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Abstract

The Knowledge Graph Entity Typing (KGET)
task aims to predict missing type annotations
for entities in knowledge graphs. Most recent
studies only focus on the structural informa-
tion from an entity’s neighborhood or seman-
tic information from textual representations of
entities or relations. In this paper, inspired
by curriculum learning and contrastive learn-
ing, we propose the CCLET model using the
Curriculum Contrastive Learning strategy for
KGET, which uses the Pre-trained Language
Model (PLM) and the graph model to fuse the
entity related semantic and the structural infor-
mation of the Knowledge Graph (KG) respec-
tively. Our CCLET model consists of two main
parts. In the Knowledge Fusion part, we design
an Enhanced-MLP architecture to fuse the text
of the entity’s description, related triplet and
tuples; In the Curriculum Contrastive Learn-
ing part, we define the difficulty of the training
course by controlling the level of added noise,
we aim to accurately learn with curriculum con-
trastive learning strategy from easy to difficult.
Our extensive experiments demonstrate that the
CCLET model outperforms recent state-of-the-
art models, verifying its effectiveness in the
KGET task.

1 Introduction

Entity Typing (ET) is a key task in KG reasoning,
aiming to infer missing type annotations to improve
the completeness and enrichment of Knowledge
Graphs. Entity types in KG provide a high-level
summary of their instance entities, it can assist to
understand entities’ inherent characteristics and are
widely used in natural language processing (NLP)
tasks such as entity linking and question answering
systems(Chen et al., 2020) (Wang et al., 2019b).

However, existing knowledge graphs frequently
suffer from incomplete type annotations(Zhu et al.,
2015), because they are manually constructed by
domain experts. This limits their effectiveness

Figure 1: An example of "Barack Obama", illustrated
the inference of missing types of the target entity based
on the structural and textual information provided in the
local subgraph.

across various applications. Specifically, in the
FB15kET dataset, 10% of entities labeled as "/mu-
sic/artist" are missing the "/people/person" type.
Furthermore, entity types are highly diverse, with
47.4% of entities having more than 10 types, and
some reaching up to 133. For instance, in Fig-
ure 1, "Barack Obama" could be annotated as a
"/government/political_appointer" based on rela-
tions "appointed by" and entity type “politician”
related to entity "Hillary Clinton". Additionally, in
most KGs, type annotations are often incomplete.

Recent research has explored different ap-
proaches, including embedding-based, graph neu-
ral network (GNN)-based, Transformer-based, and
hybrid methods. These approaches have the fol-
lowing limitations. First, most recent models fo-
cus on either the semantic or structural aspects of
the KG, without effectively leveraging both, like
CompoundE(Ge et al., 2023), MCLET(Hu et al.,
2023), and MiNer(Jin et al., 2022). Second, in
training process, recent models learn all features si-
multaneously disregarding the distinction between
difficulty levels, which makes the training slower,
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as seen in models like SSET(Li et al., 2024) and
TET(Hu et al., 2022).

To address these issues, we propose the Knowl-
edge Graph Entity Typing with the Curriculum
Contrastive Learning (CCLET) model. First, the
model encodes entities’ names and descriptions
through a PLM and aggregates structural informa-
tion using LightGCN(He et al., 2020). In the fusion
part, an Enhanced-MLP structure is used to effec-
tively combine semantic and structural information.
Second, a curriculum contrastive learning strategy
is introduced. This strategy gradually increases
task difficulty, allowing the model to learn simple
features first and handle more complex ones later.
The key contributions of this paper are:

• We designed an Enhanced-MLP structure that
fuses semantic and structural information,
thereby enriching entity representation.

• In the contrastive learning process, we intro-
duced a curriculum contrastive learning strat-
egy that controls noise levels from easy to
difficult. And, we design a new contrastive
loss function.

• We demonstrated through extensive experi-
ments that our CCLET model significantly
improves mean rank (MR) results.

• Additionally, the CCLET model exhibits ef-
fective inference capability on small-scale
datasets, achieving optimal results in real-
world applications.

2 Related Work

2.1 Knowledge Graph Entity Typing
Embedding-based Methods: ETE(Moon et al.,
2017) first introduced KGET by utilizing con-
textual knowledge graph embeddings. Con-
nectE(Zhao et al., 2020) combines local type as-
sertions and global triplet knowledge, constructing
two novel embedding models to enhance KGET
performance.

