday communication. Our approach does
not handle such kinds of variation (yet).
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A Technical details

A.1 Model details
All our models are available on the Huggingface
hub:

https://huggingface.co/bbunzeck/
grapheme-llama
https://huggingface.co/bbunzeck/
grapheme-llama-no-whitespace
https://huggingface.co/bbunzeck/
phoneme-llama
https://huggingface.co/bbunzeck/
phoneme-llama-no-whitespace

They share equivalent model internals/hyperpa-
rameters: 8 hidden layers, 8 attention heads, an
embedding size of 512 and a short context size of
64.

Psychological models of speech processing as-
sume that working memory and attention are lim-
ited cognitive resources (e.g. Baddeley, 2003, 2017;

Cowan, 2016). Often, a number of approximately
seven items is assumed which can be held in work-
ing memory (Miller, 1956) — which is considerably
smaller than our very short context size. We train
all models for five epochs.

A.2 G2P processing
Because Pine et al. (2022) report no G2P accuracy
for English, we conduct a manual evaluation on
three short texts, including the standard text “The
Northwind and the Sun” (International Phonetic As-
sociation, 1999); and two short samples of movie
subtitles for “PAW Patrol: The Mighty Movie” and
“The SpongeBob Movie: Sponge Out of Water”
[https://www.opensubtitles.org]. We find a WER
of 5.8% (tokens=363, errors=21). Gi2Pi features
several shortcomings: as a rule-based system, it can-
not handle creative words (e.g. “Just keep weading
Pwease Mr Piwate sir”). Also it does not mark
stress like some other G2P tools. For our current
purposes, however, we deem the performance of
Gi2Pi as sufficient.

A.3 Training and evaluation data
We share our newly created data sets on the
Huggingface hub:

The converted BabyLM data sets can
be found at https://huggingface.co/
datasets/bbunzeck/phoneme-babylm-10M
and https://huggingface.co/datasets/
bbunzeck/phoneme-babylm-100M.

PhonemeBLiMP is available at https:
//huggingface.co/datasets/bbunzeck/
phoneme-blimp.
The lexical decision data is available at
https://huggingface.co/datasets/
bbunzeck/wug-words.
The rhyme data can be found at https:
//huggingface.co/datasets/bbunzeck/
rhyme-sentences.

The age prediction data was extracted
from the CHILDES corpora available at
https://phon.talkbank.org/access/
Eng-NA/ComptonPater.html and https:
//phon.talkbank.org/access/Eng-NA/
Providence.html.
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B Full BLiMP scores

Phenomenon Graph. model Graph. model, no whitesp. Phon. model Phon. model, no whitesp.