GNN-based Methods: MiNer(Jin et al., 2022)
aggregates multi-hop neighborhood information to
utilize neighborhood co-occurrence relationships
for better KGET results. MCLET(Hu et al., 2023)
introduces a multi-view study and expert mixed
strategy, providing new insights for KGET.

Transformer-based Methods: TET(Hu et al.,
2022) integrates local, global, and contextual in-
formation, improving entity type inference through
enhanced semantic representation.

Hybrid-based Methods: SSET(Li et al., 2024)
merges Transformer and GNN approaches, com-
bining semantic and structural data through a PLM
model, improving accuracy by reranking the infer-
ence results.

2.2 Contrastive Learning

Contrastive learning has achieved success in fields
like computer vision (CV)(Chen et al., 2021a) and
NLP(Cao et al., 2022). Despite its strengths, it
faces challenges with large-scale datasets and com-
putational resources. It focuses on minimizing the
distance between similar data while maximizing
the distance between dissimilar data.

2.3 Curriculum Learning

Curriculum learning(Bengio et al., 2009), inspired
by human learning, arranges tasks by increasing
difficulty, helping models gradually improve gener-
alization. It has been effective in domains such as
CV(Soviany et al., 2022) and NLP(Vakil and Amiri,
2023). In this paper, we combine curriculum learn-
ing with contrastive learning to better tackle the
KGET task, leveraging the advantages of both.

3 Problem Definition

Let E, R, and T be a finite set of entities, relation
types, and entity types, respectively. A knowledge
graph Gtriples is the union of Gtypes and G, where
Gtriples represents a set of triples of the form (s, r,
o), where s, o∈E, and r∈R, and Gtypes represents a
set of pairs of the form (e, t), where e∈E and t∈T.
To use a uniform representation, we convert the pair
(e, t) into a triple (e, has_type, t). In most knowl-
edge graph datasets, such as FB15k(Bollacker et al.,
2008) and YAGO43k(Suchanek et al., 2007), enti-
ties are provided with labels and descriptions, while
relations and types are represented by their textual
identifiers. We assume that this textual information
is meaningful and contains semantic information
that is valuable for the KGET task. In this paper,
we consider the KGET task, which aims to predict
missing types from T in a triple of Gtypes.

4 Methodology

To solve the problems of insufficient utilization of
textual semantic and graphical structure informa-
tion, and training consumption cost, in this paper,
we propose the Knowledge Graph Entity Typing
with Curriculum Contrastive Learning model, as
shown in Figure 2, for the KGET task.
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Figure 2: Overall structure of CCLET model, consists of two parts: Knowledge Fusion part (left), Curriculum
Contrastive Learning part (right)

4.1 Knowledge Fusion

Structural Information Processing. For the
KGET task, the two parts of the input KG, Gtriples

and Gtypes, can be used for reasoning. The main
problem is how to make better use of the type graph
Gtypes which will affect the overall performance
of the model to a large extent. Therefore, accord-
ing to the previous research methods(Zhu et al.,
2021), in order to effectively integrate the exist-
ing structural knowledge into the type graph, after
introducing the coarse-grained clustering informa-
tion into the type graph, the three-level structure
is generated, so that the corresponding graph will
have three types of edges: entity-type, cluster-type,
and entity-cluster. In this way, different subgraphs
focus on different knowledge perspectives. For
example, entity-cluster subgraphs focus more on
more abstract content than entity-type subgraphs.
The three different subgraphs are then encoded by
LightGCN.

Semantic Information Processing. In our
CCLET model, the PLM is used to encode the en-
tity’s name and description to obtain the semantic
information. Firstly, we choose the BERT model
as our pre-trained language model, to capture rich
contextual semantic information.

We obtain entity descriptions by matching en-
tity names in the dataset with Wikidata API, for
instance, according to the entity ID "/m/02mjmr",
can find entity name "Barack Obama" and the en-
tity description "44th President of the United States
of America.". Then, the type, the cluster of the

entity as well as the above-mentioned entity de-
scription are together input into the BERT model
for encoding. Finally, BERT model would output
the semantic embeddings of the input text.

Knowledge Fusion. Structural embeddings of
entities, clusters, and types encoded by the Lignt-
GCN, denoted as Struct.e, Struct.c and Struct.t.
In addition, to enhance the scalability of the model,
we also incorporate a set of learnable semantic em-
beddings for each entity, cluster, and type, denoted
as Sem.e, Sem.c and Sem.t, respectively. To en-
hance the scalability of the model, we propose an
Enhanced-MLP architecture that fuses the semantic
and structural embeddings of each entity, cluster,
and type into a unified dimension space by integrat-
ing batch normalization, dropout, and residual con-
nection. The processing step for Enhanced-MLP is
as follows Equation 1:

y1 = Dropout (ELU (BN1(W1x+ b1)) , p)
(1)

where x represents the input vector, Wn, bn repre-
sents the weights and biases of the nth fully con-
nected layer, represents the drop probability of the
Dropout layer, and BNn represents the nth batch
normalization, which combines linear transforma-
tion and nonlinear activation.

A second fully connected layer and batch nor-
malization, including optional residual connections
as follows Equation 2:

y2 = BN2(W2y1 + b2) + x (2)

Then unified embedding is achieved by two
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Enhanced-MLP architectures and L2 normaliza-
tion.

Struct. =
EnhancedMLP (Struct.)

∥EnhancedMLP (Struct.)∥2
(3)

Sem. =
EnhancedMLP (Sem.)

∥EnhancedMLP (Sem.)∥2
(4)

hybrid = Struct.+ Sem. (5)

Where Struct., Sem. and hybrid are structural,
semantic, and unified embeddings of an entity, a
relation, or a type, as follows Equation 3, 4 and 5,
respectively.

4.2 Curriculum Contrastive Learning
Easy to Difficult Curriculum Arrangement. The
creative thought of curriculum learning is to im-
prove the learning effect of the model by gradually
increasing the difficulty of the task. Generally, cur-
riculum learning is to adjust the difficulty of learn-
ing by controlling the noise level of the training
data. In this paper, we design an automatic cur-
riculum learning strategy by controlling the noise
size in epochs, which realizes the progressive learn-
ing of the model by gradually increasing the noise
during the training process. Specifically, in the
early stage of training, the data with lower noise is
used for training. During the training process, the
noise of the data is gradually increased, so as to
improve the robustness and generalization ability
of the model. We perturb the original data with
Gaussian noise, which is Equation 6 as follows:

x̃ = x + N(0, σ2) (6)

Where x̃ represents the data after adding noise, x
is the original data, 0 and σ2 represents Gaussian
noise with mean and variance.

In this paper, we choose the dynamic strategy of
increasing the noise level linearly. The following
is the Equation 7 of the dynamic noise strategy:

σ(E) = σ0 + (σmax − σ0) ·
E

Emax
(7)

Where σ0 is the initial noise level, σmax is the max-
imum noise level, Emax is the maximum number
of epochs, and E is the current number of epochs.
The noise level is updated once every new course
until the maximum noise level is reached.

Curriculum Contrastive Learning. Following
the work of cross-view contrastive learning(Zhu

et al., 2021), we utilize curriculum contrastive
learning and modify the loss function. In this part,
the contrast samples are divided into two parts:
intra-view and inter-view contrast and a new joint
loss function is designed. Different views can
capture content at different levels of granularity.
For example, the semantic content in entity-cluster
view is more coarse-grained than the semantic con-
tent in entity-type view.

In both views, there are three parts: selecting a
node sample as the anchor, treating the data with
added noise as the positive sample sample+, and
considering other nodes as the negative sample
sample−.

In the inter-view contrast part, the representation
of the same node in two views and the noise repre-
sentation are treated as positive sample pairs, and
the representation of other nodes in the other view
is treated as negative sample pairs.

In the intra-view contrast part, the samples with
noise and the original samples in the same view
are regarded as positive sample pairs, and the sam-
ples with noise and the original samples with other
nodes are formed as negative sample pairs, respec-
tively.