BLiMP 71.69% 68.88% 66.90% 64.88%
BLiMP supplement 52.30% 56.28% 55.42% 54.13%

adjunct_island_filtered 73.17% 76.72% 35.24% 36.75%
anaphor_gender_agreement_filtered 85.48% 82.29% 86.30% 69.10%
anaphor_number_agreement_filtered 97.10% 88.51% 95.17% 87.00%
animate_subject_passive_filtered 68.60% 71.62% 68.83% 62.91%
animate_subject_trans_filtered 91.01% 90.57% 82.23% 77.79%
causative_filtered 69.07% 68.09% 66.01% 64.55%
complex_NP_island_filtered 43.38% 47.28% 38.30% 43.85%
coordinate_structure_constraint_complex_left_branch_filtered 46.36% 37.75% 36.31% 30.68%
coordinate_structure_constraint_object_extraction_filtered 62.38% 65.12% 65.86% 63.22%
determiner_noun_agreement_1_filtered 97.31% 97.74% 52.85% 52.85%
determiner_noun_agreement_2_filtered 96.99% 97.10% 85.61% 82.81%
determiner_noun_agreement_irregular_1_filtered 83.85% 78.12% 72.25% 70.78%
determiner_noun_agreement_irregular_2_filtered 90.00% 87.56% 84.15% 76.59%
determiner_noun_agreement_with_adj_2_filtered 92.24% 90.75% 79.81% 76.94%
determiner_noun_agreement_with_adj_irregular_1_filtered 82.45% 77.30% 73.96% 71.17%
determiner_noun_agreement_with_adj_irregular_2_filtered 82.38% 78.93% 72.26% 69.88%
determiner_noun_agreement_with_adjective_1_filtered 94.96% 91.00% 51.77% 51.55%
distractor_agreement_relational_noun_filtered 86.29% 45.05% 68.40% 57.11%
distractor_agreement_relative_clause_filtered 58.09% 43.17% 50.98% 57.41%
drop_argument_filtered 75.76% 75.98% 60.87% 62.07%
ellipsis_n_bar_1_filtered 51.50% 56.36% 54.36% 53.87%
ellipsis_n_bar_2_filtered 58.09% 63.29% 43.36% 49.64%
existential_there_object_raising_filtered 81.65% 72.66% 79.80% 68.10%
existential_there_quantifiers_1_filtered 99.46% 97.42% 96.77% 93.76%
existential_there_quantifiers_2_filtered 28.21% 33.92% 38.42% 43.69%
existential_there_subject_raising_filtered 83.98% 82.90% 84.31% 80.84%
expletive_it_object_raising_filtered 70.09% 73.12% 72.46% 70.22%
inchoative_filtered 55.79% 52.28% 44.91% 46.67%
intransitive_filtered 68.32% 67.17% 46.31% 50.58%
irregular_past_participle_adjectives_filtered 94.80% 88.14% 72.84% 63.58%
irregular_past_participle_verbs_filtered 81.53% 81.10% 85.14% 77.39%
irregular_plural_subject_verb_agreement_1_filtered 83.33% 76.62% 82.21% 72.14%
irregular_plural_subject_verb_agreement_2_filtered 89.46% 87.33% 88.00% 83.86%
left_branch_island_echo_question_filtered 65.15% 61.67% 63.15% 70.86%
left_branch_island_simple_question_filtered 60.15% 46.79% 57.83% 50.26%
matrix_question_npi_licensor_present_filtered 15.82% 12.38% 17.98% 31.75%
npi_present_1_filtered 50.39% 40.59% 46.75% 48.51%
npi_present_2_filtered 49.89% 50.33% 45.62% 48.69%
only_npi_licensor_present_filtered 98.07% 48.64% 76.87% 92.06%
only_npi_scope_filtered 50.90% 44.92% 61.05% 80.53%
passive_1_filtered 89.17% 90.60% 87.74% 86.79%
passive_2_filtered 88.15% 89.37% 83.61% 81.28%
principle_A_c_command_filtered 55.07% 59.51% 51.48% 59.41%
principle_A_case_1_filtered 100.00% 100.00% 100.00% 99.89%
principle_A_case_2_filtered 91.58% 92.57% 88.20% 78.80%
principle_A_domain_1_filtered 96.39% 98.25% 100.00% 100.00%
principle_A_domain_2_filtered 53.55% 50.71% 63.61% 51.80%
principle_A_domain_3_filtered 50.90% 50.90% 61.00% 55.58%
principle_A_reconstruction_filtered 41.88% 34.64% 53.67% 47.67%
regular_plural_subject_verb_agreement_1_filtered 93.48% 90.45% 88.76% 80.11%
regular_plural_subject_verb_agreement_2_filtered 90.37% 85.19% 82.65% 77.67%
sentential_negation_npi_licensor_present_filtered 96.19% 96.74% 99.35% 96.52%
sentential_negation_npi_scope_filtered 21.70% 23.08% 33.30% 40.76%
sentential_subject_island_filtered 40.89% 39.33% 58.17% 57.54%
superlative_quantifiers_1_filtered 66.70% 66.80% 70.99% 54.14%
superlative_quantifiers_2_filtered 76.37% 83.77% 69.98% 61.16%
tough_vs_raising_1_filtered 36.50% 28.80% 23.73% 29.32%
tough_vs_raising_2_filtered 81.41% 82.93% 80.76% 78.37%
transitive_filtered 80.07% 74.77% 70.85% 66.94%
wh_island_filtered 61.77% 63.54% 61.04% 38.75%
wh_questions_object_gap_filtered 78.70% 75.20% 80.33% 76.37%
wh_questions_subject_gap_filtered 92.32% 92.54% 92.43% 90.31%
wh_questions_subject_gap_long_distance_filtered 91.60% 93.35% 93.58% 94.87%
wh_vs_that_no_gap_filtered 95.82% 95.93% 96.17% 94.54%
wh_vs_that_no_gap_long_distance_filtered 94.86% 97.37% 96.57% 94.74%
wh_vs_that_with_gap_filtered 27.20% 26.01% 5.55% 7.07%
wh_vs_that_with_gap_long_distance_filtered 7.03% 4.18% 3.41% 4.62%
supplement_hypernym 51.19% 51.90% 51.07% 51.19%
supplement_qa_congruence_easy 48.44% 54.69% 56.25% 57.81%
supplement_qa_congruence_tricky 26.67% 39.39% 25.45% 25.45%
supplement_subject_aux_inversion 78.54% 77.22% 86.11% 79.75%
supplement_turn_taking 56.79% 58.21% 58.21% 56.43%
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