Define the temperature parameter τ and calcu-
late the similarity between the input vectors. The
similarity is calculated using the normalized cosine
similarity as follows Equation 8:

sin(z1, z2) =
z1 · z2

∥z1∥∥z2∥
(8)

The contrast loss function L(X,Y ) is defined
to calculate the loss of different contrast pairs as
follows Equation 9, 10 and 11:

L(X,Y ) = − log

(
diag(e(sim(X,Y )/τ))

N −R

)
(9)

N =
∑

(esim(X,X)/τ + esim(X,Y )/τ ) (10)

R = diag(esim(X,X)/τ ) (11)

Where,diag(A) denotes the diagonal elements
of the matrix A, and

∑
A denotes the sum of all

elements of the matrix A.
Hence, the contrastive loss of the original embed-

ding vector is represented as Lorig = L(X,Y ) +
L(Y,X). Contrastive loss of the noise embedding
vector is represented as Lnoise = L(Xnoise, Ynoise)+
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Datasets FB15kET YAGO43kET
Entities 14,951 42,335
Relations 1,345 37
Types 3,584 45,182
Clusters 1,081 1,124
Train.triples 483,142 331,686
Train.tuples 136,618 375,853
Valid.tuples 15,848 43,111
Test.tuples 15,847 43,119

Table 1: Statistics of the FB15kET and YAGO43kET
Datasets

L(Ynoise, Xnoise).Finally, the hybrid of contrastive
loss of the original and noise embedding vectors
are represented as Lorig-noise = L(X,Xnoise) +
L(Y, Ynoise). The joint loss is as follows Equa-
tion 12:

Ljoint = mean[
∑

(Lorig + Lnoise + Lorig−noise)]
(12)

For KGET task, we employ the SFNA(Hu et al.,
2022) loss function denoted as LET . We further
integrate the contrastive loss with SFNA loss to
obtain the joint loss function of our CCLET model
as follows Equation 13:

L = LET + λLjoint + γ∥Θ∥22 (13)

Where λ and γ are the hyperparameters used to
control the contrastive loss and L2 regularization
and are the set of model parameters.

5 Experiment

5.1 Datasets
This paper uses two real-world KGs: FB15k
and YAGO43k, and the datasets are derived from
Google Freebase and YAGO knowledge base,
respectively. The two entity typing datasets
of this paper, FB15kET(Xie et al., 2016) and
YAGO43kET(Moon et al., 2017) provide entity
type assertions by mapping entities in two KGs
to their entity types, Table 1 lists the statistics of
the two datasets. For textual information, labels
and descriptions of FB15k entities published by
Xie et al. (2016), are used. The YAGO43k dataset
provides text labels for each entity, and Wikidata
API is used to collect descriptions of entities in
YAGO43k.

5.2 Baselines
In order to verify the effectiveness, this paper
selects these baseline models to compare with

the CCLET model. Embedding-based Meth-
ods: ETE(Moon et al., 2017), CORE(Ge et al.,
2022), RotatE(Sun et al., 2019), ConnectE(Zhao
et al., 2020) and CompoundE(Ge et al., 2023).
Transformer-based Methods: HittER(Chen et al.,
2021b), CoKE(Wang et al., 2019a) and TET(Hu
et al., 2022) GNN-based models: MRGAT(Zhao
et al., 2023), RACE2T(Zou et al., 2022), At-
tEt(Zhuo et al., 2022), CET(Pan et al., 2021), and
MiNer(Jin et al., 2022), MCLET(Hu et al., 2023).
Hybrid-based Methods: SSET(Li et al., 2024).

5.3 Evaluation Metrics
Entity typing task aims to obtain a ranked list of
possible types t for each pair (e, t) in the test set.
Five evaluation metrics are selected in this paper:
mean rank (MR), mean reciprocal rank (MRR),
and Hits@k(k∈1,3,10). MR represents the average
ranking of the correct answers within the result list,
with lower ranks reflecting better outcomes, MRR
defines the reciprocal ranking of the first correct
answer, and Hits@k calculates the percentage of
the top k correct types. Follow the evaluation met-
rics found in most entity typing work (Pan et al.,
2021);(Hu et al., 2022).

5.4 Main Results
Table 2 shows the performance of CCLET and all
baselines on the two datasets. Among GNN-based
methods, our model achieves SOTA performance
across all five metrics on both datasets. On the
FB15kET dataset, our model reaches a Hit@1 of
70.2%, which is 3.4% higher than the second-best
result, with Hit@3 and Hit@10 also improving by
over 1%. Compared to the latest hybrid model,
SSET(Li et al., 2024), our model still outperforms
it on the FB15kET dataset. We can conclude that
our model performs well on smaller datasets. On
the YAGO43kET dataset, our model achieves the
best MR value, which has improved by 68 positions
compared to the SSET model, while other metrics
also show competitive, second-best results.

Compared to the FB15kET dataset, the
YAGO43kET dataset contains a larger number
of entities and entity types, but it includes sub-
stantially fewer relationships. Therefore, accu-
rately distinguishing between the entity types in
the YAGO43kET dataset is more challenging. Thus
on the YAGO43kET dataset, our model failed to
exceed the SSET model on Hit@10; so, we contin-
ued to observe results from Hit@50 to Hit@200 in
Table 3. The results illustrate that, when the evalua-
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Methods FB15kET YAGO43kET
Hit@1 Hit@3 Hit@10 MR MRR Hit@1 Hit@3 Hit@10 MR MRR

Embedding-based methods
ETE(Moon et al., 2017)† 38.5% 55.3% 71.9% - 50.0% 13.7% 26.3% 42.2% - 23.0%
CORE(Ge et al., 2022)† 48.9% 66.3% 81.6% - 60.0% 24.2% 39.2% 55.0% - 35.0%
ConnectE(Zhao et al., 2020)† 49.6% 64.3% 79.9% 42 59.0% 16.0% 30.9% 47.9% - 28.0%
RotatE(Sun et al., 2019)† 52.3% 69.9% 84.0% 18 63.2% 33.9% 53.7% 69.5% 316 46.2%
CompoundE(Ge et al., 2023)† 52.5% 71.9% 85.9% - 64.0% 36.4% 55.8% 70.3% - 48.0%

Transformer-based methods
HittER(Chen et al., 2021b)‡ 33.3% 46.6% 58.8% - 42.2% 16.3% 25.9% 39.0% - 24.0%
CoKE(Wang et al., 2019a)‡ 37.9% 51.0% 62.4% - 46.5% 24.4% 38.7% 54.2% - 34.4%
TET(Hu et al., 2022)† 63.8% 76.2% 87.2% - 71.7% 40.8% 57.1% 69.5% - 51.0%

GNN-based methods
MRGAT(Zhao et al., 2023)† 56.2% 66.3% 80.4% - 63.0% 24.3% 34.3% 48.2% - 32.0%
RACE2T(Zou et al., 2022)† 56.1% 68.8% 81.7% - 64.6% 24.8% 37.6% 52.3% - 34.4%
AttEt(Zhuo et al., 2022)† 51.7% 67.7% 82.1% - 62.0% 24.4% 41.3% 56.5% - 35.0%
CET(Pan et al., 2021)† 61.3% 74.5% 85.6% 19 69.7% 39.8% 56.7% 69.6% 250 50.3%
MiNer(Jin et al., 2022)† 65.4% 76.8% 87.5% 15 72.8% 41.2% 58.9% 71.4% 223 52.1%
MCLET(Hu et al., 2023)† 67.7% 79.3% 89.1% - 75.0% 43.6% 61.3% 73.5% - 54.3%
CCLET(OURS) 70.2% 81.1% 90.1% 11 77.0% 44.8% 62.8% 74.5% 176 55.0%

Hybrid-based methods
SSET(Li et al., 2024)† 69.3% 80.0% 89.5% 12 76.1% 47.3% 64.4% 76.2% 244 57.6%

Table 2: Experiment results of KGET on FB15kET and YAGO43kET datasets. The best results are in bold and the
second-best ones are in underlined. †: results are from the original papers. ‡: results are taken from Hu et al. (2023).

tion range is expanded, there remains potential for
improvement on larger datasets like YAGO43kET,
particularly, in terms of MR, our model shows sig-
nificant improvement. Table 3 demonstrates that
our model outperforms the SSET model by 3.2%
and improves Hit@100 by 3.1%. Moreover, other
metrics show gains of at least 2.4%. These results
can be attributed to the CCLET model’s effective
fusion of semantic information from the PLM and
the structural information extracted by LightGCN
through the Enhanced-MLP structure. This fusion
strategy enables our model to capture both the con-
textual semantic features and the graph structure
features, avoiding the limitations of relying on a
single information source. Furthermore, the use of
contrastive learning enhances the model’s ability
to differentiate subtle feature differences by maxi-
mizing the similarity between positive samples and
minimizing the similarity between negative sam-
ples.

As shown in Table 4, our model completes train-
ing in just 2.8 hours on FB15kET and 11.8 hours on
YAGO43kET, representing time reductions of 75%
and 70%, respectively, compared to SSET. These
significant promotions in training efficiency are

Model MR H@50 H@100 H@150 H@200
SSET 245 80.8% 85.1% 87.9% 89.5%

CCLET 176 84.0% 88.2% 90.5% 91.9%

Table 3: Comparison table of other metrics on
YAGO43kET dataset(H@k is the shorthand for Hit@k)

Model FB15kET YAGO43kET
SSET 11.3 hours 38.9 hours

CCLET 2.8 hours↓75% 11.8 hours↓70%

Table 4: Training Time Comparison Table

owing to the BERT model, trained on an NVIDIA
GeForce RTX 3090 GPU for 500 epochs. The
faster training times can be attributed to the simpler
structure of our model compared to SSET, as well
as the advantages of leveraging pre-trained models.
Since CCLET utilizes BERT to encode semantic
information, it significantly reduces training time
from scratch while simultaneously enhancing the
model’s ability to understand semantics. Moreover,
the curriculum contrastive learning strategy, which
progressively increases the difficulty by adjusting
the noise level in the data, enables our model to
first capture basic features and then gradually tackle
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Exp. Model Settings Hit@1 Hit@3 Hit@10 MR MRR
1 Structure Only 68.9% 79.8% 89.6% 12 76.0%
2 Structure + Entity Semantic 70.2% 81.1% 90.1% 11 77.0%
3 Structure + Entity & Type Semantic 69.0% 80.2% 89.7% 12 76.0%
4 Structure + Entity & Type & Cluster Semantic 68.7% 79.7% 89.4% 12 75.8%

Table 5: Structural and Semantic Fusion Results on the FB15kET dataset

Exp. Struct. Sem. Contr. Curric. Hit@1 Hit@3 Hit@10 MR MRR
1 ✓ 66.5% 79.1% 89.6% 12 74.5%
2 ✓ ✓ 66.7% 79.4% 89.9% 12 74.6%
3 ✓ ✓ ✓ 69.5% 80.0% 89.6% 12 76.3%
4 ✓ ✓ ✓ ✓ 70.2% 81.1% 90.1% 11 77.0%
5 ✓ ✓ ✓ 68.7% 79.7% 89.4% 15 75.8%
6 ✓ ✓ 67.7% 79.3% 89.1% 15 75.0%

Table 6: Ablation experiment results

more complex ones, boosting training efficiency.
To further explore the impact of semantic and

structural information on entity type prediction,
we conducted a series of comparative experiments,
as summarized in Table 5. In these experiments,
text-based semantic information was incrementally
integrated into a graph structure model.

The results, presented in Table 5, indicate that
Exp. 2 achieves the highest performance across
all five metrics, confirming that the combination
of entity semantic information and structural in-
formation of entities enhances prediction accuracy.
By comparing Exp. 1 with Exp. 2, 3, and 4, it is
evident that adding semantic information improves
performance in most cases, with the exception of
Exp. 4, where the results are slightly lower than
those of Exp. 1. This suggests that adding more
semantic information is not always beneficial exces-
sive or irrelevant semantic data can sometimes de-
grade prediction performance. These experiments
also weaken the importance of entity semantic in-
formation in the KGET task, while highlighting
that excessive, irrelevant semantic information may
negatively affect model performance.

5.5 Ablation Studies

As shown in Table 6, six groups of ablation studies
were conducted on the FB15kET dataset to evalu-
ate the effectiveness of each part in the proposed
model. In the ablation study, we focused on seman-
tic information, structural information, contrastive
learning, and curriculum learning. In Table 6, struc-
tural information is represented as "Struct.", seman-
tic information as "Sem.", contrastive learning as

"Contr.", and curriculum learning as "Curric.". The
results in Table 6 demonstrate that across Exp.1,
2, 3, and 4, the performance improves with the
addition of each part, confirming the effectiveness
of the individual components. The comparison be-
tween Exp.2 and Exp.3 shows that incorporating
contrastive learning boosts Hit@1 by nearly 3%,
indicating that contrastive learning enhances the
model’s ability to capture subtle data differences.
Similarly, comparing Exp.3 and 4 with Exp.5 and
6 reveals substantial improvements in Hit@10 and
Hit@1, respectively, suggesting that the model’s
generalization ability is enhanced by the gradual
curriculum learning strategy. Additionally, in Exp.1
and 2 with 3 and 6, all five metrics improve when
semantic information is included, demonstrating
that semantic information is beneficial to enhance
the model’s reasoning capabilities.

6 Case Studies

In this section, we analyze representative prediction
results from the FB15kET dataset for case anal-
ysis. These examples demonstrate performance
variations with different entity types. The results
indicate that our model is capable of handling
information-rich entity types.

Table 7 presents a comparison of predicted rank-
ings between the SSET model and the CCLET
model. Overall, our model demonstrates superior
performance in most cases. For most entity types,
it significantly improves the type rankings, partic-
ularly entities such as " educational television",
"multiple sclerosis" and "snowboarding" where the
highest rankings improved by as much as 2264
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Entity Golden Entity Type Rank

SSET OURS

/m/0295sy (Hook) /base/allthingsnewyork/topic 343 1
/m/02r1ysd (Pushing Daisies) /base/hindisoundtracks/topic 380 1
/m/052vwh (time in China) /base/greeneducation/topic 728 1
/m/09qgm (snowboarding) /business/employer 1712 26
/m/0gg81w (educational television) /tv/tv_network 2291 27
/m/0dcqh (multiple sclerosis) /fictional_universe/fictional_object 3226 1140

Table 7: Comparison table of correct result predicted position

Entity Golden Entity Type Rank Predicted Type Score

/m/0n95v /location/ 2 /location/ 0.9980
(Chiswick) location /statistical_region
/m/09c7w0 /user/tsegeran/random/ 2 /base/ontologies/ 0.9902

(United States of America) taxonomy_subject ontology_instance
/m/0h3tv /base/aareas/schema/ 2 /base/tagit/ 0.9780
(Valencia) administrative_area place
/m/02j71 /astronomy/celestial_object 4 /location/ 0.9751
(Earth) _with_coordinate_system country

/m/015fi /user/tsegeran/random/ 3 /base/locations/ 0.9741
(Brazil) taxonomy_subject countries

Table 8: Case of mistakenly ranked entities with high prediction score

positions. This substantial improvement is due to
the inclusion of entity descriptions, particularly in
types with limited training data such as education,
medicine, and sports. For other types of entities
like "Hook" and "Pushing Daisies", our model also
exhibits the significant improvement. These en-
tities belong to entertainment and cultural types,
which have richer and more straightforward infor-
mations.

In Table 8, we analyze cases where high predic-
tion scores led to errors. These examples show that
high scores do not always guarantee accuracy, par-
ticularly for entities with multiple types. The model
may focus on certain features while overlooking
more precise types.

For example, for "Chiswick," despite similar pre-
dictions (e.g., statistical_area and location), the
model gave a high confidence score of 0.9980,
maybe due to Chiswick’s specific geostatistical
characteristics. Similarly, "United States of Amer-
ica," with up to 133 entity types, was predicted as
"ontology_instance," suggesting the model general-
ized this entity across contexts without understand-
ing its real types.

7 Conclusion

In this paper, we propose CCLET, a novel model
that effectively combines semantic and structural
information through a curriculum contrastive learn-
ing approach to address the KGET task. Our work
introduces two key innovations: first, the integra-
tion of entity names and descriptions as semantic in-
formation with structural information; and second,
the use of a curriculum contrastive learning method
that gradually increases training difficulty to en-
hance the model’s robustness and stability. CCLET
achieves Hit@1 scores of 70.2% on FB15kET and
44.8% on YAGO43kET, demonstrating its effec-
tiveness in improving entity type completion ac-
curacy. Additionally, our model achieves the best
average ranking across both datasets. These results
show CCLET’s potential for broader applications
in general knowledge graph tasks.

8 Limitations

Despite the promising results, our model has sev-
eral limitations. First, the utilization of seman-
tic information can be further optimized. The fu-
sion method of semantic and structural information,
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while effective, could benefit from more sophisti-
cated and deeper models that better mine semantic
features. Second, while CCLET performs well
on small-scale datasets, its performance on larger
datasets is unsatisfactory. In large-scale datasets,
the redundant features and noise can interfere with
model training, potentially degrading performance.
Future work could focus on addressing these is-
sues to further improve CCLET’s performance and
applicability in large-scale knowledge graph sce-
narios.
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